偏最小二乘法PLS回归NIPALS算法的Matlab程序及例子

偏最小二乘法PLS回归NIPALS算法的Matlab程序及例子
偏最小二乘法PLS回归NIPALS算法的Matlab程序及例子

偏最小二乘法PLS回归NIPALS算法的Matlab程序及例子②function [T,P,W,Wstar,U,b,C,B_pls,...

Bpls_star,Xori_rec,Yori_rec,...

R2_X,R2_Y]=PLS_nipals(X,Y,nfactor)

% USAGE: [T,P,W,Wstar,U,b,C,Bpls,Bpls_star,Xhat,Yhat,R2X,R2Y]=PLS_nipals(X,Y,nfact) % PLS regression NIPALS algorithm PLS回归NIPALS算法

% Compute the PLS regression coefficients PLS回归系数的计算

% X=T*P' Y=T*B*C'=X*Bpls X and Y being Z-scores

% B=diag(b)

% Y=X*Bpls_star with X being augmented with a col of ones

% and Y and X having their original units

% T'*T=I (NB normalization <> SAS)

% W'*W=I

%

% Test for PLS regression

% Herve Abdi November 2002/rev November 2004

%

%

% Version with T, W, and C being unit normalized

% U, P are not

% nfact=number of latent variables to keep 保持潜在变量的数量

% default = rank(X)

X_ori=X;

Y_ori=Y;

if exist('nfactor')~=1;nfactor=rank(X);end

M_X=mean(X);

M_Y=mean(Y);

S_X=std(X);

S_Y=std(Y);

X=zscore(X);

Y=zscore(Y);

[nn,np]=size(X) ;

[n,nq]=size(Y) ;

if nn~= n;

error(['Incompatible # of rows for X and Y']);

end

% Precision for convergence

epsilon=eps;

% # of components kepts

% Initialistion

% The Y set

U=zeros(n,nfactor);

C=zeros(nq,nfactor);

% The X set

T=zeros(n,nfactor);

P=zeros(np,nfactor);

W=zeros(np,nfactor);

b=zeros(1,nfactor);

R2_X=zeros(1,nfactor);

R2_Y=zeros(1,nfactor);

Xres=X;

Yres=Y;

SS_X=sum(sum(X.^2));

SS_Y=sum(sum(Y.^2));

for l=1:nfactor

t=normaliz(Yres(:,1));

t0=normaliz(rand(n,1)*10);

u=t;

nstep=0;

maxstep=100;

while ( ( (t0-t)'*(t0-t) > epsilon/2) & (nstep < maxstep));

nstep=nstep+1;

disp(['Latent Variable #',int2str(l),' Iteration #:',int2str(nstep)]) t0=t;

w=normaliz(Xres'*u);

t=normaliz(Xres*w);

% t=Xres*w;

c=normaliz(Yres'*t);

u=Yres*c;

end;

disp(['Latent Variable #',int2str(l),', convergence reached at step ',...

int2str(nstep)]);

%X loadings

p=Xres'*t;

% b coef

b_l=((t'*t)^(-1))*(u'*t);

b_1=u'*t;

% Store in matrices

b(l)=b_l;

P(:,l)=p;

W(:,l)=w;

T(:,l)=t;

U(:,l)=u;

C(:,l)=c;

% deflation of X and Y

Xres=Xres-t*p';

Yres=Yres-(b(l)*(t*c'));

R2_X(l)=(t'*t)*(p'*p)./SS_X;

R2_Y(l)=(t'*t)*(b(l).^2)*(c'*c)./SS_Y;

end

%Yhat=X*B_pls;

X_rec=T*P';

Y_rec=T*diag(b)*C';

%Y_residual=Y-Y_rec;

%% Bring back X and Y to their original units

%

Xori_rec=X_rec*diag(S_X)+(ones(n,1)*M_X);

Yori_rec=Y_rec*diag(S_Y)+(ones(n,1)*M_Y);

%Unscaled_Y_hat=Yhat*diag(S_Y)+(ones(n,1)*M_Y);

% The Wstart weights gives T=X*Wstar

%

Wstar=W*inv(P'*W);

B_pls=Wstar*diag(b)*C';

%% Bpls_star Y=[1|1|X]*Bpls_star

%Bpls_star=[M_Y;[-M_X;eye(np,np)]*diag(S_X.^(-1))*B_pls*diag(S_Y)] Bpls_star=[[-M_X;eye(np,np)]*diag(S_X.^(-1))*B_pls*diag(S_Y)];

Bpls_star(1,:)=Bpls_star(1,:)+M_Y;

%%%%%%%%%%%%% Functions

Here %%%%%%%%%%%%%%%%%%%%%%%

function [f]=normaliz(F);

%USAGE: [f]=normaliz(F);

% normalize send back a matrix normalized by column

% (i.e., each column vector has a norm of 1)

[ni,nj]=size(F);

v=ones(1,nj) ./ sqrt(sum(F.^2));

f=F*diag(v);

function z=zscore(x);

% USAGE function z=zscore(x);

% gives back the z-normalization for x

% if X is a matrix Z is normalized by column

% Z-scores are computed with

% sample standard deviation (i.e. N-1)

% see zscorepop

[ni,nj]=size(x);

m=mean(x);

s=std(x);

un=ones(ni,1);

z=(x-(un*m))./(un*s);

应用例子

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

% example_pls.m: PLS example

% RM3 Fall 2004

% November 16 2004

%

% This script shows how to run

% a Partial least square regression

% (PLS).

% Need Programs: PLS_nipals plotxyha

% The example is the

% Wine example from Abdi H. (2003)

% See https://www.360docs.net/doc/c011793821.html,/~herve %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

clear

clc;

disp(['Example of a PLS program. See Abdi H. (2003)']); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

%************************************************************

%% -> This is your title.

%% -> Change it to fit your data

ze_title=['PLS. Wines. '];

%% **********************************************************

%% This is the data matrix of the Predictors (IV)

%% -> Change it for your example

X=[...

7 7 13 7

4 3 14 7

10 5 12 5

16 7 11 3

13 3 10 3

];

%%% get the # of rows and

columns %%%%%%%%%%%%%%%%%%%%%%%%%%

[nI,nJ]=size(X);

%************************************************************ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

% -> These are your predictors names.

% -> Change them to fit your data

% You need as many names as mcX has columns

n=0;

%

n=n+1;nom_x(n)={' Price'};

n=n+1;nom_x(n)={' Sugar'};

n=n+1;nom_x(n)={' Alcohol'};

n=n+1;nom_x(n)={' Acidity'};

%%% Test the # of colums names

if nJ~=n;

erreur(['Error -> (Wrong # of column names)!']);

end

%%*********************************************************** %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

% -> These are your observations names.

% -> Change them to fit your data

l=0;

l=l+1;nom_r{l}={'W_1'};

l=l+1;nom_r{l}={'W_2'};

l=l+1;nom_r{l}={'W_3'};

l=l+1;nom_r{l}={'W_4'};

l=l+1;nom_r{l}={'W_5'};

if nI~=l;

erreur(['Error -> (Wrong # of row names)!']);

end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

%% **********************************************************

%% This is the data matrix of the Dependant Variables (DV)

%% -> Change it for your example

Y=[...

14 7 8

10 7 6

8 5 5

2 4 7

6 2 4

];

%%% get the # of rows and

columns %%%%%%%%%%%%%%%%%%%%%%%%%%

[nI2,nK]=size(Y);

%************************************************************ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

% -> These are your predictors names.

% -> Change them to fit your data

% You need as many names as mcX has columns

m=0;

%

m=m+1;nom_y(m)={' Hedonic'};

m=m+1;nom_y(m)={' Meat'};

m=m+1;nom_y(m)={' Dessert'};

%%% Test the # of colums names

if nK~=m;

erreur(['Error -> (Wrong # of column names)!']);

end

%%*********************************************************** %%%%%%%%%%%% Call PLS_nipals %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

nfact2keep=2 ;

%%% nfact gives the number of latent variables

%%% the default is equal to the rank of X

[T,P,W,Wstar,U,b,C,Bpls,Bpls_star,Xhat,Yhat,R2X,R2Y]=...

PLS_nipals(X,Y,nfact2keep)

%%%%%%%%%%%% Plot the Observations (T vectors) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

percent_of_inertiaX=100*R2X;

percent_of_inertiaY=100*R2Y; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

%% The axes to keep for the plots

axe_horizontal=1;

axe_vertical=2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

le_taux=[...

' {\tau_X}_',int2str(axe_horizontal),'=',...

int2str(percent_of_inertiaX(axe_horizontal)),'%,', ...

' {\tau_X}_',int2str(axe_vertical),'=',...

int2str(percent_of_inertiaX(axe_vertical)),'%', ...

' {\tau_Y}_',int2str(axe_horizontal),'=',...

int2str(percent_of_inertiaY(axe_horizontal)),'%,', ...

' {\tau_Y}_',int2str(axe_vertical),'=',...

int2str(percent_of_inertiaY(axe_vertical)),'%'];

%%%% Plot

here %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%

figure(1);clf %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%

%% Now plot the Observations Scores T

%%

ze_tRC=[ze_title,' Observations (T).'];

titre=[ze_tRC, le_taux];

plotxyha(T,1,2,titre,nom_r');

axis('equal') ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

%% Now plot the X Scores W

%%

figure(2);clf

ze_tRC=[ze_title,' Predictors (W).'];

titre=[ze_tRC, le_taux];

plotxyha(W,1,2,titre,nom_x');

axis('equal') ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

%% Now plot the Y Scores U

%%

figure(3);clf

ze_tRC=[ze_title,' DV (C -> Non Ortho).'];

titre=[ze_tRC, le_taux];

plotxyha(C,1,2,titre,nom_y');

% axis('equal') ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%

作图函数plotxy定义

function plotxy(F,axe1,axe2,titre,noms);

% % ***** This is a Test Version *******

% July 1998 Herve Abdi

% Usage plotxy(F,axe1,axe2,title,names);

% plotxy plots a MDS or PCA or CA graph of component #'Axe1' vs #'Axe2' % F is a matrix of coordinates

% axe1 is the Horizontal Axis

% axe2 is the Vertical Axis

% title will be the title of the graph

% Axes are labelled 'Principal Component number'

% names give the names of the points to plot (def=numbers)

nomdim='Dimension';

[nrow,ncol]=size(F);

if exist('noms')==0;

noms{nrow,1}=[];

for k=1:nrow;noms{k,1}=int2str(k);end

end

minx=min(F(:,axe1));

maxx=max(F(:,axe1));

miny=min(F(:,axe2));

maxy=max(F(:,axe2));

hold off; clf;hold on;

rangex=maxx-minx;epx=rangex/10;

rangey=maxy-miny;epy=rangey/10; axis('equal'); axis([minx-epx,maxx+epx,miny-epy,maxy+epy]) ; %axis('equal');

%axis;

plot ( F(:,axe1),F(:,axe2 ),'.');

label=[nomdim,' '];

labelx=[label, num2str(axe1) ];

labely=[label, num2str(axe2) ];

xlabel (labelx);

ylabel (labely );

plot([minx-epx,maxx+epx],[0,0] ,'b');

% hold

plot ([0,0],[miny-epy,maxy+epy],'b');

for i=1:nrow,

text(F(i,axe1),F(i,axe2),noms{i,1});

end;

title(titre);

最小二乘法曲线拟合 原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到 了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到:

6. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。 MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。 polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[0.5,1.0,1.5,2.0,2.5,3.0], y=[1.75,2.45,3.81,4.80,7.00,8.60]。 解:MATLAB程序如下: x=[0.5,1.0,1.5,2.0,2.5,3.0]; y=[1.75,2.45,3.81,4.80,7.00,8.60]; p=polyfit(x,y,2) x1=0.5:0.05:3.0; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1 计算结果为: p =0.5614 0.8287 1.1560 即所得多项式为y=0.5614x^2+0.08287x+1.15560 图1 最小二乘法曲线拟合示例 对比检验拟合的有效性: 例:在[0,π]区间上对正弦函数进行拟合,然后在[0,2π]区间画出图形,比较拟合区间和非拟合区间的图形,考察拟合的有效性。 在MATLAB中输入如下代码: clear x=0:0.1:pi; y=sin(x); [p,mu]=polyfit(x,y,9)

用matlab实现最小二乘递推算法辨识系统参数

用matlab实现最小二乘递推算法辨识系统参 数 自动化系统仿真实验室指导教师: 学生姓名班级计082-2 班学号撰写时间: 全文结束》》-3-1 成绩评定: 一.设计目的 1、学会用Matlab实现最小二乘法辨识系统参数。 2、进一步熟悉Matlab的界面及基本操作; 3、了解并掌握Matlab中一些函数的作用与使用;二.设计要求最小二乘递推算法辨识系统参数,利用matlab编程实现,设初始参数为零。z(k)-1、5*z(k-1)+0、7*z(k-2)=1*u(k-1)+0、5*u(k-2)+v(k); 选择如下形式的辨识模型:z(k)+a1*z(k- 1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k);三.实验程序 m=3;N=100;uk=rand(1,N);for i=1:Nuk(i)=uk(i)*(-1)^(i-1);endyk=zeros(1,N); for k=3:N yk(k)=1、5*yk(k-1)-0、 7*yk(k-2)+uk(k-1)+0、5*uk(k-2); end%j=100;kn=0;%y=yk(m:j);%psi=[yk(m-1:j-1);yk(m-2:j-2);uk(m-1:j-1);uk(m-2:j- 2)];%pn=inv(psi*psi);%theta=(inv(psi*psi)*psi*y);theta=[0 ;0;0;0];pn=10^6*eye(4);for t=3:Nps=([yk(t-1);yk(t-

2);uk(t-1);uk(t-2)]);pn=pn- pn*ps*ps*pn*(inv(1+ps*pn*ps));theta=theta+pn*ps*(yk(t)-ps*theta);thet=theta;a1=thet(1);a2=thet(2);b1=thet(3);b2= thet(4); a1t(t)=a1;a2t(t)=a2;b1t(t)=b1;b2t(t)=b2;endt=1:N;plot(t,a 1t(t),t,a2t(t),t,b1t(t),t,b2t(t));text(20,1、 47,a1);text(20,-0、67,a2);text(20,0、97,b1);text(20,0、47,b2);四.设计实验结果及分析实验结果图:仿真结果表明,大约递推到第步时,参数辨识的结果基本到稳态状态,即a1=1、5999,b1=1,c1=0、5,d1=-0、7。五、设计感受这周的课程设计告一段落了,时间短暂,意义重大。通过这次次练习的机会,重新把matlab课本看了一遍,另外学习了系统辨识的有关内容,收获颇丰。对matlab的使用更加纯熟,也锻炼了自己在课本中搜索信息和知识的能力。在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。同时我也进一步认识了matlab软件强大的功能。在以后的学习和工作中必定有很大的用处。

利用Matlab进行线性回归分析之欧阳歌谷创编

利用Matlab进行线性回归分析 欧阳歌谷(2021.02.01) 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。可以通过软件Matlab实现。 1.利用Matlab软件实现 在Matlab中,可以直接调用命令实现回归分析, (1)[b,bint,r,rint,stats]=regress(y,x),其中b是回归方程中的参数估计值,bint是b的置信区间,r和rint分别表示残差及残差对应的置信区间。stats包含三个数字,分别是相关系数,F统计量及对应的概率p值。 (2)recplot(r,rint)作残差分析图。 (3)rstool(x,y)一种交互式方式的句柄命令。 以下通过具体的例子来说明。 例现有多个样本的因变量和自变量的数据,下面我们利用Matlab,通过回归分析建立两者之间的回归方程。 % 一元回归分析 x=[1097 1284 1502 1394 1303 1555 1917 2051 2111 2286 2311

2003 2435 2625 2948 3, 55 3372];%自变量序列数据 y=[698 872 988 807 738 1025 1316 1539 1561 1765 1762 1960 1902 2013 2446 2736 2825];%因变量序列数据 X=[ones(size(x')),x'],pause [b,bint,r,rint,stats]=regress(y',X,0.05),pause%调用一元回归分析函数rcoplot(r,rint)%画出在置信度区间下误差分布。 % 多元回归分析 % 输入各种自变量数据 x1=[5.5 2.5 8 3 3 2.9 8 9 4 6.5 5.5 5 6 5 3.5 8 6 4 7.5 7]'; x2=[31 55 67 50 38 71 30 56 42 73 60 44 50 39 55 7040 50 62 59]'; x3=[10 8 12 7 8 12 12 5 8 5 11 12 6 10 10 6 11 11 9 9]'; x4=[8 6 9 16 15 17 8 10 4 16 7 12 6 4 4 14 6 8 13 11]'; %输入因变量数据 y=[79.3 200.1 163.1 200.1 146.0 177.7 30.9 291.9 160 339.4 159.6 86.3 237.5 107.2 155 201.4 100.2 135.8 223.3 195]'; X=[ones(size(x1)),x1,x2,x3,x4]; [b,bint,r,rint,stats]=regress(y,X)%回归分析 Q=r'*r sigma=Q/18 rcoplot(r,rint); %逐步回归 X1=[x1,x2,x3,x4];

蚁群算法TSP问题matlab源代码

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta ,Rho,Q) %%===================================================== ==================== %% ACATSP.m %% Ant Colony Algorithm for Traveling Salesman Problem %% ChengAihua,PLA Information Engineering University,ZhengZhou,China %% Email:aihuacheng@https://www.360docs.net/doc/c011793821.html, %% All rights reserved %%------------------------------------------------------------------------- %% 主要符号说明 %% C n个城市的坐标,n×4的矩阵 %% NC_max 最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%===================================================== ==================== %%第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=max( ((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5,min(abs(C(i,3)-C(j,3)),144- abs(C(i,3)-C(j,3))) );%计算城市间距离 else D(i,j)=eps; end D(j,i)=D(i,j); end end Eta=1./D;%Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n);%Tau为信息素矩阵 Tabu=zeros(m,n);%存储并记录路径的生成 NC=1;%迭代计数器 R_best=zeros(NC_max,n);%各代最佳路线

matlab多元线性回归模型

云南大学数学与统计学实验教学中心 实验报告 一、实验目的 1.熟悉MATLAB的运行环境. 2.学会初步建立数学模型的方法 3.运用回归分析方法来解决问题 二、实验内容 实验一:某公司出口换回成本分析 对经营同一类产品出口业务的公司进行抽样调查,被调查的13家公司,其出口换汇成本与商品流转费用率资料如下表。试分析两个变量之间的关系,并估计某家公司商品流转费用率是6.5%的出口换汇成本. 实验二:某建筑材料公司的销售量因素分析 下表数据是某建筑材料公司去年20个地区的销售量(Y,千方),推销开支、实际帐目数、同类商品

竞争数和地区销售潜力分别是影响建筑材料销售量的因素。1)试建立回归模型,且分析哪些是主要的影响因素。2)建立最优回归模型。 提示:建立一个多元线性回归模型。

三、实验环境 Windows 操作系统; MATLAB 7.0. 四、实验过程 实验一:运用回归分析在MATLAB 里实现 输入:x=[4.20 5.30 7.10 3.70 6.20 3.50 4.80 5.50 4.10 5.00 4.00 3.40 6.90]'; X=[ones(13,1) x]; Y=[1.40 1.20 1.00 1.90 1.30 2.40 1.40 1.60 2.00 1.00 1.60 1.80 1.40]'; plot(x,Y,'*'); [b,bint,r,rint,stats]=regress(Y,X,0.05); 输出: b = 2.6597 -0.2288 bint = 1.8873 3.4322 -0.3820 -0.0757 stats = 0.4958 10.8168 0.0072 0.0903 即==1,0?6597.2?ββ,-0.2288,0?β的置信区间为[1.8873 3.4322],1,?β的置信区间为[-0.3820 -0.0757]; 2r =0.4958, F=10.8168, p=0.0072 因P<0.05, 可知回归模型 y=2.6597-0.2288x 成立. 1 1.5 2 2.5 散点图 估计某家公司商品流转费用率是6.5%的出口换汇成本。将x=6.5代入回归模型中,得到 >> x=6.5; >> y=2.6597-0.2288*x y = 1.1725

最小二乘法的多项式拟合matlab实现

最小二乘法的多项式拟 合m a t l a b实现 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

用最小二乘法进行多项式拟合(matlab 实现) 西安交通大学 徐彬华 算法分析: 对给定数据 (i=0 ,1,2,3,..,m),一共m+1个数据点,取多项式P(x),使 函数P(x)称为拟合函数或最小二乘解,令似的 使得 其中,a0,a1,a2,…,an 为待求未知数,n 为多项式的最高次幂,由此,该问题化为求 的极值问题。由多元函数求极值的必要条件: j=0,1,…,n 得到: j=0,1,…,n 这是一个关于a0,a1,a2,…,an 的线性方程组,用矩阵表示如下:

因此,只要给出数据点 及其个数m ,再给出所要拟合的参数n ,则即可求出未知数矩阵(a0,a1,a2,…,an ) 试验题1 编制以函数 为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi ≡1) x i y i 总共有7个数据点,令m=6 第一步:画出已知数据的的散点图,确定拟合参数n; x=::;y=[,,,,,,]; plot(x,y,'*') xlabel 'x 轴' ylabel 'y 轴' title '散点图' hold on {} n k k x 0=

因此将拟合参数n设为3. 第二步:计算矩阵 A= 注意到该矩阵为(n+1)*(n+1)矩阵, 多项式的幂跟行、列坐标(i,j)的关系为i+j-2,由此可建立循环来求矩阵的各个元素,程序如下: m=6;n=3; A=zeros(n+1); for j=1:n+1 for i=1:n+1 for k=1:m+1 A(j,i)=A(j,i)+x(k)^(j+i-2) end end

多元回归分析matlab剖析

回归分析MATLAB 工具箱 一、多元线性回归 多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y , X ) ①b 表示???? ?? ????????=p b βββ?...??10 ②Y 表示????????????=n Y Y Y Y (2) 1 ③X 表示??? ??? ????? ???=np n n p p x x x x x x x x x X ...1......... .........1 (12) 1 22221 11211 2、求回归系数的点估计和区间估计、并检验回归模型: 命令为:[b, bint,r,rint,stats]=regress(Y ,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差. ③rint 表示置信区间. ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p. 说明:相关系数2 r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据. x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验. [b,bint,r,rint,stats]=regress(Y ,X) b,bint,stats 得结果:b = bint =

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 %? % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显着 % fV:F分布值,越大越好,线性回归方程越显着 % fH:0或1,0不显着;1显着(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系 % tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着 % tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明 % 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10; % x2=rand(10,1)*10; % Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据 % X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了

蚁群算法matlab程序代码

先新建一个主程序M文件ACATSP.m 代码如下: function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q) %%================================================== ======================= %% 主要符号说明 %% C n个城市的坐标,n×2的矩阵 %% NC_max 蚁群算法MATLAB程序最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 表示蚁群算法MATLAB程序信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%================================================== =======================

%% 蚁群算法MATLAB程序第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; else D(i,j)=eps; % i = j 时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示 end D(j,i)=D(i,j); %对称矩阵 end end Eta=1./D; %Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n); %Tau为信息素矩阵 Tabu=zeros(m,n); %存储并记录路径的生成

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程 最小二乘法曲线拟合的应用实例 班级: 姓名: 学号: 指导教师:

一,实验目的 通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法 二,实验内容 1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。要求: 对该数据进行合理的最小二乘法数据拟合得下列数据。 x=[10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 2 0000 21000 22000 23000]; y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 65.8 87.5 137.8 174. 2] 三,程序如下 X=10000:1000:23000; Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,65.8,87.5,137.8,17 4.2] dy=1.5; %拟合数据y的步长for n=1:6 [a,S]=polyfit(x,y,n); A{n}=a;

da=dy*sqrt(diag(inv(S.R′*S.R))); Da{n}=da′; freedom(n)=S.df; [ye,delta]=polyval(a,x,S); YE{n}=ye; D{n}=delta; chi2(n)=sum((y-ye).^2)/dy/dy; end Q=1-chi2cdf(chi2,freedom); %判断拟合良好度 clf,shg subplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’) subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’) nod=input(‘根据图形选择适当的阶次(请输入数值)’); elf,shg, plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’); axis([8000,23000,20.0,174.2]);hold on errorbar(x,YE{nod},D{nod},‘r’);hold off title(‘较适当阶次的拟合’) text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])

蚁群算法matlab

蚁群算法的matlab源码,同时请指出为何不能优化到已知的最好解 % % % the procedure of ant colony algorithm for VRP % % % % % % % % % % % % %initialize the parameters of ant colony algorithms load data.txt; d=data(:,2:3); g=data(:,4); m=31; % 蚂蚁数 alpha=1; belta=4;% 决定tao和miu重要性的参数 lmda=0; rou=0.9; %衰减系数 q0=0.95; % 概率 tao0=1/(31*841.04);%初始信息素 Q=1;% 蚂蚁循环一周所释放的信息素 defined_phrm=15.0; % initial pheromone level value QV=100; % 车辆容量 vehicle_best=round(sum(g)/QV)+1; %所完成任务所需的最少车数V=40; % 计算两点的距离 for i=1:32; for j=1:32;

dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2); end; end; %给tao miu赋初值 for i=1:32; for j=1:32; if i~=j; %s(i,j)=dist(i,1)+dist(1,j)-dist(i,j); tao(i,j)=defined_phrm; miu(i,j)=1/dist(i,j); end; end; end; for k=1:32; for k=1:32; deltao(i,j)=0; end; end; best_cost=10000; for n_gen=1:50; print_head(n_gen); for i=1:m; %best_solution=[]; print_head2(i);

曲线拟合的最小二乘法matlab举例

曲线拟合的最小二乘法 学院:光电信息学院 姓名:赵海峰 学号: 200820501001 一、曲线拟合的最小二乘法原理: 由已知的离散数据点选择与实验点误差最小的曲线 S( x) a 0 0 ( x) a 1 1(x) ... a n n ( x) 称为曲线拟合的最小二乘法。 若记 m ( j , k ) i (x i ) j (x i ) k (x i ), 0 m (f , k ) i0 (x i )f (x i ) k (x i ) d k n 上式可改写为 ( k , jo j )a j d k ; (k 0,1,..., n) 这个方程成为法方程,可写成距阵 形式 Ga d 其中 a (a 0,a 1,...,a n )T ,d (d 0,d 1,...,d n )T , 、 数值实例: 下面给定的是乌鲁木齐最近 1个月早晨 7:00左右(新疆时间 )的天气预报所得 到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。 它的平方误差为: || 2 | 2 ] x ( f

(2008 年 10 月 26~11 月 26) F 面应用Matlab 编程对上述数据进行最小二乘拟合 三、Matlab 程序代码: x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1]; %三次多项式拟合% %九次多项式拟合% %十五次多项式拟合% %三次多项式误差平方和 % %九次次多项式误差平方和 % %十五次多项式误差平方和 % %用*画出x,y 图像% %用红色线画出x,b1图像% %用绿色线画出x,b2图像% %用蓝色o 线画出x,b3图像% 四、数值结果: 不同次数多项式拟和误差平方和为: r1 = 67.6659 r2 = 20.1060 r3 = 3.7952 r1、r2、r3分别表示三次、九次、十五次多项式误差平方和 拟和曲线如下图: a 仁polyfit(x,y,3) a2= polyfit(x,y,9) a3= polyfit(x,y,15) b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).A 2) r2= sum((y-b2).A2) r3= sum((y-b3).A2) plot(x,y,'*') hold on plot(x,b1, 'r') hold on plot(x,b2, 'g') hold on plot(x,b3, 'b:o')

逐步回归matlab程序

~ function stepregress(x,y,F) x=zscore(x,1); %数列标准化 y=zscore(y,1); %数列标准化 r=corrcoef([x,y]); l=0; %消去的次数 L=0; %引入变量的个数 [n,m]=size(x); %m为变量的个数,n为观测的次数 k=ones(m); ? q=1; %判断逐步回归是否继续 while(q==1) q=0; for i=1:m v(i)=r(i,m+1)^2/r(i,i); %计算各因子的方差贡献 end max=1; min=1; > for i=1:m if((max==1)&&(k(i)==1)&&(k(1)==0))||((v(i)>v(max))&&(k(i)==1)) max=i; end if((min==1)&&(k(i)==0)&&(k(1)==1))||((v(i)F) disp( [ '引入第', num2str(max), '个变量']); k(max)=0; L=L+1; l=l+1; ¥ r=matdel(max,m+1,r); %matdel为消去变换程序 q=1; end else F2=v(min)/(r(m+1,m+1)/(n-l-1)); if((F2

MATLAB---回归预测模型

MATLAB---回归预测模型 Matlab统计工具箱用命令regress实现多元线性回归,用的方法是最小二乘法,用法是: b=regress(Y,X) [b,bint,r,rint,stats]=regress(Y,X,alpha) Y,X为提供的X和Y数组,alpha为显著性水平(缺省时设定为0.05),b,bint 为回归系数估计值和它们的置信区间,r,rint为残差(向量)及其置信区间,stats是用于检验回归模型的统计量,有四个数值,第一个是R2,第二个是F,第三个是与F对应的概率 p ,p <α拒绝 H0,回归模型成立,第四个是残差的方差 s2 。 残差及其置信区间可以用 rcoplot(r,rint)画图。 例1合金的强度y与其中的碳含量x有比较密切的关系,今从生产中收集了一批数据如下表 1。 先画出散点图如下: x=0.1:0.01:0.18; y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]; plot(x,y,'+') 可知 y 与 x 大致上为线性关系。

设回归模型为 y =β 0 +β 1 x 用regress 和rcoplot 编程如下: clc,clear x1=[0.1:0.01:0.18]'; y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]'; x=[ones(9,1),x1]; [b,bint,r,rint,stats]=regress(y,x); b,bint,stats,rcoplot(r,rint) 得到 b =27.4722 137.5000 bint =18.6851 36.2594 75.7755 199.2245 stats =0.7985 27.7469 0.0012 4.0883 即β 0=27.4722 β 1 =137.5000 β0的置信区间是[18.6851,36.2594], β1的置信区间是[75.7755,199.2245]; R2= 0.7985 , F = 27.7469 , p = 0.0012 , s2 =4.0883 。 可知模型(41)成立。 观察命令 rcoplot(r,rint)所画的残差分布,除第 8 个数据外其余残差的置信区间均包含零点第8个点应视为异常点,

matlab与统计回归分析 (1)

一Matlab作方差分析 方差分析是分析试验(或观测)数据的一种统计方法。在工农业生产和科学研究中,经常要分析各种因素及因素之间的交互作用对研究对象某些指标值的影响。在方差分析中,把试验数据的总波动(总变差或总方差)分解为由所考虑因素引起的波动(各因素的变差)和随机因素引起的波动(误差的变差),然后通过分析比较这些变差来推断哪些因素对所考察指标的影响是显著的,哪些是不显著的。 【例1】(单因素方差分析)一位教师想要检查3种不同的教学方法的效果,为此随机地选取水平相当的15位学生。把他们分为3组,每组5人,每一组用一种方法教学,一段时间以后,这位教师给15位学生进行统考,成绩见下表1。问这3种教学方法的效果有没有显著差异。 表1 学生统考成绩表 方法成绩 甲75 62 71 58 73 乙71 85 68 92 90 丙73 79 60 75 81 Matlab中可用函数anova1(…)函数进行单因子方差分析。 调用格式:p=anova1(X) 含义:比较样本m×n的矩阵X中两列或多列数据的均值。其中,每一列表示一个具有m 个相互独立测量的独立样本。 返回:它返回X中所有样本取自同一总体(或者取自均值相等的不同总体)的零假设成立的概率p。

解释:若p值接近0(接近程度有解释这自己设定),则认为零假设可疑并认为至少有一个样本均值与其它样本均值存在显著差异。 Matlab程序: Score=[75 62 71 58 73;81 85 68 92 90;73 79 60 75 81]’; P=anova1(Score) 输出结果:方差分析表和箱形图 ANOVA Table Source SS df MS F Prob>F Columns 604.9333 2 302.4667 4.2561 0.040088 Error 852.8 12 71.0667 Total 1457.7333 14 由于p值小于0.05,拒绝零假设,认为3种教学方法存在显著差异。 例2(双因素方差分析)为了考察4种不同燃料与3种不同型号的推进器对火箭射程(单位:海里)的影响,做了12次试验,得数据如表2所示。 表2 燃料-推进器-射程数据表 推进器1 推进器2 推进器3 燃料1 58.2 56.2 65.3 燃料2 49.1 54.1 51.6 燃料3 60.1 70.9 39.2 燃料4 75.8 58.2 48.7 在Matlab中利用函数anova2函数进行双因素方差分析。 调用格式:p=anova2(X,reps)

蚁群算法MATLAB代码

function [y,val]=QACStic load att48 att48; MAXIT=300; % 最大循环次数 NC=48; % 城市个数 tao=ones(48,48);% 初始时刻各边上的信息最为1 rho=0.2; % 挥发系数 alpha=1; beta=2; Q=100; mant=20; % 蚂蚁数量 iter=0; % 记录迭代次数 for i=1:NC % 计算各城市间的距离 for j=1:NC distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2); end end bestroute=zeros(1,48); % 用来记录最优路径 routelength=inf; % 用来记录当前找到的最优路径长度 % for i=1:mant % 确定各蚂蚁初始的位置 % end for ite=1:MAXIT for ka=1:mant %考查第K只蚂蚁 deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零 [routek,lengthk]=travel(distance,tao,alpha,beta); if lengthk

最小二乘法Matlab自编函数实现及示例.docx

、最小二乘拟合原理 x= xl x2 ... xn y= yl y2 ... yn 求m 次拟合 ?力* y 卅…I ZA ; A T A = ZX 茁 X x i - X x i +1 ,- ? ? ? [函Oi …备F =⑷矿丄? A T y 所以m 次拟合曲线为y = a 0 +勿?怎+吐■审+???? +如■牙皿 二、 Matlab 实现程序 function p=funLSM (x, y, m) %x z y 为序列长度相等的数据向量,m 为拟合多项式次数 format short; A=zeros(m+l,m+l); for i=0:m for j=0:m A(i + 1, j + 1)=sum(x.A (i+j)); end b(i+1)=sum(x.A i.*y); end a=A\b 1; p=fliplr (a'); 三、 作业 题1:给出如下数据,使用最小二乘法球一次和二次拟合多项式(取小数点后3位) X 1.36 1.49 1.73 1.81 1.95 2.16 2.28 2.48 Y 14.094 15.069 16.844 17.378 18.435 19.949 20.963 22.495 解:

? x=[1.36 1.49 1.73 1. 81 1. 95 2. 16 2. 28 2. 48]: ? y=[14.094 15.069 16.844 17. 378 18.435 19.949 20.963 22.495]; >> p=funLSM(x, y? 1) P = 7.4639 3.9161 >> p=funLSM(x, y? 2) P = 0.3004 6.3145 4.9763 一次拟合曲线为: y = 7.464x+ 3.91S 二次拟合曲线为: y = +6.315^4-4.976 一次拟合仿真图

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

相关文档
最新文档