线性原理111

线性原理111

现在我要用线性原理,来分析一本姓名学书籍。想来想去,我决定分析李顺祥写的《中国姓名学》。

我之所以要剖析李顺祥的《中国姓名学》,是因为李版《中国姓名学》主要运用了民俗取名法和五格剖象法来取名字,而这两种方法都是我最反对的。

李版《中国姓名学》的主体部分,就是民俗取名法和五格剖象法。李顺祥以牛不喝水强按头的态度令二者结合。这两种方法,本来是风马牛不相及的两个东西,为什么要结合呢?结合点在哪儿呢?

这就是我说的“线性”。一部没有线性的理论作品,那是通篇鬼扯蛋。李顺祥整本书都在回避民俗和五格为什么要结合,为什么可以结合,而是直接铺开。先说根据五格剖象法,取名应该怎样怎样;再说根据汉字本身的五行(就是民俗取名法),取名应该怎样怎样;再说五格剖象法和汉字本身的五行一块儿运用,取名应该怎样怎样。

李顺祥整本书都在铺,把一个个点立在那儿,但是没有线性。他始终不解释这两种方法为什么要结合,为什么可以结合。

李顺祥不敢解释。因为五格剖象法是日本的,民俗取名法是中国民间的。这要是一结合,是称为《中日国际交流姓名学》合适呢,还是称为《中国姓名学》合适呢?如果认真解释,李版《中国姓名学》的根基就没有了。

根据线性原理,李顺祥寻求的这种结合是姓名学发展的一个重大转向。为什么原来不结合?因为五格剖象法的创始人熊崎健翁和重要传人白惠文反对结合,只看名字数理的五行,不管单个汉字的五行。白惠文的书籍中屡屡出现否定汉字五行偏旁的文字,言辞相当激烈。好了,现在你李顺祥主张结合,先和白惠文打过,再和熊崎健翁打过,然后才能谈结合。不过这样又产生了新的问题——你把老祖师熊崎健翁打了,还好意思使用人家发明的姓名学吗?

李顺祥必须要做出一个交待:到底是什么样的重大发现,促使自己不顾前人熊崎健翁和白惠文的反对,让五格剖象法和民俗取名法去结合。

李顺祥不能说明自己是怎样强过熊崎健翁和白惠文的,直接就铺开,直接就谈结合,这就相当于还不会站就要飞,全无根基,文字只是摆设。

线性规划的概念

3.6:线性规划 目录: (1)线性规划的基本概念 (2)线性规划在实际问题中的应用 【知识点1:线性规划的基本概念】 (1)如果对于变量x 、y 的约束条件,都是关于x 、y 的一次不等式,则称这些约束条件为__线性约束条件__(),z f x y =是欲求函数的最大值或最小值所涉及的变量x 、y 的解析式,叫做__目标函数_,当(),f x y 是x 、y 的一次解析式时,(),z f x y =叫做_线性目标函数__. (2)求线性目标函数在线性约束条件下的最大值或最小值问题,称为__线性规划问题__ ;满足线性约束条件的解(),x y 叫做__可行解_;由所有可行解组成的集合叫做__可行域_;使目标函数取得最大值或最小值的可行解叫做_最优解__ 例题:若变量x 、y 满足约束条件2 10x y x y +≤?? ≥??≥? ,则z x y =+的最大值和最小值分别为 ( B ) A. 4和3 B. 4和2 C. 3和2 D. 2和0 分析:本题考查了不等式组表示平面区域,目标函数最值求法. 解:画出可行域如图 作020l x y +=: 所以当直线2z x y =+过()20A , 时z 最大,过()1,0B 时z 最小max min 4, 2.z z == 变式1:已知2z x y =+,式子中变量x 、y 满足条件11y x x y y ≤?? +≤??≥-? ,则z 的最大值是__3___ 解:不等式组表示的平面区域如图所示.

作直线0:20l x y +=,平移直线0l ,当直线0l 经过 平面区域的点()21A -,时,z 取最大值2213?-=. 变式2:设2z x y =+,式中变量x 、y 满足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最小值 分析:由于所给约束条件及目标函数均为关于x 、y 的一次式,所以此问题是简单线性 规划问题,使用图解法求解 解:作出不等式组表示的平面区域(即可行域),如图所示. 把2z x y =+变形为2y x z =-+,得到斜率为-2,在y 轴上的截距为z ,随z 变化的一族平行直线. 由图可看出,当直线2z x y =+经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小. 解方程组430 35250x y x y -+=??+-=?,得A 点坐标为()5,2, 解方程组1 430x x y =??-+=? ,得B 点坐标为()1,1 所以max min 25212,211 3.z z =?+==?+= 变式3:若变量x 、y 满足约束条件6 321x y x y x +≤?? -≤-??≥? ,则23z x y =+的最小值为( C ) A. 17 B. 14 C. 5 D. 3

线性规划化问题的简单解法

简单线性规划问题的几种简单解法 依不拉音。司马义(吐鲁番市三堡中学,838009) “简单的线性规划问题”属于高中数学新课程必修5,进入了高考试题,并且保持了较大的考察比例,几乎是每年高考的必考内容,也是高中数学教学的一个难点。 简单的线性规划是指目标函数只含两个自变量的线性规划。简单线性规划问题的标准型为: 1112220(0)0(0),(),0(0) m m m A x B y C A x B y C m N z Ax By A x B y C +++≥≤??++≥≤?∈=+???++≥≤?约束条件 目标函数 , 下面介绍简单线性规划问题的几种简单解法。 1. 图解法 第一步、画出约束条件表示的可行区域,这里有两种画可行 区域的方法。 ⑴代点法:直线Ax+By+C=0(c 不为0)的某侧任取一点,把 它的坐标代入不等式,若不等式成立,则不等式表示的区域在该点的那一侧;若不成立,则在另一侧。 ⑵B 判别法:若B>0(<0),则不等式Ax+By+C >0(<0)

表示的区域在直线Ax+By+C=0的上方;若B>0(<0),则不等式Ax+By+C<0(>0)表示的区域在直线Ax+By+C=0的下方。(即若B与0的大小方向跟不等式的方向相同,则可行区域是边界线的上方;若B与0的大小方向与不等式的方向相反,则可信分区域是边界线的下方) 用上面的两种方法画出可行区域是很简单,所以这里不必举例说明。 第二步、在画出的可行区域内求最优解(使目标函数取最大值或最小值的点),这个可以用下面的两种办法解决。 ⑴y轴上的截距法:若b>0,直线y a b x z b =-+所经过可行域上的点使其y轴上的截距最大(最小)时,便是z取得最大值(最 小值)的点;若b<0,直线y a b x z b =-+所经过可行域上的点使其y 轴上的截距最大(最小)时,是z取得最小值(最小值)的点(提醒:截距不是距离,截距可以取正负)。 例1.设x,y满足约束条件 x y y x y +≤ ≤ ≥ ? ? ? ? ? 1 , , , 求z x y =+ 2的最大值、最 小值。 解:如图1作出可行域,因为y的系数1大于0,目标函数z x y =+ 2表示直线y x z =-+ 2在y轴上的截距,当直线过A(1,0) 时,截距值最大z max =?+= 2102,当直线过点O(0,0)时,截距

多目标线性规划的若干解法及MATLAB实现

多目标线性规划的若干解法及MATLAB 实现 一.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = , 12(,,,)T r Z Z Z Z = . 则上述多目标线性规划可用矩阵形式表示为: max Z Cx = 约束条件:0 Ax b x ≤?? ≥? (3) 二.MATLAB 优化工具箱常用函数[3] 在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为: ①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下 限和上限, fval 求解的x 所对应的值。 算法原理:单纯形法的改进方法投影法 ②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub ) fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束

高二数学最新教案-简单线性规划问题的向量解法 精品

●教学目标 (一)教学知识点 1.线性规划问题,线性规划的意义. 2.线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念. 3.线性规划问题的图解方法. (二)能力训练要求 1.了解简单的线性规划问题. 2.了解线性规划的意义. 3.会用图解法解决简单的线性规划问题. (三)德育渗透目标 让学生树立数形结合思想. ●教学重点 用图解法解决简单的线性规划问题. ●教学难点 准确求得线性规划问题的最优解. ●教学方法 讲练结合法 教师可结合一些典型例题进行讲解,学生再通过练习来掌握用图解法解决一些较简单的线性规划问题. ●教具准备 多媒体课件(或幻灯片) 内容:课本P60图7—23 记作§7.4.2 A 过程:先分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,再找出不等式组所表示的平面区域(即三直线所围成的封闭区域).再作直线l0:2x+y=0. 然后,作一组与直线的平行的直线: l:2x+y=t,t∈R (或平行移动直线l0),从而观察t值的变化. ●教学过程 Ⅰ.课题导入 上节课,咱们一起探讨了二元一次不等式表示平面区域,下面,我们再来探讨一下如何应用其解决一些问题. Ⅱ.讲授新课 首先,请同学们来看这样一个问题.

设z =2x +y ,式中变量x 、y 满足下列条件?? ???≥≤+-≤-1255334x y x y x 求z 的最大值和最小值. 分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域. (打出投影片§7.4.2 A) [师](结合投影片或借助多媒体课件) 从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,z =2x +y =0. 点(0,0)在直线l 0:2x +y =0上. 作一组与直线l 0平行的直线(或平行移动直线l 0)l :2x +y =t ,t ∈R . 可知,当t 在l 0的右上方时,直线l 上的点(x ,y )满足2x +y >0, 即t >0. 而且,直线l 往右平移时,t 随之增大. (引导学生一起观察此规律) 在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (5,2)的直线l 2所对应的t 最大,以经过点B (1,1)的直线l 1所对应的t 最小. 所以:z m ax =2×5+2=12, z m in =2×1+3=3. 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数. 另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题. 那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. Ⅲ.课堂练习 [师]请同学们结合课本P 64练习1来掌握图解法解决简单的线性规划问题. (1)求z =2x +y 的最大值,使式中的x 、y 满足约束条件?? ???-≥≤+≤.1,1,y y x x y 解:不等式组表示的平面区域如图所示: 当x =0,y =0时,z =2x +y =0 点(0,0)在直线l 0:2x +y =0上. 作一组与直线l 0平行的直线 l :2x +y =t ,t ∈R . 可知,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大 .

线性规划的常见题型及其解法(教师版,题型全,归纳好)

线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致. 归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用. 本节主要讲解线性规划的常见基础类题型. 【母题一】已知变量x ,y 满足约束条件???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3,则目标函数z =2x +3y 的取值范围为( ) A .[7,23] B .[8,23] C .[7,8] D .[7,25] 求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求 直线的截距z b 的最值,间接求出z 的最值. 【解析】画出不等式组???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3, 表示的平面区域如图中阴影部分所示, 由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-2 3 x 知在点B 处目标函数取到最小值,解方程组 ????? x +y =3,2x -y =3,得????? x =2, y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组????? x -y =-1,2x -y =3,得????? x =4,y =5, 所以A (4,5),z max =2×4+3×5=23. 【答案】A

【母题二】变量x ,y 满足???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, (1)设z =y 2x -1,求z 的最小值; (2)设z =x 2+y 2,求z 的取值范围; (3)设z =x 2+y 2+6x -4y +13,求z 的取值范围. 点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0 ??? ? x -12表示点(x ,y )和????12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方. 【解析】(1)由约束条件???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, 作出(x ,y )的可行域如图所示. 由 ????? x =1,3x +5y -25=0,解得A ????1,22 5. 由????? x =1, x -4y +3=0,解得C (1,1). 由? ???? x -4y +3=0,3x +5y -25=0,解得B (5,2). ∵z = y 2x -1 =y -0x -12 ×12 ∴z 的值即是可行域中的点与????12,0连线的斜率,观察图形可知z min =2-05- 12×12=29 . (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中, d min =|OC |=2,d max =|OB |=29. ∴2≤z ≤29. (3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中, d min =1-(-3)=4, d max =(-3-5)2+(2-2)2=8 ∴16≤z ≤64.

非线性规划的概念和原理

第五章 非线性规划的概念和原理 非线性规划的理论是在线性规划的基础上发展起来的。1951年,库恩(H.W.Kuhn )和塔克(A.W.Tucker )等人提出了非线性规划的最优性条件,为它的发展奠定了基础。以后随着电子计算机的普遍使用,非线性规划的理论和方法有了很大的发展,其应用的领域也越来越广泛,特别是在军事,经济,管理,生产过程自动化,工程设计和产品优化设计等方面都有着重要的应用。 一般来说,解非线性规划问题要比求解线性规划问题困难得多,而且也不像线性规划那样有统一的数学模型及如单纯形法这一通用解法。非线性规划的各种算法大都有自己特定的适用范围。都有一定的局限性,到目前为止还没有适合于各种非线性规划问题的一般算法。这正是需要人们进一步研究的课题。 5.1 非线性规划的实例及数学模型 [例题6.1] 投资问题: 假定国家的下一个五年计划内用于发展某种工业的总投资为b 亿元,可供选择兴建的项目共有几个。已知第j 个项目的投资为j a 亿元,可得收益为j c 亿元,问应如何进行投资,才能使盈利率(即单位投资可得到的收益)为最高? 解:令决策变量为j x ,则j x 应满足条件() 10j j x x -= 同时j x 应满足约束条件 1 n j j j a x b =≤∑ 目标函数是要求盈利率()1121 ,,,n j j j n n j j j c x f x x x a x === ∑∑L 最大。 [例题6.2] 厂址选择问题: 设有n 个市场,第j 个市场位置为() ,j j p q ,它对某种货物的需要量为j b ()1,2,,j n =L 。 现计划建立m 个仓库,第i 个仓库的存储容量为i a ()1,2,,i m =L 。试确定仓库的位置,使各仓库对各市场的运输量与路程乘积之和为最小。 解:设第i 个仓库的位置为(),i i x y ()1,2,,i m =L ,第i 个仓库到第j 个市场的货物供应量为i j z ()1,2,,,1,2,,i m j n ==L L ,则第i 个仓库到第j 个市场的距离为

线性规划的对偶原理

线性规划的对偶原理 3.1 线性规划的对偶问题 一、 对偶问题的提出 换位思考 家具厂的线性规划问题,该问题站在家具厂管理者的角度追求销售收入最大 213050max x x z += ?? ? ??≥≤+≤+0 ,50212034212121x x x x x x 某企业家有一批待加工的订单,有意利用该家具厂的木工和油漆工资源来加工他的产品。他 需要与家具厂谈判付给该厂每个工时的价格。如果该企业家已对家具厂的经营情况有详细了 解,他可以构造一个数学模型来研究如何才能既让家具厂觉得有利可图,肯把资源出租给他, 又使自己付的租金最少。 目标:租金最少;1y -付给木工工时的租金;2y -付给油漆工工时的租金 2150120min y y w += 所付租金应不低于家具厂利用这些资源所能得到的利益 1)支付相当于生产一个桌子的木工、油漆工的租金应不低于生产一个桌子的收 入 502421≥+y y 2)支付相当于生产一个椅子的木工、油漆工的租金应不低于生产一个椅子的收 入 30321≥+y y 3)付给每种工时的租金应不小于零 0,021≥≥y y 二、 原问题与对偶问题的数学模型 1. 对称形式的对偶

原问题和对偶问题只含有不等式约束时,一对对偶问题的模型是对称的,称为对称形式的对偶。 原问题: ?? ? ??≥≥=0min X b AX CX z 对偶问题: ?? ? ??≥≤=0max Y C YA Yb w 2. 非对称形式的对偶 若原问题的约束条件全部是等式约束(即线性规划的标准型),即 ?? ? ??≥==0min X b AX CX z 则其对偶问题的数学模型为 ?? ? ??≤=是自由变量Y C YA Yb w max 可把原问题写成其等价的对称形式: min z =CX AX ≥b AX ≤b X ≥0 即 min z =CX ? ? ????-A A X ≥??????-b b X ≥0 设Y 1=(y 1,y 2,…,y m ), Y 2=(y m+1,y m+2,…,y 2m )。根据对称形式的对偶模型,写出上述问题的对偶问题:

简单的线性规划问题附答案)

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 知识点二 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b ,当z 变化时,方程表 示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?

线性规划理论及其应用[开题报告]

毕业论文开题报告 信息与计算科学 线性规划理论及其应用 一、选题的背景、意义[1][2] 1.选题的背景 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大化或最小化的问题,最大化问题是要在一个集合上使一个函数达到最大,最小化问题是要在一个集合上使一个函数达到最小。统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。随着计算机技术的发展和普及,线性规划的应用越来越广泛。它已成为人们为合理利用有限资源制定最佳决策的有力工具。 2.选题的意义 随着计算机技术的发展和普及,线性规划的应用越来越广泛。它已成为人们为合理利用有限资源制定最佳决策的有力工具。随着经济全球化的不断发展,企业面临更加激烈的市场竞争。企业必须不断提高盈利水平,增强其获利能力,在生产、销售、新产品研发等一系列过程中只有自己的优势,提高企业效率,降低成本,形成企业的核心竞争力,才能在激烈的竞争中立于不败之地。过去很多企业在生产、运输、市场营销等方面没有利用线性规划进行合理的配置,从而增加了企业的生产,使企业的利润不能达到最大化。在竞争日益激烈的今天,如果还按照过去的方式,是难以生存的,所以就有必要利用线性规划的知识对战略计划、生产,销售各个环节进行优化从而降低生产成本,提高企业的效率。在各类经

线性规划问题的解法比较与分析

线性规划问题的解法比较与分析 【摘要】 总结了线性规划问题数学模型各种解法的优势和局限性,结合具体实例介绍一种适用性强,便于理解和记忆的新解法—新两阶段的解题思想和步骤,并通过初等行变换对单纯形法进行了进一步的改进。 关键词: 新两阶段法;换基迭代; 单纯形法; 初等行变换 1.问题的提出 线性规划问题的数学模型的一般表示形式为: 112211112211211222221122 12,max(min)(,)(,)(,),,0n n n n n n m m mn n m n z c x c x c x a x a x a x b a x a x a x b a x a x a x b x x x =++++++≤=≥??+++≤=≥??? ?+++≤=≥?≥? ? 由于有的线性规划问题目标函数求“最大值”,有的求“最小值”;约束条件中数量约束部分有的为“等式”约束,有的为“不等式”约束,故在解线性规划问题数学模型时,除图解法外,通常先规定线性规划问题的标准形式,然后给出标准形式的解法。在此我们规定,线性规划问题数学模型的标准形式为: 112211112211 21122222 1122 12,max ,,0n n n n n n m m mn n m n z c x c x c x a x a x a x b a x a x a x b a x a x a x b x x x =++++++=??+++=?? ? ?+++=?≥? ? 且:0(1,2, )i b i m ≥= 2.新两阶段法 以往,根据标准形式的不同形式的不同特点需要采用不同的解法。常用方法有:单纯形方法,大M 法,两阶段法及对偶单纯形方法等等。 在吕为的《线性规划数学模型的一种新解法》【1】 一文中,给出了适用性强,便于理解和记忆 的新解法——新两阶段法,下面我们结合例题介绍其解题方法和步骤: 例1:求解线性规划问题:

第三章线性规划的解法习题解答090426y

第三章线性规划的解法 §3.1重点、难点提要 一、线性规划问题的图解法及几何意义 1.图解法。 线性规划问题采用在平面上作图的方法求解,这种方法称为图解法。图解法具有简单、直观、容易理解的特点,而且从几何的角度说明了线性规划方法的思路,所以,图解法还有助于了解一般线性规划问题的实质和求解的原理。 (1)图解法适用于求解只有两个或三个变量的线性规划问题,求解的具体步骤为: 1)在平面上建立直角坐标系; 2)图示约束条件,找出可行域。具体做法是画出所有约束方程(约束条件取等式)对应的直线,用原点判定直线的哪一边符合约束条件,从而找出所有约束条件都同时满足的公共平面区域,即得可行域。求出约束直线之间,以及约束直线与坐标轴的所有交点,即可行域的所有顶点; 3)图示目标函数直线。给定目标函数Z一个特定的值k,画出相应的目标函数等值线; 4)将目标函数直线沿其法线方向向可行域边界平移,直至与可行域边界第一次相切为止,这个切点就是最优点。具体地,当k值发生变化时,等值线将平行移动。对于目标函数最大化问题,找出目标函数值增加的方向(即坐标系纵轴值增大的方向),等值线平行上移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最大值的最优解;对于目标函数最小化问题,找出目标函数值减少的方向(即坐标系纵轴值减少的方向),等值线平行下移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最小值的最优解。 (2)线性规划问题的几种可能结果: 1)有唯一最优解; 2)有无穷多个最优解; 3)无最优解(无解或只有无界解)。 2.重要结论。 (1)线性规划的可行域为一个凸集,每一个可行解对应该凸集中的一个点; (2)每一个基可行解对应可行域的一个顶点。若可行解集非空,则必有顶点存在,从而,有可行解必有基可行解。 (3)一个基可行解对应约束方程组系数矩阵中一组线性无关的列向量,对

高中数学解题方法谈 线性规划问题新解法

线性规划问题新解法 简单的线性规划问题是高中数学新课标教材的重点内容,也是近年高考命题的热点.线性规划问题的常规解法是“截距法”,即利用线性目标函数(0)z ax by b =+≠的几何意义:“z b 是直线a z y x b b =-+在y 轴上的截距”来求解.而对于有些线性规划问题.也可以运用新的视角探究其解法.现以近年高考题为例向同学们介绍,以拓广同学们的解题思路. 一、函数单调性法 例1 (高考福建卷)非负实数x y ,满足24030x y x y ?+-??+-?? ,,≤≤则3x y +的最大值是 . 解析:在平面直角坐标系中作出不等式组表示的平面区域,如右图. 令3z x y =+,由图知,使目标函数3z x y =+取得最大值的 点一定在边界240x y +-=或30x y +-=上取得. 由24030x y x y +-=??+-=?,,解得12x y =??=? ,. (1)当01x ≤≤时,33(3)29z x y x x x =+=+-+=-+, 在[01],上为减函数,0x =∴时,max 9z =; (2)当12x ≤≤时,33(24)512z x y x x x =+=+-+=-+, 在[1 2],上也为减函数,1x =∴时,max 7z =; 综上知当0x =时,3z x y =+有最大值为9. 点评:本解法是将二元一次函数转化为一元一次函数,然后利用函数单调性求解的.既体现了函数与不等式的密切转化关系,也说明了线性规划问题的“返璞归真”. 二、待定系数法 例2 (高考浙江卷)设z x y =-式中变量x 和y 满足条件3020x y x y ?+-??-?? ,,≥≥则z 的最小值为( ) A.1 B.1- C.3 D.3- 解析:令()(2)()(2)z x y m x y n x y m n x m n y =-=++-=++-, 则121m n m n +=??-=-?,,解得1323m n ?=????=?? ,. 于是1212()(2)3013333 z x y x y x y =-=++-?+?=≥, 当且仅当320x y x y +=??-=? ,时,z 取最小值1.故选A.

第十二章线性规划基本概念与基本定理

第十二章 线性规划的基本概念和基本定理 12.1线性规划的基本概念 12.1.1可行解,可行域 定义12.1.1:称满足全部约束条件的向量为可行解或可行点。 例如: SLP m a x ..0 f CZ AZ b s t Z ==??≥? 如果0Z 满足这些约束,即0AZ b =且00Z ≥,则0Z 就是SLP 的可行解。 定义12.1.2:称所有可行解(点)构成的集合为可行集或可行域。也称为 可行解集。 例如:上面 SLP 的可行域为{,0}R AZ b Z ==≥ 定义12.1.3:若一个线性规划问题的可行集为空集时,则称这一线性规划 无可行解。这时线性规划的约束条件不相容。 由上一章的分析可以看到:一个线性规划的可行解集可以是空集,有界非空 集和无界非空集。 12.1.2最优解,无界解 定义12.1.4:称使目标函数值达到最优值的可行解为线性规划问题的最优 解 定义12.1.5:对于极大化目标函数的标准线性规划问题,定义其无界解如 下:对于任何给定的正数M ,存在可行解 X 满足,0AX b X =≥,使CX M >。 那么称该线性规划问题有无界解。 由定义可知,无界解的意思是:若是极大化目标函数,则在可行域上目标函 数值无上界;若是极小化目标函数,则在可行域上目标函数值无下界。那么,有 无界解的线性规划问题一定没有最优解。 例12.1.1 考虑线性规划问题: 12max()x x + 121212110,0x x st x x x x -≤??-+≤??≥≥? 图12.1.1 解:问题的可行域是上图所示的无界凸多边形区域,在此无界可行域上,目 标函数值无上界,所以这个线性规划问题有无界解。 12x x -

线性规划基本概念及模型构建

LP (Linear Programming)

Alex 有一个家庭农场。除了农场上的农作物以外,他还饲养了一些猪拿到市场上出售,猪可获得的饲料及其所含成分如下表:Alex如何喂养猪更好? 成分/每公斤 玉米槽料苜蓿每日最小需求量碳水化合物 蛋白质 维他命 成本(美分)903010842080207240606060200180150 问题1:科学养猪线性规划建模(猪饲料的配方)饲养成本最小

--- 每天玉米、槽料、苜蓿各喂多少公斤? --- 必须满足要求12--- 追求成本最低 Min. 84x 1+ 72x 2+ 60x 3 3x 1x 2x 3 知识点 建模三要素 决策变量约 束目标 90x 1+ 20x 2+ 40x 3 ≥ 20030x 1+ 80x 2+ 60x 3 ≥ 18010x 1+ 20x 2+ 60x 3 ≥ 150 x i ≥0 , i =1,2,3 成分/每公 斤 玉米槽料苜蓿每日最小需求量碳水化合物 蛋白质 维他命 成本(美分)903010842080207240606060200180150

s.t. 90x 1+ 20x 2+ 40x 3 ≥ 200 30x 1 + 80x 2+ 60x 3 ≥ 180 10x 1+ 20x 2+ 60x 3 ≥ 150 x i ≥0 , i =1,2,3 Min . 84x 1+ 72x 2+ 60x 3 目标函数约束函数符号中必含等号符号的右侧为常数线性--变量均为1次方 Max. 或 Min.线性--所有变量均为1次方常规约束:变量非负!知识点 模型表示

?线性规划模型能求解出来吗? 能!--- 万能的单纯形法 结合软件 QSB应用

第一章--线性规划

第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则2 1,x x 应满足 (目标函数)2134m ax x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min

线性规划问题的求解

线性规划问题的求解 在数学中,线性规划 (Linear Programming,简称LP) 问题是目标函数和 约束条件都是线性的最优化问题。 线性规划是最优化问题中的重要领域之一。很多运筹学中的实际问题都可以 用线性规划来表述。线性规划的某些特殊情况,例如网络流、多商品流量等问题, 都被认为非常重要,并有大量对其算法的专门研究。很多其他种类的最优化问题 算法都可以分拆成线性规划子问题,然后求得解。在历史上,由线性规划引申出 的很多概念,启发了最优化理论的核心概念,诸如“对偶”、“分解”、“凸性” 的重要性及其一般化等。我们在以前的学习过程中曾经接触过最简单的线性规划 ——平面规划,但由于其是在平面上求解,形式较为简单,通过作图和平移目标 函数即可得到最优解。但是通过对平面规划的类比,我们可以得出求解线性规划 问题的一般方法——单纯形法。 几何上,线性约束条件的集合相当于一个凸包或凸集,叫做可行域。因为目 标函数亦是线性的,所以其极值点会自动成为最值点。线性目标函数亦暗示其最 优解只会出现在其可行域的边界点中。 在两种情况下线性规划问题没有最优解。其中一种是在约束条件相互矛盾的 情况下(例如x≥ 2 和x≤ 1),其可行域将会变成空集,问题没有解,因此 亦没有最优解。在这种情况下,该线性规划问题会被称之为“不可行”。 另一种情况是,约束条件的多面体可以在目标函数的方向无界(例如: max z=x + 3 x2 s.t. x1≥ 0, x2≥ 0, x1 + x2≥ 10),目标函数可以取得任意大1 的数值,所以没有最优解。 除了以上两种病态的情况以外(问题通常都会受到资源的限制,如上面的例 子),最优解永远都能够在多面体的顶点中取得。但最优解未必是唯一的:有可 能出现一组最优解,覆盖多面体的一条边、一个面、甚至是整个多面体(最后一 种情况会在目标函数只能等于0的情况下出现)。 在使用单纯形法求解线性规划问题之前,我们首先需要了解什么是标准 型,这是线性规划问题中最常用也最直观的形式。 标准型包括以下三个部分: 一个需要极大化的线性函数,例如:

1第一章线性规划讲解

目录 未找到目录项。 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数)2134max x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min beq x Aeq =?

简单线性规划问题的类型与解法

简单线性规划问题的类型与解法 简单线性规划问题就是在线性约束条件下,求目标函数最优解的数学问题。纵观近几年的高考,简单线性规划问题是高考的热点问题,基本上每卷都有一个五分小题。归结起来简单线性规划问题主要包括:①在线性约束条件下,求目标函数的最值;②含有参数的简单线性规划问题;③简单线性规划的应用问题等几种类型,各种类型具有各自的结构特征,简单方法也各不相同,那么在实际解答解答线性规划问题时,如何抓住问题的结构特征,快捷、准确地实施解答呢?下面通过典型例题的详细解析来回答这个问题。 【典例1】解答下列问题: 1、设变量x 、y 满足约束条件x+2y-5≤0 则目标函数Z=2x+3y+1的最大值为( ) x-y-2≤0 A 11 B 10 X ≥0 C 9 D 8.5 【解析】 【知识点】①二元一次不等式表示的平面区域的定义与确定方法;②二元一次不等式组表示的平面区域的定义与确定方法;③在线性约束条件下,求目标函数最值的基本方法。 【解题思路】运用二元一次不等式组表示的平面区域的确定方法,根据线性约束条件确定确定可行域,利用求目标函数最值的基本方法就可得出结果。 【详细解答】作出约束条件的可行域如图所示,Q 由 x+2y-5=0,得到 x=3,∴A (3,1),B (2,0), x-y-2=0, y=1, C (5,0), ?当目标函数z=2x+3y+1经过点C (5,0)时, z=2?5+3?0+1=10+1=11为最大,?A 正确,∴ 选A 。 x-y+1≤2、实数x 、y 满足 x >0 (1)若z=y x ,求z 的最大值和最小值,并求z 的取值范围; y ≤2 (2)若z= 22x y +,求z 的最大值和最小值,并求z 的取值范围。 【解析】 【知识点】①二元一次不等式表示的平面区域的定义与确定方法;②二元一次不等式组表示的平面区域的定义与确定方法;③在线性约束条件下,求目标函数最值的基本方法。 【解题思路】运用二元一次不等式组表示的平面区域的确定方法,根据线性约束条件确定确定可行域,利用求目标函数最值的基本方法分别求出最大值和最小值,就可得出目标函数的取值范围。 【详细解答】作出约束条件的可行域如图所示,Q 由 x-y+1=0,得到 x=1,∴A (0,2),B (1,2), y-2=0, y=2, C (0,1), ?(1)当目标函数z= y x 经过点B (1,2)时,z=21 =2为最小值,目标函数无最大值,∴目标函数z 的 取值范围是[,2,+∞);(2)当目标函数z=22 x y +经过点C (0,1)时,z=0+1=1为最小值,当目标函数z=22x y +经过点B (1,2)时,z=1+4=5为最大值,的取值范围是[1,5]。

1--线性规划1--入门

第一章线性规划 1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分-------数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。 自从1947年美国学者丹西格提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C 、三种机器加工,加工 B A、 时间为每台各一小时。若每天可用于加工的机器时数分别为A机器10小时、B机器8小时和C机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利 润最大,则21,x x 应满足 (目标函数)2134max x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,7 81022122121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数, (2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。上述即为一规划问题数学模型的三个要素(决策变量/ 目标函数/约束条件)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 1 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为

相关文档
最新文档