函数的单调性与最值讲义

函数的单调性与最值讲义
函数的单调性与最值讲义

函数的单调性讲义

知识点一:函数单调性

(1)相关概念

增函数:一般地,设函数)(x f 的定义域为I ,如果对于属于定义域I 内某个区间上任意两个自变量的值21,x x ,当21x x <,都有)()(21x f x f <,那么就说)(x f 在这个区间上是增函数,如下图(1);

用数学符号表示:

()()()()()[]()x f x f x f x x x x x f x f ?>--?>--0021212

121是增函数.

减函数:一般地,设函数)(x f 的定义域为I ,如果对于属于定义域I 内某个区间上任意两个自变量的值21,x x ,当21x x <,都有)()(21x f x f >,那么就说)(x f 在这个区间上是减函数,如下图(2).

用数学符号表示:

()()()()()[]()x f x f x f x x x x x f x f ?<--?<--0021212

121是减函数.

单调性:如果函数)(x f 在某个区间是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性.

单调区间:函数)(x f 在某个区间上具有单调性,则这一区间就叫做函数)(x f y =的单调区间.

(2)对于函数单调性的定义的理解,要注意以下三点: ①单调性是与“区间”紧密相关的概念,一个函数在不同的区间上可以有不同的单调性;

②单调性是函数在某一区间上的“整体”性质,因此定义中的21,x x 具有任意性,不能用特殊值代替.

③由于定义都是充要性命题,因此由)(x f 是增(减)函数,且

)()()(212121x x x x x f x f >

的不等关系可以“正逆互推”.

知识点二:函数单调性的判定方法(常用的)

(1) 定义法(基本法);

①取值:任取D x x ∈21,,且21x x <; ②作差:()()21x f x f -; ③变形:通常是因式分解或配方; ④定号:即判断差()()21x f x f -的正负;

⑤下结论:即指出函数()x f 在给定区间D 上的单调性.

例:判断函数x

x y 1

+

=在(1,+∞)上的单调性. 变式训练:证明函数()x

x f 1

=在()+∞,0上是减函数.

(2) 利用已知函数的单调性;

在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的单调性,因此掌握并熟记一次函数、二次函数、幂函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.

如果函数()x f y =在某个区间上是增函数或是减函数,那么就说函数()x f y =在这一区间具有(严格的)单调性,区间D 叫做()x f y =的单调区间.

①()0≠+=a b ax y 的单调性:0>a 增函数,0

k x

k

y 的单调性:0>k 减区间()()+∞∞-,0,0,;0

③()02

≠++=a c bx ax y 的单调性:0>a ,减区间??? ??

-

∞-a b 2,,增区间??

????+∞-,2a b ; 0

?

???+∞-,2a b ;

④()x f 在区间A 上是增(减)函数,则0>k 时,()x kf 在A 上是增(减)函数;0

⑤若()x f 、()x g 是区间A 上的增(减)函数,则()()x g x f +在区间A 上是增(减)函数;

⑥若()0>x f 且在区间A 上是增(减)函数,则

()

x f 1

在A 上是减(增)函数,()x f 在A 上是增(减)函数;

⑦轴(与x 轴垂直)对称图形的函数在它们的对称区间上的单调性相反,中心对称图形的函数在它们的对称区间上单调性相同,例如求下列函数的单调区间:x y =,2-=x y ,

2

1

2-+

=x y .

(3) 利用函数的图像;

函数y =|x 2-2x -3|的单调增区间是________. 【解析】 y =|x 2-2x -3|=|(x -1)2-4|, 作出该函数的图像(如图).

由图像可知,其增区间为[-1,1]和[3,+∞).

(4) 依据一些常用结论及复合函数单调性的判定方法; ①两个增(减)函数的和仍为增(减)函数;

②一个增(减)函数与一个减(增)函数的差是增(减)函数; ③奇函数在对称的两个区间上有相同的单调性; ④偶函数在对称的两个区间上有相反的单调性; ⑤互为反函数的两个函数有相同的单调性;

⑥如果)(x f 在区间D 上是增(减)函数,那么)(x f 在区间D 的任一子区间上也是增(减)函数;

⑦如果)()(x g u u f y ==和单调性相同,那么)]([x g f y =是增函数;如果

)()(x g u u f y ==和单调性相反,那么)]([x g f y =是减函数.

对于复合函数的单调性,列出下表以助记忆.

)(u f y =

)(x g u =

)]([x g f y =

上述规律可概括为“同性则增,异性则减”

例:函数322-+=

x x y 的单调减区间是 ( )

A.]3,(--∞

B.),1[+∞-

C.]1,(--∞

D.),1[+∞

(5) 求导(以后会学到).

知识点三:函数单调性的应用

(1) 利用函数的单调性可以比较函数值的大小;

例:已知2()f x x bx c =++对称轴为2x = ,比较(1)f 、(2)f 、(4)f 的大小。 (2) 利用函数的单调性求参数的取值范围;

例:已知2()2(1)2f x x a x =--+在(,4]-∞ 上是减函数,求实数a 的取值范围。 变式训练:函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取

值范围是( )

A .(-∞,-3)

B .(0,+∞)

C .(3,+∞)

D .(-∞,-3)∪(3,+∞)

(3) 求某些函数的值域或最值; ①直接法:利用常见函数的值域来求

一次函数y =ax +b (a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=

k x

k

y 的定义域为{x |x ≠0},值域为{y |y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,

当a >0时,值域为{a

b a

c y y 4)4(|2

-≥};

当a <0时,值域为{a

b a

c y y 4)4(|2

-≤

}。 ②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:

),(,)(2n m x c bx ax x f ∈++=的形式;

③分式转化法(或改为“分离常数法”)

④换元法:通过变量代换转化为能求值域的函数,化归思想;

⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

⑥基本不等式法:转化成型如:)0(>+

=k x

k

x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

例1.求下列函数的值域:

(1)232y x x =-+;(2)265y x x =---;(3)31

2

x y x +=

-; (4)41y x x =+-;(5)21y x x =+-;(6)|1||4|y x x =-++;

(7)22221

x x y x x -+=++;(8)2211()212x x y x x -+=>-;(9)1sin 2cos x

y x -=-。

解:(1)(配方法)22

1

2323323()61212

y x x x =-+=-+

≥ , ∴232y x x =-+的值域为23

[

,)12

+∞。 改题:求函数232y x x =-+,[1,3]x ∈的值域。

(利用函数的单调性)函数232y x x =-+在[1,3]x ∈上单调增, ∴当1x =时,原函数有最小值为4;当3x =时,原函数有最大值为26。 ∴函数232y x x =-+,[1,3]x ∈的值域为[4,26]。

(2)求复合函数的值域:

设2

65x x μ=---(0μ≥),则原函数可化为y μ=

又∵2

2

65(3)44x x x μ=---=-++≤, ∴04μ≤≤,故

[0,2]μ∈,

∴265y x x =---的值域为[0,2]。

(3)(法一)反函数法: 312

x y x +=

-的反函数为21

3x y x +=-,其定义域为{|3}x R x ∈≠,

∴原函数31

2

x y x +=

-的值域为{|3}y R y ∈≠。 (法二)分离变量法:313(2)77

3222

x x y x x x +-+===+

---, ∵

702x ≠-,∴7

332

x +≠-, ∴函数31

2

x y x +=

-的值域为{|3}y R y ∈≠。

(4)换元法(代数换元法):设10t x =-≥,则2

1x t =-, ∴原函数可化为2214(2)5(0)y t t t t =-+=--+≥,∴5y ≤, ∴原函数值域为(,5]-∞。

注:总结y ax b cx d =+++型值域,

变形:22y ax b cx d =+++或2y ax b cx d =+++

(5)三角换元法:

∵2

1011x x -≥?-≤≤,∴设cos ,[0,]x ααπ=∈, 则cos sin 2sin()4

y π

ααα=+=

+

∵[0,]απ∈,∴5[,]444π

ππα+∈,∴2

sin()[,1]42

πα+∈-, ∴2sin()[1,2]4

π

α+

∈-,

∴原函数的值域为[1,2]-。

(6)数形结合法:23(4)

|1||4|5

(41)23(1)x x y x x x x x --≤-??

=-++=-<

, ∴5y ≥,∴函数值域为[5,)+∞。

(7)判别式法:∵2

10x x ++>恒成立,∴函数的定义域为R 。

由22221

x x y x x -+=++得:2(2)(1)20y x y x y -+++-= ①

①当20y -=即2y =时,①即300x +=,∴0x R =∈

②当20y -≠即2y ≠时,∵x R ∈时方程2

(2)(1)20y x y x y -+++-=恒有实根,

∴△2

2

(1)4(2)0y y =+-?-≥ ,

∴15y ≤≤且2y ≠, ∴原函数的值域为[1,5]。

(8)2

121(21)1111

2

121212122

2

x x x x y x x x x x x -+-+=

==+=-++----,

∵12x >

,∴1

02

x ->, ∴1111

22

2()21122()

22

x x x x -+≥-=--,

当且仅当1

1

2

122x x -

=

-时,即122

x +=时等号成立。 ∴122

y ≥+

, ∴原函数的值域为1

[2,)2

+

+∞。 (9)(法一)方程法:原函数可化为:sin cos 12x y x y -=-,

∴2

1sin()12y x y ?+-=-(其中2

2

1cos ,sin 11y y

y

??=

=

++),

∴2

12sin()[1,1]1y x y

?--=

∈-+,

∴2

|12|1y y -≤+,

∴2

340y y -≤, ∴403

y ≤≤

, ∴原函数的值域为4[0,]3

点评:上面讨论了用初等方法求函数值域的一些常见类型与方法,在现行的中学数学要求中,求值域要求不高,要求较高的是求函数的最大与最小值,在后面的复习中要作详尽的讨论。

章末练习:

一、选择题

1.下列说法中,正确的有( )

①若任意x 1,x 2∈A ,当x 1

x 1-x 2>0,则y =f (x )在A 上是增函数;

②函数y =x 2在R 上是增函数; ③函数y =-1

x 在定义域上是增函数;

④函数y =1

x 的单调区间是(-∞,0)∪(0,+∞). A .0个 B .1个 C .2个 D .3个 2.下列函数中,在区间(0,1)上是增函数的是( ) A .y =|x | B .y =3-x C .y =1

x

D .y =-x 2+4

3.已知四个函数的图像如下图所示,其中在定义域内具有单调性的函数是( )

4.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( )

A .(-∞,-3)

B .(0,+∞)

C .(3,+∞)

D .(-∞,-3)∪(3,+∞)

5.(2013·洛阳高一检测)函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则有( )

A .f (1)≥25

B .f (1)=25

C .f (1)≤25

D .f (1)>25

二、填空题

6.已知f (x )=???

(x -1)2

,x ≥0,

x +1,x <0,

则f (x )的单调增区间是________.

7.若函数f(x)=2x2-mx+3在(-∞,-2]上为减函数,在[-2,+∞)上为增函数,则f(1)=________.

8.函数y=|x2-2x-3|的单调增区间是________.

三、解答题

9.求证:函数f(x)=-1

x-1在区间(0,+∞)上是单调增函数.

10.(2013·宁德检测)定义在(-1,1)上的函数f(x)满足f(-x)=-f(x),且f(1-a)+f(1-2a)<0.若f(x)是(-1,1)上的减函数,求实数a的取值范围.11.(2013·福州检测)已知函数y=f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)-1,并且当x>0时,f(x)>1.

求证:f(x)在R上是增加的.

导数应用:含参函数的单调性讨论(二)

导数应用:含参函数的单调性讨论(二) 对函数(可求导函数)的单调性讨论可归结为对相应导函数在何处正何处负的讨论,若有多个讨论点时,要注意讨论层次与顺序,一般先根据参数对导函数类型进行分类,从简单到复杂。 一、典型例题 例1、已知函数3 2 ()331,f x ax x x a R =+++∈,讨论函数)(x f 的单调性. 分析:讨论单调性就是确定函数在何区间上单调递增,在何区间单调递减。而确定函数的增区间就是确定0)('>x f 的解区间;确定函数的减区间就是确定0)('时,/2 ()3(21)f x ax x =++的图像开口向上,36(1)a ?=- I) 当136(1)0,a a ≥?=-≤时,时,/ ()0f x ≥,所以函数()f x 在R 上递增; II) 当0136(1)0,a a <时,时,方程/ ()0f x =的两个根分别为 1211x x a a ---+= =且12,x x < 所以函数()f x 在1(, a --∞,1(,)a -+∞上单调递增, 在11( a a --+上单调递减; (3) 当0a <时,/2 ()3(21)f x ax x =++的图像开口向下,且36(1)0a ?=-> 方程/ ()0f x =的两个根分别为1211,,x x a a --= =且12,x x > 所以函数()f x 在1(, a --∞,1()a -+∞上单调递减, 在11( )a a -+--上单调递增。 综上所述,当0a <时,所以函数()f x 在11( ,a a --上单调递增, 在1(, a -+-∞,1(,)a -+∞上单调递减; 当0a =时,()f x 在1(,]2-∞-上单调递增,在1 [,)2 -+∞上单调递减; 当01a <<时,所以函数()f x 在(-∞,)+∞上单调递增, 在上单调递减; 当1a ≥时,函数()f x 在R 上递增; 小结: 导函数为二次型的一股先根据二次项系数分三种情况讨论(先讨论其为0情形),然后讨论判别式(先讨论判别式为负或为0的情形,对应导函数只有一种符号,原函数在定义域上为单调的),判别式为正的情况下还要确定两根的大小(若不能确定的要进行一步讨论),最后根据导函数正负确定原函数相应单调性,记得写出综述结论。

高中数学函数的单调性与最值练习题

函数的单调性与最值 1.下列函数中,在区间(-1,1)为减函数的是( ) A .x y -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( ) A .)2,(--∞ B .)1,(-∞ C .),1(+∞ D .),4(+∞ 3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1 4函数x x x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞ 5设函数)1()(,0,10,00,1)(2-=?? ???<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( ) A .]0,(-∞ B .)1,0[ C .),1[+∞ D .]0,1[- 6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[-- B .]4,6[-- C .]22,3[-- D .]3,4[-- 7.函数],(,1 2n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[- 8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数x x f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数 9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是 10.已知函数f (x)的值域为]9 4,83[,则函数)(21)()(x f x f x g -+=的值域为 1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( ) A .]1,0( B .]2,1[ C .+∞,1[) D .+∞,2[)

函数的单调性、极值与最值问题

函数的单调性、极值与最值问题 典例9 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 审 题 路 线 图 求f ′(x ) ――――――→讨论f ′(x ) 的符号 f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.

评分细则(1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给2分; (4)构造函数g(a)=ln a+a-1给2分; (5)通过分类讨论得出a的范围,给2分.

跟踪演练9(优质试题·天津)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间; (2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2, g(x2))处的切线平行,证明x1+g(x2)=-2ln ln a ln a; (3)证明当a≥1e e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. (1)解由已知得h(x)=a x-x ln a, 则h′(x)=a x ln a-ln a. 令h′(x)=0,解得x=0. 由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表: 所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞). (2)证明由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处 的切线斜率为1x a ln a.由g′(x)= 1 x ln a,可得曲线y=g(x)在点

函数单调性与最值讲义及练习题.docx

函数的单调性与最值 基础梳理 1.函数的单调性 (1) 单调函数的定义 增函数减函数 一般地,设函数 f ( x) 的定义域为 I . 如果对于定义域I 内某个区间 D 上的任意两个自变量的值x1,x2 定义当x1<x2时,都有 f ( x1 ) 当x1<x2时,都有 f ( x1) <f ( x2) ,那么就 >f ( x2 ) ,那么就说函数f 说函数 f ( x) 在区间 D 上是增函数 ( x ) 在区间 D上是减函数 图象 描述 自左向右图象是上升的自左向右图象是下降的(2)单调区间的定义 若函数 f ( x) 在区间 D上是增函数或减函数,则称函数 f ( x) 在这一区间上具有 ( 严格的 ) 单调性,区间 D 叫做 f ( x) 的单调区间. 2.函数的最值 前提 设函数 y=f ( x) 的定义域为 I ,如果存在实数 M 满足 ①对于任意 x∈ I ,都①对于任意 x∈I ,都有 条件有 f ( x) ≤ M; f ( x) ≥ M; .②存在 x0∈ I ,使得②存在 x0∈ I ,使得 f ( x0 ) f ( x0 ) = M M = . 结论M为最大值M为最小值注意:

一个防范 1 函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y=x分别在 ( -∞, 0) ,(0 ,+∞ ) 内都是单调递减的,但不能说它在整个定义域即 ( -∞,0) ∪(0 ,+∞ ) 内单调递减,只能分开写,即函数的单调减区间为 ( -∞,0) 和(0 ,+∞ ) ,不能用“∪”连 接.两种形式 设任意 x1,x2∈[ a, b] 且 x1<x2,那么 f x1-f x2 f x1-f x2 ①> 0? f ( x) 在 [ a,b] 上是增函数;<0? f ( x) x1-x2x1-x2 在 [ a,b] 上是减函数. ②( x1- x2 )[ f ( x1) -f ( x2)] >0? f ( x) 在[ a,b] 上是增函数;( x1-x2)[ f ( x1) -f ( x2)] <0? f ( x) 在 [ a,b] 上是减函 数.两条结论 (1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最 值一定在端点取到. (2)开区间上的“单峰”函数一定存在最大 ( 小 ) 值. 四种方法 函数单调性的判断 (1)定义法:取值、作差、变形、定号、下结论. (2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函 数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性. 单调性与最大(小)值同步练习 一、选择题 1、下列函数中,在 (0 ,2) 上为增函数的是 ( )

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

函数的单调性与最值练习题(适合高三)

函数的单调性与最值练习题 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每小题4分) 1.函数2()log f x x =在区间[1,2]上的最小值是( ) A.1- B.0 C.1 D.2 2.已知212()log (2)f x x x =-的单调递增区间是( ) A.(1,)+∞ B.(2,)+∞ C.(,0)-∞ D .(,1)-∞ 3.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有 ()()0f a f b a b ->-成立, 则必有( ) A.()f x 在R 上是增函数 B.()f x 在R 上是减函数 C.函数()f x 是先增加后减少 D.函数()f x 是先减少后增加 4.若在区间(-∞,1]上递减,则a 的取值范围为( ) A. [1,2) ? B. [1,2] ? C. [1,+∞)???D. [2,+∞) 5.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A.﹣1 B.0 C.1 D.2 6.定义在),0(+∞上的函数()f x 满足对任意的))(,0(,2121x x x x ≠+∞∈,有 2121()(()())0x x f x f x -->.则满足(21)f x -<1()3 f 的x 取值范围是( ) A.(12,23) B.[13,23) C. (13,23) D.[12,23 ) 7.已知(x)=???≥<+-)1(log )1(4)13(x x x a x a a 是(-∞,+∞)上的减函数,那么a的取值范围是( ) A.(0,1) B .(0,31 ) C.[71,31) D.[71,1) 8.函数22log (23)y x x =+-的单调递减区间为( ) A.(-∞,-3) B .(-∞,-1) C.(1,+∞) D .(-3,-1) 9.已知函数()f x 是定义在[0,) +∞的增函数,则满足(21)f x -<1()3f 的x 取值范围是( ) (A )(∞-,23) (B )[13,23) (C)(12,∞+) (D)[12,23 ) 10.下列函数中,在定义域内是单调递增函数的是( ) A .2x y = B.1y x = C.2y x = D .tan y x =

第08讲 函数的单调性(学生版) 备战2021年新高考数学微专题讲义

第8讲:函数的单调性 一、课程标准 1.理解函数的单调性、最大(小)值及其几何意义 2.掌握求函数的单调性的方法· 3.能处理函数的最值问题。 二、基础知识回顾 1. 函数单调性的定义 (1)一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x1、x2,当x1f(x2),那么就说f(x)在这个区间上是增函数(或减函数). (2)如果函数y=f(x)在某个区间上是增函数(或减函数),那么就说f(x)在这个区间上具有(严格的)单调性,这个区间叫做f(x)的单调区间;若函数是增函数则称该区间为增区间,若函数为减函数则称该区间为减区间. 2. 函数单调性的图像特征 对于给定区间上的函数f(x),若函数图像从左向右连续上升,则称函数在该区间上单调递增;若函数图像从左向右连续下降,则称函数在该区间上单调递减. 3. 复合函数的单调性 对于函数y=f(u)和u=g(x),如果当x∈(a,b)时,u∈(m,n),且u=g(x)在区间(a,b)上和y=f(u)在区间(m,n)上同时具有单调性,则复合函数y=f(g(x))在区间(a,b)上具有单调性,并且具有这样的规律:增增(或减减)则增,增减(或减增)则减. 4. 函数单调性的常用结论 (1)对?x1,x2∈D(x1≠x2),f(x1)-f(x2) x1-x2>0?f(x)在D上是增函数; f()x1-f()x2 x1-x2<0?f(x)在D上是减函数. (2)对勾函数y=x+a x(a>0)的增区间为(-∞,-a]和[a,+∞),减区间为(-a,0)和(0,a). (3)在区间D上,两个增函数的和是增函数,两个减函数的和是减函数. (4)函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减” 5.常用结论 1.若函数f(x),g(x)在区间I上具有单调性,则在区间I上具有以下性质:

高考总复习:函数的单调性与最值

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义

图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1 x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2 解析:选D 函数y =(2k +1)x +b 是减函数, 则2k +1<0,即k <-1 2 .

3.(教材习题改编)函数f (x )=1 1-x 1-x 的最大值是( ) A.4 5 B.54 C.3 4 D.43 解析:选D ∵1-x (1-x )=x 2 -x +1=? ????x -122+34≥34 ,∴0<11-x 1-x ≤43. 4.(教材习题改编)f (x )=x 2 -2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8 5.已知函数f (x )为R 上的减函数,若m f (n ); ???? ??1x >1,即|x |<1,且x ≠0. 故-1 (-1,0)∪(0,1) 1.函数的单调性是局部性质 从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. [注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.

函数的基本性质——单调性与最大(小)值

函数的基本性质——单调性与最大(小)值 【教学目标】 1.知识与技能:了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思 2.过程与方法:理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间 3.情感、态度与价值观:掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性 【教学重难点】 教学重点:函数的单调性的概念。 教学难点:利用函数单调的定义证明具体函数的单调性 【教学过程】 一、复习引入。 1 分别画函数2x y =和3x y =的图象。2 x y =的图象如图1,3x y =的图象如图2. 2.引入:从函数2x y = 的图象(图1)看到: 图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当 1x <2x 时,有1y <2y 。 这时我们就说函数y =)(x f =2x 在[0,+∞)上是增函数。图象在y 侧部分是下降的,也就是说,当x 在区间(-∞,0)上取值时,随着x 的增大,相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0),得到1y =)(1x f , 2y =)(2x f ,那么当1x <2x 时,有1y >2y 。

这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数。函数的这两个性质,就是今天我们要学习讨论的。 二、讲解新课。 1.增函数与减函数。 定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值 21,x x ,(1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是 增函数(如图3);(2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4)。 说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数。例如函数2 x y =(图1),当x ∈[0,+∞)时是增 函数,当x ∈(-∞,0)时是减函数。 2.单调性与单调区间。 若函数y=f (x )在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。此时也说函数是这一区间上的单调函数。 在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 说明:(1)函数的单调区间是其定义域的子集; (2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f , (3)除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f ,”改为“)(1x f )(2x f 或) (1x f ≥ )(2x f ,”即可; (4)定义的内涵与外延: 内涵是用自变量的大小变化来刻划函数值的变化情况; 外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减。 ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数。 三、讲解例题。

函数的单调性与最值(讲义)

函数的单调性与最值 【知识要点】 1.函数的单调性 (1)单调函数的定义 (2)单调区间的定义 如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y = f (x )的单调区间. (3)判断函数单调性的方法 ①根据定义;②根据图象;③利用已知函数的增减性;④利用导数;⑤复合函数单调性判定方法。 2.函数的最值 求函数最值的方法: ①若函数是二次函数或可化为二次函数型的函数,常用配方法;

②利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用单调性求最值; ③基本不等式法:当函数是分式形式且分子、分母不同次时常用此法。 【复习回顾】 一次函数(0)y kx b k =+≠具有下列性质: (1)当0k >时,函数y 随x 的增大而增大 (2)当0k <时,函数y 随x 的增大而减小 二次函数y =ax 2+bx +c (a ≠0)具有下列性质: (1)当a >0时,函数y =ax 2+bx +c 图象开口向上,对称轴为直线x =-2b a ;当x <2b a -时, y 随着x 的增大而减小;当x >2b a - 时,y 随着x 的增大而增大; (2)当a <0时,函数y =ax 2+bx +c 图象开口向下,对称轴为直线x =-2b a ;当x <2b a -时, y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小; 提出问题: ①如图所示为一次函数y=x ,二次函数y=x 2和y=-x 2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律? ①这些函数走势是什么?在什么范围上升,在什么区间下降? ②如何理解图象是上升的?如何用自变量的大小关系与函数值的大小关系表示函数的增减性? ③定义:一般地,设函数f(x)的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说函数f(x)在区间D 上是减函数.简称为:步调不一致减函数. 几何意义:减函数的从左向右看,图象是的. 例如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数? 解:函数y=f(x)的单调区间是[-5,2),[-2,1),[1,3),[3,5].其中函数y=f(x)在区间[-5,2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数. 点评:图象法求函数单调区间的步骤是第一步:画函数的图象;第二步:观察图象,利用函数单调性的几何意义写出单调区间.

导数应用_含参函数的单调性讨论(一)

导数应用:含参函数的单调性讨论(一) 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈?Y Y Y Y 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 二、典例讲解 例1 讨论x a x x f + =)(的单调性,求其单调区间 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 例2.讨论x ax x f ln )(+=的单调性

小结: 导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间的符号。一般先讨论0)('=x f 无解情况,再讨论解 0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 围扩 大而出现有根,但根实际上不在定义域的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。 变式练习2. 讨论x ax x f ln 2 1)(2 += 的单调性 小结: 一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。 对于二次型函数(如1)(2 +=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。 例3. 求1)(232--+=x ax x a x f 的单调区间

第05讲-函数的单调性与最值(讲义版)

第05讲-函数的单调性与最值 一、考情分析 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义. 二、知识梳理 1.函数的单调性 (1)单调函数的定义 增函数减函数 定义设函数y=f(x)的定义域为A,区间M?A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当 Δy=f(x2)-f(x1)>0时,就称 函数y=f(x)在区间M上是增 函数 Δy=f(x2)-f(x1)<0时,就称函数y =f(x)在区间M上是减函数 图象 描述 自左向右看图象是上升的自左向右看图象是下降的 (2)上是增函数或是减函数, 性,区间M称为单调区间. 2.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件(1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)对于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M 结论M为最大值M为最小值 [方法技巧] 1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到. (2)开区间上的“单峰”函数一定存在最大值(或最小值).

2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1 f (x ) 的单调性相反. 3.“对勾函数”y =x +a x (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ]. 三、 经典例题 考点一 确定函数的单调性(区间) 【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A . ()()1212 f x f x x x -->0 B .f(a)0 D .()() 2121x x f x f x -->0 【答案】B 【解析】 试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此 ()()1212 0f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0, ()() 21 210x x f x f x ->-均成立,因为不能确定12,x x 的 大小,因此f(a)

函数单调性讲义提高

函数单调性 1单调性定义 (1)单调性定义:设函数的定义域为A ,区间I A ?。 如果对于任意1x ,2x ∈I ,当12x x <时,都有()()12f x f x >,那么就说()f x 在区间I 上是单调减函数.区间I 叫做()f x 的单调减区间; 如果对于任意1x ,2x ∈I ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间I 上是单调增函数.区间I 叫做()f x 的单调增区间; 单调增区间或单调减区间统称为单调区间。 (2)函数的单调性通常也可以以下列形式表达: 1212()()0f x f x x x ->- 单调递增 1212 ()() 0f x f x x x -<- 单 调递减 例1定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有 ()() 0f a f b a b ->-成立,则必有( ) A 、函数()f x 是先增加后减少 B 、函数()f x 是先减少后增加 C 、()f x 在R 上是增函数 D 、()f x 在R 上是减函数 (3)增函数、减函数的定义及图形表示 增函数: )()(2121x f x f x x ?< 注意:对于函数单调性定义的理解,要注意以下两点 ①函数的单调性是对某一个区间而言的.f(x)在区间A 与B 上都是增(或减)函数,在A ∪B 上不一定单调. ②单调性是函数在某一区间上的性质,因此定义中的x 1,x 2在这一区间上具有任意性,不能用特殊值代替. ③在研究函数的单调性时,应先确定函数的定义域

含参不含参函数单调性

含参不含参函数单调性

————————————————————————————————作者:————————————————————————————————日期:

利用导数研究函数单 调性

不含参函数单调性 【题型一】因式分解 【例1】 求函数的单调区间。 【变式1】求函数421()342 f x x x x = -+的单调区间。 【例2】 求函数2()322 x x e f x e x =-+的单调区间。 【变式1】求函数2()ln 7ln f x x x x x x =-+的单调区间。 【例3】 求函数()2()2x x x f x x e e -= +-的单调区间。 【变式1】求函数22 ln 3()ln 224 x x x f x ex x ex =--+的单调区间。 3227()154()32f x x x x x R = +-+∈

【例4】 求函数()2 ()ln 22 x f x x x e x =+-+的单调区间。 【变式1】求函数()()ln 1x f x e x =-+的单调区间。 【例5】 求函数2()ln f x x x x =-的单调区间。 【变式1】求函数ln 1()x e x e f x e +-= 的单调区间。 【变式2】求函数2()mx f x e x mx =+-的单调区间。

【例6】 求函数2311()26 x f x e x x x =-+ -的单调区间。 【变式1】求函数2 ()cos 12 x f x x =+-的单调区间。 【例7】 求函数()2311()123x f x x ex e x = -+-的单调区间。 【变式1】求函数()41()24x f x x e x x =--+,112,??∈ ???x 的单调区间。

三角函数的单调性和最值

三角函数的单调性和最值问题 例1已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求: (I) 函数()f x 的最大值及取得最大值的自变量x 的集合; (II) 函数()f x 的单调增区间. 解(I)1cos 23(1cos 2)()sin 21sin 2cos 222sin(2)224 x x f x x x x x π-+=++=++=++ ∴当2242x k π ππ+=+,即()8x k k Z π π=+∈时, ()f x 取得最大值22+. 函数()f x 的取得最大值的自变量x 的集合为{/,()}8x x R x k k Z ππ∈=+ ∈. (II) ()22sin(2)4f x x π=++ 由题意得: 222()242k x k k Z πππππ- ≤+≤+∈ 即: 3()88 k x k k Z ππππ-≤≤+∈ 因此函数()f x 的单调增区间为3[,]()88 k k k Z ππππ- +∈. 例2 已知函数f (x )=π2sin 24x ??-+ ???+6sin x cos x -2cos 2x +1,x ∈R . (1)求f (x )的最小正周期; (2)求f (x )在区间π0,2 ?? ???? 上的最大值和最小值. (3)求f (x )在区间π0,2?????? 的单调区间和值域。 解:(1)f (x )=2-sin 2x ·ππcos 2cos 2sin 44 x -?+3sin 2x -cos 2x =2sin 2x -2cos 2x =π22sin 24x ??- ?? ?. 所以,f (x )的最小正周期T =2π2 =π. (2)因为f (x )在区间3π0,8??????上是增函数,在区间3ππ,82?????? 上是减函数.又f (0)=-2,3π228f ??= ???,π22f ??= ???,故函数f (x )在区间π0,2??????上的最大值为22,最小值为-2.

函数的单调性与最值(含例题详解)

函数的单调性与最值 一、知识梳理 1.增函数、减函数 一般地,设函数f(x)的定义域为I,区间D?I,如果对于任意x1,x2∈D,且x1f(x2) . 2.单调区间的定义 若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间. 3.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件①对于任意x∈I,都有 f(x)≤M;②存在x0∈I,使得 f(x0)=M ①对于任意x∈I,都有f(x)≥M;②存在 x0 ∈ I,使得f(x0) =M 结论M为最大值M为最小值 注意: 1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但 f(x)·g(x),1等的单调性与其正负有关,切不可盲目类比. f( x) [试一试] 1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=ln(x+2) B.y=-x+1 D.y=x+1 解析:选 A 选项 A 的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数f(x)=x2-2x(x∈[-2,4])的单调增区间为___ ;f(x)max= ________ . 解析:函数f(x)的对称轴x=1,单调增区间为[1,4],f(x)max=f(-2)=f(4)=8. 答案:

2013函数的单调性及最值⑵

函数的单调性及最值之二 一、例题讲解 例1.已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间; (Ⅱ)设函数()f x 在区间2133??-- ???,内是减函数,求a 的取值范围. 例2、已知函数32()(3)x f x x x ax b e -=+++ (1)如3a b ==-,求()f x 的单调区间; (1)若()f x 在(,),(2,)αβ-∞单调增加,在(,2),(,)αβ+∞单调减少,证明: βα-<6. 例3.已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间; (Ⅱ)设函数()f x 在区间2133??-- ???,内是减函数,求a 的取值范围. 例4.已知a 是实数,函数())f x x a =-。 (Ⅰ)求函数()f x 的单调区间;Ⅱ)设)(a g 为()f x 在区间[]2,0上的最小值。 (i )写出)(a g 的表达式;(ii )求a 的取值范围,使得2)(6-≤≤-a g 。 二、课后作业 1.(2009年广东卷文)函数x e x x f )3()(-=的单调递增区间是 ( ) A. )2,(-∞ B.(0,3) C.(1,4) D. ),2(+∞ 2.(2009天津重点学校二模)已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x 时不等式0)()('<+x xf x f 成立, 若)3(33.03.0f a =,),3(log )3(log ππf b = )9 1(log )91(log 33f c =,则c b a ,,的大小关系是 ( )A .c b a >> B .a b c >> C .c a b >> D .b c a >> 3.(2009浙江文)若函数2()()a f x x a x =+∈R ,则下列结论正确的是 ( ) A.a ?∈R ,()f x 在(0,)+∞上是增函数 B.a ?∈R ,()f x 在(0,)+∞上是减函数 C.a ?∈R ,()f x 是偶函数 D.a ?∈R ,()f x 是奇函数 4.(2007年福建理11文)已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x > 时,()0()0f x g x ''>>,,则0x <时 ( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 5.( 08年湖北卷)若21()ln(2)2 f x x b x =-++∞在(-1,+)上是减函数,则b 的取值 范围是 ( ) A . [1,)-+∞ B . (1,)-+∞ C . (,1]-∞- D . (,1)-∞- 6(2009辽宁卷文)若函数2()1 x a f x x +=+在1x =处取极值,则a = 7.(2009江苏卷)函数32()15336f x x x x =--+的单调减区间为 .

相关文档
最新文档