我国岩质边坡变形破坏的主要地质模式

我国岩质边坡变形破坏的主要地质模式
我国岩质边坡变形破坏的主要地质模式

顺层岩质边坡变形破坏规律的分析

顺层岩质边坡变形破坏规律的分析 解联库1,杨小聪1,杨天鸿2,唐春安2,郭利杰1 (11北京矿冶研究总院,北京 100044; 21东北大学资源与土木工程学院,沈阳 110004) 摘 要:使用RFPA 边坡版有限元分析程序分析含软弱结构面的顺层岩质边坡的变形破坏情况。结果表明,边坡的破坏主 要是沿滑动面附近的软弱结构面萌生并扩展,含多组软弱结构面的顺层岩质边坡下沉曲线具有呈阶梯式变化的特征。这对在安全位置监测边坡位移变化从而了解整个边坡的变形破坏有积极意义。 关键词:采矿工程;顺层边坡;RFPA 边坡版;软弱结构面;阶梯式变化 中图分类号:TD85416 文献标识码:A 文章编号:1001-0211(2007)02-0075-05 收稿日期:2006-11-24 基金项目:三峡大学防灾减灾实验室开放基金资助项目 (2002ZS03) 作者简介:解联库(1972-),男,陕西兴平市人,工程师,硕士,主要 从事边坡稳定性分析及采矿工程等方面的研究。 岩体经过漫长地质演化作用,在其内部形成大量断层、节理、层理等地质弱面。这些地质弱面对岩质边坡的变形破坏以及边坡的稳定起着明显地控制作用[1-4] 。由于结构面是控制岩石变形、破坏的主 要因素,因此,在岩质边坡稳定性分析中,准确考虑结构面的影响是十分重要的。 因为岩体本身结构的复杂性,其软弱结构面分 布十分复杂,但大多都具有一定的规律性。其往往是成组分布,多组交叉。在评价结构面对边坡变形及边坡稳定性的影响时,要特别注意结构面的产出状态与边坡面的相互关系。冯君等[5-6] 采用多层 结构模型,对影响顺层岩质边坡稳定性的部分因素进行了分析,给出了顺层边坡的定义。张菊明等[7] 从动力学角度对层状岩体边坡的稳定性进行研究,丰富了边坡稳定性研究的内容。郑颖人等 [8] 利用 有限元强度折减法对节理岩质边坡进行稳定性分析,为节理岩质边坡稳定分析开辟了新的路径。刘小丽等 [9] 采用机动位移法和能量系数对含多个柔 软夹层的岩体边坡的稳定性进行评价,并用极限平衡法验证该方法的可行性,为边坡稳定分析提供了一种新的便捷、有效方法。 利用能够分析岩石破坏过程的RFPA 边坡版有限元程序,对顺层岩质边坡的变形破坏及稳定性进行分析。通过对含软弱结构面的顺层岩质边坡变形破坏进行分析,发现边坡的破坏主要是沿滑动面 附近软弱结构面进行的,得到了一些新颖的和有意义的结论。 1 RFPA 边坡版分析程序简介 所用的RFPA 边坡版是可以分析岩质边坡变形破坏过程的有限元强度折减程序。其可以考虑岩石材料的非均匀性,首先把岩石离散成适当尺度的细观基元,按照给定的Weibull 统计分布函数对这些基元的力学性质进行赋值,这些细观基元可以借 助有限元法来计算其受载条件下的位移和应力,破坏准则选用摩尔-库仑准则和最大拉应力准则,可以考虑岩石材料的剪切破坏和拉伸破坏[10]。RFPA 边坡版分析程序采用有限元强度折减法,就是在弹塑性有限元计算中将岩土体强度参数逐渐降低直到其产生破坏,程序可以自动根据其弹塑性计算结果得到边坡的动态破坏过程及自动搜索破坏时滑动面。 RFPA 边坡版中稳定性系数的定义和传统的弹塑性有限元边坡稳定性系数的定义在本质上是一致的,不同之处在于传统的弹塑性有限元法破坏准则采用摩尔-库仑屈服准则,只考虑了材料的剪切破坏,而RFPA 边坡版中考虑了材料的非均匀性,破坏准则选用摩尔-库仑准则和最大拉应力准则,可以考虑材料的剪切破坏和拉伸破坏,可以动态模拟岩体的渐进破坏过程,使得RFPA 边坡版在岩石材料破坏机理的分析上更为全面。 RFPA 边坡版中基元在理想单轴受力状态下满足的剪切损伤与拉伸损伤本构关系如图1所示,图1中:f c 0-基元的单轴抗压强度;E c 0-基元的最大压缩主应力达到其单轴抗压强度时对应的最大压缩 第59卷 第2期 2007年5月 有 色 金 属Nonferrous M etals Vol 159,No 12 M ay 2007

边坡变形监测技术分析

边坡变形监测技术分析 ?简介:边坡的开挖、加固和防护,是矿山、水利、交通等领域中常涉及的工程项目,而边坡的稳定性,是工程技术人员经常关注和研究的课题。目前,我国对于边坡施 工中的监测工作还不够重视,往往是在工程出现险情时,或是在项目实施过程中才 开始考虑监测问题,导致工作被动,应该在项目开展的初期就着手边坡变形监测工 作。 ?关键字:边坡变形监测,技术分析,边坡监测技术 边坡的开挖、加固和防护,是矿山、水利、交通等领域中常涉及的工程项目,而边坡的稳定性,是工程技术人员经常关注和研究的课题。目前,我国对于边坡施工中的监测工作还不够重视,往往是在工程出现险情时,或是在项目实施过程中才开始考虑监测问题,导致工作被动,应该在项目开展的初期就着手边坡变形监测工作。 1 边坡变形监侧的作用 在土木工程各个建设领域中,通过边坡工程的监测,可以起到以下作用。 1. 1 评价边坡施工及其使用过程中边坡的稳定性,并作出有关预测预报,为业主、施工单位及监理提供预报数据,跟踪和控制施工过程,合理采用和调整有关施工工艺和步骤,取得最佳经济效益。 1.2 为防止滑坡及可能的滑动和蠕变提供及时支持。预测和预报滑坡的边界条件、规模滑动方向、发生时间及危害程度,并及时采取措施,以尽量避免和减轻灾害损失。 1. 3 监测已发生滑动破坏和加固处理后的滑坡,监测结果是评价滑坡处理效果的尺度。 1.4 为进行有关位移反分析及数值模拟计算提供参数。 2 边坡工程监测的方法 目前,我国边坡变形监测方法主要采用简易观测法、设站观测法、仪表观测法和远程监测法等。 2.1 简易观测法 简易观测法是通过人工观测边坡中地表裂缝、鼓胀、沉降、坍塌、建筑物变形及地下水位变化、地温变化等现象。

某滑坡的变形和破坏机理分析研究

某滑坡的变形和破坏机理分析研究 介绍了某滑坡的特征,分析了滑坡区区域工程地质和水文地质特征,对该滑坡体的变形和破坏机理进行了研究和分析。分析表明:人为活动和地形地貌是滑坡发生变形破坏的主要因素,降雨诱发、岩层产状等因素是造成滑坡发生滑动和进一步破坏的诱发因素。 标签:滑坡变形破坏诱发因素 1概述 塔山滑坡位于广东省开平市长沙区平岗村塔山开元塔底。由于建设工程的需要,在塔山的东南侧进行采石,采用放炮等土石法,致使塔山南侧岩石大量开采形成陡崖,并使周边岩土体产生裂缝,之后由于人为因素和自然因素的影响,塔山南侧裂缝逐渐扩大,至90年代,开始形成滑坡。1999~2001年,在修建塔山公园公路时对山体坡脚进行开挖,在公路北侧形成高约10~17m,坡度约35~45°的高陡边坡,滑坡距公路最近的平岗村居民区约22m,山坡坡脚距公路最近仅2m左右。2004年和2005年雨季,由于连降暴雨,滑坡有活动下滑的趋势,滑坡体前缘公路路面隆起,最高处隆起约40cm,隆起部分面积约有20~30m2,公路北侧排水沟产生变形歪斜,部分已经破坏,水沟上方在雨水后有地下水浸出,形成间歇性下降泉,平岗村内部分房屋墙面产生裂痕,进出塔山公园的公路曾数次被塔山山坡上崩塌的土体破坏。 2滑坡变形形态特征 X 根据实地踏勘,除滑坡体后壁出现较大裂缝外,滑坡周界及滑坡体底部也有约13处裂缝,现将裂缝走向一致的裂缝分为一组,共五组裂缝(表1)。 3滑坡体的工程地质与水文地质特征 塔山滑坡滑坡体主要由第四系坡积土层、风化残积土层、侏罗系中上统百足山群、全风化、强风化、少量中风化基岩组成(见图1)。滑坡体中上部为残积土层,主要由粉土、粉质粘性土组成,呈可塑状或松散状,含较多的碎石和砂、砾石,透水性较好;风化残积土层主要由粉质粘性土,含少量碎石和砂砾石组成,局部夹有全风化、强风化岩,其透水性较差;基岩主要为全风化、强风化泥质粉砂岩,含少量强、中风化岩块,其透水性较好;滑床基本处在中—微风化泥质粉砂岩、粉砂质泥岩中,岩石呈中厚层状,岩质坚硬,局部裂隙发育,透水性好。 滑坡区地下水主要为第四系冲积土层、残坡积土层中的孔隙水和基岩裂隙水,地下水补给来源主要为大气降水的渗入补给和相邻含水层之间的侧向补给。

无梁楼盖倒塌事故原因及破坏机理分析

一“直冲”破坏 1从外行的角度谈谈子弹射击玻璃的破坏现象,当高速子弹射到四边嵌固的平板玻璃上, 在冲击波与子弹冲量作用下,玻璃将被直穿出一个孔,此可称为“直冲”,这大概是冲 击波速远大于玻璃的应力波速度而造成上述的所谓“直冲”破坏;当一位大力士用尖头 锤击玻璃,在猛烈的敲击下,玻璃将会产生钉锤下的小孔及其沿小孔周边呈局部的放射 状的裂缝,这样的破坏现象很类似我们钢筋混凝土板发生的受冲切承载力破坏,故可称 之为“冲切”;如果对该平板玻璃施加一个居中的集中荷载,按静力加荷方式直至玻璃 破坏,此时会发现平板玻璃的跨厚比较大的情况下,会出现类似数条大裂缝而迅即脆性 破坏,这属玻璃特性,但在此拟其为呈平板结构的受弯状破坏,或者此拟为钢筋混凝土 平板呈双向板塑性铰线似的破坏。 2对金属板产生“直冲”破坏的典型例子是:冲床冲孔,其孔必然是垂直的。 3发生“直冲”破坏的条件是:被“直冲”破坏的板类部件本身要具备足够的刚性和整体 承载力,才能实现局部的“直冲”破坏;局部的“直冲”承载力将会受到周边结构部位 的约束,其“直冲”能力将会有较大提高,这里可能会涉及双向或三向的强度问题。 4对钢筋混凝土板进行“直冲”的试验研究,据我的估计是极少的,在六十余载从事钢筋 混凝土研究中,甚少见到这方面的论文可供参照。我个人曾在下放到预制构件厂工作时,模拟杯口基础底板冲切试验,但发现破坏均呈“冲切”的喇叭口状,如下列图示;对于 素混凝土板进行“直冲”试验,按我的想象,可按下列图示来做: (a)素混凝土“冲切”试验(b)素混凝土“直冲”试验 素混凝土板试验 从上述两种破坏图示意中可知,两种试验的承载力值必定是: 实际冲切锥呈喇叭状破坏面上主要靠混凝土抗拉强度来抵抗破坏面上的主拉应力(概念 表述,并不准确);而在“直冲”试验中,“直冲柱体”受到周边混凝土块体的约束, 沿破坏面上的压剪强度会有较大提高。 因此,不能简单地看到柱头顶穿楼板呈“直冲柱体”状的破坏面,就认为是“直冲”破坏。 二“直剪”破坏

不良地质现象

不良地质现象:对工程建设不利或有不良影响的动力地质现象。它泛指地球外动力作用为主引起的各种地质现象,如崩塌、滑坡、泥石流、岩溶、土洞、河流冲刷以及渗透变形等,它们既影响场地稳定性,也对地基基础、边坡工程、地下洞室等具体工程的安全、经济和正常使用不利。 第五章不良地质现象 举例认识不良地质现象,了解其危害 第一节崩塌 一,崩塌发生的条件 1.坡面条件---临空面高度大于30m,坡度大于50°的高陡斜坡,孤立山嘴或凸形陡坡及阶梯形山坡均为崩塌形成的有利地形. 2.岩土类型---各类岩,土都可以形成崩塌,但不同类型所形成崩塌的规模大小不同. 3.地质构造---各种构造面,如裂隙面,岩层层面,断层面,软弱夹层等软硬互层的坡面. 坡面条件,岩性条件,地质构造三个条件,又统称地质条件,它是形成崩塌的基本条件. 4.诱发崩塌的外界因素 (1)地震 (2)融雪,降雨 (3)地表水的冲刷,浸泡 (4)地下水 (5)风化作用 (6)人为因素的影响 二,崩塌的稳定性分析 第一阶段,初勘 第二阶段,对经上阶段分析认为是不稳定的边坡进行详勘,取得包括岩土或软弱结构面强度,地下水流和水压等方面的资料后,经定量分析对边坡稳定性作出判断. 至于新设计的大型边坡,其稳定性分析也分两阶段进行,每阶段需按地质构造分区,根据建筑设计对边坡的要求及边坡的荷载情况,分别预选2一3个坡角并按坡高段(如10一30m为一坡高段)进行稳定性验算,作出包括开挖,支护费用在内的技术比较,然后从中选出最优的坡角,坡形. 三,确定崩塌体的边界 崩塌体的边界特征决定崩塌体规模的大小.崩塌体边界的确定主要依据坡体的地质结构. 首先,应查明坡体中所发育的裂隙面,岩层面,断层等结构面的延伸方向,倾向和倾角大小及规模,发育密度等,即构造面的发育特征.通常,平行斜坡延伸方向的陡倾构造面,易构成崩塌体的后部边界;垂直坡体延伸方向的陡倾构造面或临空面常形成崩塌体的两侧边界;崩塌体的底界常由倾向坡外的构造层或软弱带组成,也叮由岩,土体自身折断形成. 其次,调查各种构造面的相互关系,组合形式,交切特点,贯通情况及它们能否将或已将坡体切割,并与母体(山体)分离. 最后,综合分析调查结果,那些相互交切,组合可能或已经将坡体切割与其母体分离的构造面就是崩塌体的边界面.其中,靠外侧,贯通性(水平及垂直方向上)较好的构造面所围的崩塌体的危险性最大. 四,我国防治崩塌的工程措施 以防为主的原则 1,预防措施 对有可能发生大,中型崩塌的地段,应尽量避开.

边坡变形破坏的防护措施

湖南文理学院芙蓉学院2010级《土木工程地质》大作业 题目:边坡变形破坏的防护措施 班级:土木1006 姓名:刘文 学号:10190617 日期:2012-5-2

边坡变形破坏的防护措施 1 引言 公路建设是在地质体上进行的人类工程活动,在建设过程中由于忽视或未重视边坡地质体及地质环境的分析与评价常引发一系列的边坡变形或边坡滑动地质灾害等问题。例如四川省境内的高速公路及重点公路建设过程中,国道108线西昌段、成雅高速公路、318国道的二郎山隧道东、西进出口引道段、国道107线岳阳四方岭段、川藏公路等均不同程度的出现了边坡(滑坡)地质灾害或产生了边坡失稳的问题,从而严重影响了工程建设及运营的正常进行,也使得对公路边坡的加固或整治费用远高于修建道路的费用。 国道108线广元南段公路通过地段大多为低山丘陵红层分布区,建设中遇到了公路路基高填深挖等一些特殊工程地质问题。由于该段路线长、跨越地质地貌单元较多,从勘察设计到施工周期短,未能全面地认识沿线的路基工程地质条件,及时地发现和解决存在的工程地质问题。沿途的路线边坡虽在路基开挖期间进行了一定程度的处理,但在工程建设过程中仍有多处边坡发生坍滑、滑动和崩落,严重影响了已通车路段的行车安全和公路正常使用,阻碍了当时正在施工路段的路面铺筑和交通工程设施等施工工程。 广南段公路路线基本沿着构造线方向展布,使得路堑边坡有一侧构成顺层坡。尽管这些顺层边坡倾角很小,一般均在十余度,但在施工过程中多处发生变形或者滑动破坏不仅造成巨大的经济损失,而且延误了工期。施工中采取了一些加固措施但效果不佳,其主要原因是对工程边坡的地质条件认识不足,尚未查清边坡变形破坏的主控因素和变形破坏机制,因此治理措施具有盲目性,不能达到治理的目的或有的造成大的浪费。 本文对边坡岩体工程地质特征和岩体力学条件进行充分调查分析、对缓倾角层状边坡的变形破坏机制研究和稳定性评价的基础上,提出了较为合理的边坡整治、支护方案,通过实施后的工程验证说明方案是合理有效的。 2 研究区工程地质概况 2.1 工程概况 国道108线广南段公路边坡主要以侏罗系砂岩、泥质粉砂岩和泥岩为主,第四系只在近河床部位分布较普遍,而在边坡的中上部只有薄层覆盖,滑坡的形成与边坡岩体的性质有关。本文对缓倾层状边坡变形破坏的分析研究主要是以国道108线广南段K24、K28两段典型边坡为例进行讨论的。 K24滑坡位于广元市盘龙镇共和村三队嘉陵江Ⅱ级阶地以北,国道108线广南段K24+850~K25+090,滑坡地处嘉陵江冲刷岸,地势南东低北西高从滑体中部通过。从50年代至80年代曾出现过多次小范围滑坡,未造成较大的危害。1997年6月在滑坡前缘修筑高速公路,由于路基开挖、放炮震动,1998年6月滑坡整体发生蠕滑变形。1999年4月滑坡中部产生大幅度滑动解体,滑坡堆积物覆盖路基约三分之二,直接对公路建设造成危害。 K28滑坡位于广元市中区盘龙镇东南部4km,新建国道108线广南段,滑坡地处嘉陵江冲刷岸,地势南东低北西高,相对高差106m,地形坡度下缓上陡,坡面倾向嘉陵江,坡度10~25°,平台后缘是巨厚层砂岩形成的陡崖,坡度65~80°,高约25~32m,滑坡基本上为岩质顺层滑坡。

滑坡破坏机理分析研究及稳定性计算理论

3滑坡破坏机理研究及稳定性计算 3.1边坡滑坡破坏机理 3.1.1水平坡的变形破坏机理 水平坡是指岩层倾向大致与边坡走向一致,而岩层倾角小于软弱岩层面残余摩擦角的一类层状岩质边坡。这类边坡的主要变形机理为滑移——压致拉裂,在这一变形机制下,其可能的破坏模式为转动型滑坡<弧面破坏),具体过程描述如下:边坡形成后由于卸荷回弹或者蠕变,坡体沿平缓结构面向坡前临空方向产生缓慢的滑移。滑移面的锁固点或错列点附近,因拉应力集中生成与滑移面近于垂直的拉张裂隙,向上<个别情况向下)扩展且其方向渐转成与最大主应力方向趋于一致<大体平行坡面)并伴有局部滑移。这种拉裂面的形成机制与压应力作用下格里菲斯裂纹的形成扩展规律近似,所以它应属于压致拉裂。滑移和拉裂变形是由斜坡内软弱结构面处自下而上发展起来的。 据实例分析和模拟研究,这类变形演变过程可分为三个阶段<图3-1)。 图3-1滑移-压致拉裂变形演变图 <1)卸荷回弹阶段 人工边坡在边坡开挖形成后,由于边坡以外岩土体的卸除原有的平衡状态被打破,边坡岩土体将向临空面方向发生膨胀变形。对近水平层状岩质边坡而言,这种变形表现为沿岩层面向临空面方向缓慢滑移,如图3-1

<2)压致拉裂面自下而上扩展阶段 坡底附近岩层在上面岩土体的高压力作用下,随着滑移变形的发展,逐渐产生近似垂至于岩层面的裂隙,如图3-1

地质灾害、不良地质作用、不良地质现象区别

地质灾害、不良地质作用,不良地质现象的区别?分别是何?都是何种机理? 地质灾害与不良地质作用大同小异,不良地质作用指的是作用形式,地质灾害指的是结果。如采空区,不是地质作用的形式,而是结果,所以只能称地质灾害。 ①地质灾害:是指在自然或者人为因素的作用下形成的,对人类生命财产、环境造成破坏和损失的地质作用。 现行规范规定地质灾害有6种:包括自然因素或者人为活动引发的危害人民生命和财产安全的山体崩塌、滑坡、泥石流、地面塌陷、地裂缝、地面沉降等与地质作用有关的灾害。 ②不良地质作用:指由地球内力或外力产生的对工程可能造成危害的地质作用。 不良地质作用包括:山体崩塌、滑坡、泥石流、地面塌陷、地裂缝、地面沉降、水土流失、库岸浸没、冻胀与融陷、活断层、场地地震效应、地下采空区变形塌陷、岩溶和土洞、隧道开挖中的瓦斯、突水、突泥等与地质作用有关的灾害。 ③不良地质现象:由地球的内外营力造成的对工程建设具有危害性的地质作用或现象。 现行规范规定的不良地质现象主要有9种,有断裂、地震、岩溶、崩塌、滑坡、塌陷、泥石流、冲刷、潜蚀等等。 形成的机理: 山体崩塌:是指陡峭斜坡上的岩体或者土体在重力作用下,突然脱离母体,发生崩落、滚动的现象或者过程。 滑坡:是指斜坡上的土体或者岩体,受河流冲刷、地下水活动、地震及人工切坡等因素影响,在重力作用下,沿着一定的软弱面或者软弱带,整体地或者分散地顺坡向下滑动的自然现象。 泥石流:是指山区沟谷或者山地坡面上,由暴雨、冰雨融化等水源激发的,含有大量泥沙石块的介于挟沙水流和滑坡之间的土、水、气混合流。 地面塌陷:是指地表岩体或者土体受自然作用或者人为活动影响向下陷落,并在地面形成塌陷坑洞而造成灾害的现象或过程。 地裂缝:是指在一定地质自然环境下,由于自然或者人为因素,地表岩土体开裂,在地面形成一定长度和宽度的裂缝的一种地质现象。

边坡工程监测的内容和方法

边坡工程监测的内容和方法

黄土地区公路高边坡防护技术 一、研究背景 中国黄土分布面积约为63.1万km2,约占国土面积6.6%,主要分布在北纬33°~47°,东经75°~127°之间。西部地区黄土分布面积约27. 5万km2,占中国黄土总面积的43.7%,占西部地区国土面积的50%—60%以上。 黄土分布区,沟壑纵横,黄土冲沟及河谷区谷坡陡峻,滑坡、崩塌、滑塌、泥流等地质灾害非常发育,给公路建设带来许多困难。而作为长大线状构造物的高速公路,在这沟壑纵横,谷坡陡峻的鸡爪形地貌背景下,由于一系列技术条件的限制,不可避免的要进行大量开挖,形成黄土高边坡。如:陕西省铜川~黄陵一级公路,在黄土地区路线长度15km,因开挖路基,形成高度大于30m高边坡40余处,边坡最高达88m。

我国现行的《公路路基设计规范》中,只涉及到高度小于30米的路堑边坡的设计,而大于30米的公路黄土高边坡设计没有规范可循,对公路黄土高边坡防护技术还处于探索阶段。正因如此,本课题将从西部地区非饱和黄土物理力学性质,西部地区已建成公路黄土高边坡营运现状,黄土高边坡冲刷实验,黄土高边坡可靠度概念下的优化设计,黄土高边坡防护技术等方面展开研究,以便为西部高速公路建设中黄土高边坡设计与施工提供科学依据。 二、主要研究目标和研究内容 本项目以黄土地区重大公路工程为依托,采用“点”与“面”结合、室内试验与现场试验相结合以及理论计算与实体工程验证相结合的技术手段,重点解决公路黄土高边坡稳定性评价、坡型设计、边坡防护等技术难题,提出一套适合黄土高边坡的稳定性分析、设计和防护方法,从而大大提高公路黄土高边坡设计与防护的科学性与经济性,改善公路沿线的生态环境。本项目的主要研究内容包括:公路黄土高边坡地质结构模型研究;黄土土性参数统计分析研究;非饱和黄土强度实验研究;公路黄土高边坡稳定性分析研究;公路黄土高边坡推荐设计坡型研究;公路黄土高边坡防护技术研究;公路黄土高边坡防护决策支持系统研建。 三、主要研究成果 1、基于现场调查和室内试验,总结出八类黄土高边坡地质结构模型,为黄土地区公路高边坡稳定性分析、设计与防护提供了重要依据。 2、通过直剪、控制吸力的三轴试验与先进的三轴CT试验,研究了非饱和黄土抗剪强度、结构强度与基质吸力(含水量)之间的关系及原状黄土剪切过程中的细观结构损伤规律,提出了实用的非饱和黄土抗剪强度公式和非线弹性本构模型,使非饱和黄土抗剪强度理论研究上了一个新台阶。 3、首次开展了原状黄土边坡变形破坏机理的离心模拟试验研究,结合CAT数值模拟分析,提出了黄土高边坡的变形破坏模式,得出黄土边坡起始剪切破坏发生于坡高1/3处、

边坡破坏模式

摘自《我国岩质边坡变形破坏的主要地质模式》 一般来说边坡变形破坏的地质模式应该包括以下主要内容: 1、边坡的基本地质条件,诸如区域地质背景,岩体结构及岩体介质结构特性,岩体的力学特性等,它们是决定边坡变形破坏地质模式的地质基础或物质基础; 2、影响边坡稳定的各种人为动力因素(地下开采、坡脚切层开挖、爆破震动)及天然动力因素(大气降雨及地下水状态的变化、区域构造应力特征); 3、边坡结构形式(顺倾边坡、反倾边坡等); 4、边坡岩体变形发展的过程及其特点; 5、边坡的失稳破坏方式. 应该指出,岩体结构、岩体介质结构以及边坡结构相互之间既有联系又有明显差别的不同概念.岩体结构主要决定于岩体中结构面及结构体的组合特征.岩体介质结构则指不同力学性质的岩体在空间的组合特性.边坡结构则主要反映了边坡与岩层产状之间的空间组合关系. 影响边坡穗定性的因素是多方面的,不但包括边坡岩体的介质结构、边坡结构、岩体结构、区域性地质背景、构造应力特征及构造条件等地质因素,而且包括各种人为的及自然的动力因素.这些动力因素主要是地下开采的扰动及坡脚切层开挖、爆破震动及地下水的作用等.地质条件虽然是决定或影响边坡定性的基础,但边坡的急剧变形或破坏都与各种人为的、天然的动力因素,有着密切的关系.大气降雨及水库蓄水是主要的自然动力因素,导致地下水状态的变化,减少了滑面的法向应力,降低了岩体的强度,改变了边坡岩体的稳定状态.就人为的动力因素来看,地下开挖显然有重要的影响,不但扰动破坏了上复岩体,且增加了岩体的渗透性,对边坡的变形破坏起到加速作用对于矿山边坡来说,爆破的动态效应对边坡的稳定亦有重要的影响,不但直接损害了岩体的完整性,且在重复爆破条件下,边坡岩体可能产生疲劳破坏,从而加速边坡破坏的过程. 摘自霍克布朗《岩石边坡工程》 为了使滑动沿单一平面发生,必须满足以下的几何条件: a.滑动面的走向必须与坡面平行或接近平行(约在+-20°的范围之内)。 k7。破坏面必须在边坡面露出,就是说它的倾角必须小于坡面的倾角 C。破坏面的倾角必须大于该面的摩擦角 d.岩体中必须存在对于滑动仅有很小阻力的解离面,它规定了滑动的侧面边界。另 一种可能的情况是,破坏在穿通边坡的凸出的“鼻部”的破坏平面上发生。 分析二维边坡问题时,通常是考虑与边坡面正交的一个单位厚度的岩片。这就是说,滑动面的面积可用穿过边坡垂直断面上可见的滑动线长度来代表,而滑动块的体积可用在垂直断面卜表示该块体图形的面积来代表。 摘自《基于RS理论的岩质路堑边坡稳定性研究》 边坡变形破坏模式RS判定 边坡变形破坏模式的确定,主要分两步进行:首先是对边坡岩体结构类型的确定;在此基础上再进行边坡变形破坏模式的判定。其主要过程如图4一1所示。

边坡监测合同

变形监测合同 国家测绘局 制订 国家工商行政管理局

委托方(甲方): 承揽方(乙方): 根据《中华人民共和国经济合同法》、《中华人民共和国测绘法》和有关法律法规,经甲、乙双方协商一致签订本合同。 第一条测绘范围:(包括测区地点、面积、测区地理位置): 工程名称:; 工程地点:。 第二条测绘内容:(包括测绘项目和工作量等):附检测方案 本次监测工程内容: 1.对施工过程中进行变形观测包括水平位移及地面沉降等内容。水平位移及地面沉降观测点共布设70个。 2.观测周期及频率:①所有观测点、测试设备的安装埋设均在边坡施工前完成,并测试各项目的初始读数;②监测工期为施工完工后2年;③在施工阶段,每3~5天观测一次,遇大雨应加密监测,并进行24小时动态监测,其余情况下可延至5~7天观测一次。当结构变形超过有关标准(警戒值)或场地条件变化较大时,应加密观测。大面积开挖施工阶段工期暂按90天计,测量次数暂定为15次;④边坡施工完毕后前期每月监测一次,当数值稳定后3~5月监测一次,测量次数暂定为5次;⑤预计观测总次数为20次。 第三条执行技术标准: 第四条测绘工程费: 1.取费依据:2002年修订本《工程勘察设计收费标准》;

2.工程总价款: 82500 元 第五条甲方的义务: 1.自合同签订之日起 2 日内向乙方提交有关资料和提出技术要求。 2.自接到乙方编制的技术设计书之日起 5 日内完成技术设计书的审定工作。 3.应当负责保证乙方的测绘队伍顺利进入现场工作,并对乙方进场人员的工作、生活提供必要的条件。 第六条乙方的义务: 1.自收到甲方的有关资料和技术要求之日起,根据甲方的有关资料和技术要求于 2 日内完成技术设计书的编制,并交甲方审定。 2.自收到甲方对技术设计书同意实施的审定意见之日起 2 日内组织测绘队伍进场作业。 3.乙方应当根据技术设计书要求按合同工期确保测绘项目完成。 第七条测绘项目完成工期: 1.乙方进场时间:年月日。 2.每次观测外业完成,观测结果如有异常变化,应立即口头预警通知现场甲方代表、监

理正岩土使用手册-岩质边坡稳定

第一章功能概述 理正岩质边坡(稳定)分析软件主要功能是分析计算简单平面、复杂平面、简单三维楔体岩质边坡的稳定计算及相关的分析。 考虑的因素包括:岩体结构的结构面、裂隙、裂隙水、外加荷载、锚杆及结构面的抗剪强度、地震作用等。 简单平面稳定问题: 1)利用极限平衡法及莫尔-库仑准则进行分析,计算岩体的稳定安全系数、设计锚杆、及反分析滑面的抗剪强度指标; 2)可分析坡角、坡高、裂隙水等与安全系数的关系曲线; 3)可按几种不同方法计算岩石压力等。 复杂平面稳定问题: 1)对于不加锚杆、不加外部荷载的情况可采用Sarma法计算安全;对于有锚杆、有外部荷载的情况只能采用通用方法(扩展Sarma法)计算安全系数,这是理正依据Sarma法改进的公式计算安全系数; 2)分析计算临界地震加速度系数; 3)分析计算临界地震加速度系数与安全系数的关系曲线等。 简单三维楔体稳定问题: 1)利用空间张量法分析空间三维楔体的形状,并分析三维楔体在体积力、锚杆力、地震作用、外加荷载等作用,考虑结构面的抗剪强度,计算三维楔体的稳定系数; 2)分析在给定安全系数的条件下,计算锚杆的最小拉力等。

第二章快速操作指南 2.1 操作流程 理正岩质边坡稳定分析软件的操作流程如图2.1-1,每一步骤都有相对应的菜单操作。 图2.1-1 操作流程 2.2 快速操作指南 2.2.1 选择工作路径 图2.2-1 指定工作路径 注意:此处指定的工作路径是所有岩土模块的工作路径。进入某一计算模块后,还可以通过按钮【选工程】重新指定此模块的工作路径。 2.2.2 选择岩质边坡型式 选择参与计算的岩质边坡型式,选择界面如下图:

边坡检测

隧道工程 边坡施工安全监测设置及实施方案 (现场监测)

*******有限责任公司 二O一一年三月----------------------- 页面2-----------------------

目录 一设计目标及要求 (3) 1.1 监测的内因 (3) 1.2 监测的外因 (3) 二设计原则 (3) 三主要监测项目说明 (3) 3.1 变形监测 (3) 3.2 土体松动监测 (4) 3.3 对加固用的材料进行监测 (4) 3.4 对土体压力进行监测 (4) 3.5 外部条件监测 (4)

四边坡安全管理监测设置及实施方案(现场监测) (4) 4.1 工程概况 (4) 4.2 监测方案 (4) 4.2.1 测点布置 (5) 4.2.2 远程监控系统及监控方案 (5) 4.3 其他可补充监测技术 (6) 4.3.1 测斜监测 (6) 4.3.2 以“面”为监测对象的表面变形 (6) 4.3.3 钢筋等的辅助测量 (6)

----------------------- 页面3----------------------- 滑坡体监测初设概要及具体项目实施方案 一设计目标及要求 监测的主要目的在于确保工程的安全。边坡的安全监测以边坡岩体整体稳定性监测为主,兼顾局部滑动砌体稳定性监测。由于过大变形是岩体破坏的主要形式,因此(地表和深部)变形监测是安全监测的重点。 1.1 监测的内因 边(滑)坡中存在的不利结构面常常是引起边(滑)破破坏的主要内在因素,故监测的重点对象是岩体中的这些结构面,监测测点应放在这些对象上或测孔应穿过这些对 象等。 1.2 监测的外因 开挖爆破和水的作用是影响边(滑)坡稳定的主要外因,施工期的质点振动速度、

岩质边坡楔形破坏

第一章绪论 1.1 引言 随着国民经济的发展,水利建设,交通运输和国防工程等建设工程中所遇到的岩质边坡稳定性问题也相应地增多。由于工程建设的需要,往往在一定程度上破坏或扰动原来较为稳定或岩体而形成新的人工边坡,诱发新的地质灾害。地质灾害已经成为制约我国经济及社会可持续发展的一个重大问题。 岩质边坡滑坡作为地质灾害中一个十分突出的问题,给国民经济建设的各个部门带来了严重的干扰和损失。1993年三峡库区巫溪县南门岩体崩滑造成200余人丧生。2000年彭水县山体滑坡造成70余人丧生。2004年12月11日,雨台温高速公路柳市附近突发大面积山体滑坡事故。滑坡的山体高约100m、宽约70m.甫台温高速公路70余米的路段完全被滑落的大石封死,致使温州大桥白鹭屿至乐成镇一段的高速公路双向车道全部瘫痪。地震作用诱发的边坡滑动和坍塌也是常见的灾害之一。特别是在山区和丘陵地带,地震诱发的滑坡往往分布广、数量多、危害大。 我国是一个多地震的国家,西部地区又是地中海一喜玛拉雅地震带经过的地方,是亚欧大陆最主要的地震带,也是我国地震活动最活跃的地区,因地震而导致的滑坡灾害非常严重。大量崩塌与滑动主要发生在多震的西部地区,而这些地区正是我国的水电能源和各种矿产资源的主要蕴藏地。随着国家西部大开发战略的实施,将加速对西部地区水电、矿产资源开发、及公路、铁路等基础设施建设,愈来愈多的工程(如水电、矿山、能源、核废料储存及溶质运移)都建设在岩体之上,几乎所有的土木工程建设都涉及到边坡的动力稳定问题。 在大多数岩体力学问题的研究中,都假定岩体在外力作用下是静止的,所以,考虑问题的角度也一般是从静力学角度出发,其结果与实际情况不尽相符,往往对结果作一些折减。通常,在许多实际情况中,荷载常具有动力特性,如上所述的地震滑坡灾害等,沿用静力学的原理和方法来求解这类问题,结构的动载特性无法反应出来,这显然是不合适的。例如,在地震作用和影响下,岩质边坡的稳定;隧洞围岩和衬砌结构的安全;筑造在岩层中的导弹发射竖井能否继续使用;修建大型水库以后是否存在诱发地震的可能性,以及在诱发地震一旦发生时,大坝

边坡变形监测方案

XXXX标 边坡变形监测专项方案 编制: 审核: 批准: XXXXX公司 2016年12月01日 XXX标 边坡变形监测方案 一、工程概况: 我公司承建的XXX标段,桩号范围3+400~6+950。主要建设内容包括:XXXXX.。本工程等级为II等;河道堤防级别为3级,施工临时工程为5级。防洪标准:防洪标准为50年一遇。供水标准:农业灌溉供水设计保证率为95%。 二、监测内容: 本标段边坡监测主要是指路堤边坡监测,监测内容为人工巡视、裂缝观测、坡面观测观测。 1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专职安全员坚持每天进行巡视,对图纸较差处、渗水严重处、边坡较陡处进行重点巡视、检查。当坡体表面发现裂缝时安全员立即采取措施和报告监测组。

2、坡面观测:边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用GPS进行测量。通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。 二、监测方案的实施 1、基准控制点和监测点的布设 1.1基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍比较稳定的地方埋设工作基点,其中工作基点采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌,埋设在加固坎上,地质较为稳定,本标段工作基点选择桩号点。 变形点布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上每100m布置变形监测点,编号分别为左1-32,右1-32。以及对南岸6+581,南岸4+390、北岸5+160、4+000-4+100段附件的建筑物等进行加密监测。 1、顶部用沉降钉垂直植入混凝土中,孔深不小于50mm,基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2、监测精度及频率要求 根据设计图纸及国家相关规范要求,边坡的变形观测如下: 2.1 水平位移监测网主要技术要求为:

不良地质现象及其 防治

不良地质现象及其防治 崩塌:是从较陡斜坡上的岩、土体在重力作用下突然脱离山体崩落、滚动,堆积在坡脚(或沟谷)的地质现象。大小不等,零乱无序的岩块(土块) 呈锥状堆积在坡脚的堆积物称崩积物,也可称为岩堆或倒石堆。陡峻山坡上岩块、土体在重力作用下,发生突然的急剧的倾落运动。多发生在大于60°~70°的斜坡上。 崩塌的物质,称为崩塌体。崩塌体为土质者,称为土崩;崩塌体为岩质者,称为岩崩;大规模的岩崩,称为山崩。崩塌可以发生在任何地带,山崩限于高山峡谷区内。崩塌体与坡体的分离界面称为崩塌面,崩塌面往往就是倾角很大的界面,如节理、片理、劈理、层面、破碎带等。崩塌体的运动方式为倾倒、崩落。崩塌体碎块在运动过程中滚动或跳跃,最后在坡脚处形成堆积地貌——崩塌倒石锥。崩塌倒石锥结构松散、杂乱、无层理、多孔隙;由于崩塌所产生的气浪作用,使细小颗粒的运动距离更远一些,因而在水平方向上有一定的分选性。形成崩塌的内在条件与外界的诱发因素:1.形成崩塌的内在条件有:(1) 岩土类型.岩土是产生崩塌的物质条件。不同类型、所形成崩塌的规模大小不同,通常岩性坚硬的各类岩浆岩(又称为火成岩)、变质岩及沉积岩(又称为水成岩)的碳酸盐岩(如石灰岩、白云岩等)、石英砂岩、砂砾岩、初具成岩性的石质黄土、结构密实的黄土等形成规模较大的岩崩,页岩、泥灰岩等互层岩石及松散土层等,往往以坠落和剥落为主。(2)地质构造.各种构造面,如节理、裂隙、层面、断层等,对坡体的切割、分离,为崩塌的形成提供脱离体(山体)的边界条件。坡体中的裂隙越发育、越易产生崩塌,与坡体延伸方向近乎平行的陡倾角构造面,最有利于崩塌的形成。(3)地形地貌.江、河、湖(岸)、沟的岸坡及各种山坡、铁路、公路边坡,工程建筑物的边坡及各类人工边坡都是有利于崩塌产生的地貌部位,坡度大于45 度的高陡边坡,孤立山嘴或凹形陡坡均为崩塌形成的有利地形。岩土类型、地质构造、地形地貌三个条件,又通称为地质条件,它是形成崩塌的基本条件。2.诱发崩塌的外界因素很多,主要有:(1)地震.地震弓l 起坡体晃动,破坏坡体平衡,从而诱发坡体崩塌,一般烈度大于7 度以上的地震都会诱发大量崩塌。(2)融雪、降雨特别是大暴雨,暴雨和长时间的连续降雨,使地表水渗入坡体,软化岩土及其中软弱面,产生孔隙水压力等从而诱发崩塌。(3)地表冲刷、浸泡河流等地表水体不断地冲刷边脚,也能诱发崩塌。(4)不合理的人类活动.如开挖坡脚,地下采空、水库蓄水、泄水等改变坡体原始平衡状态的人类活动,都会诱发崩塌活动。还有一些其他因素,如冻胀、昼夜温度变化等也会诱发崩塌。防治崩塌的工程措施主要有:(1)遮挡。即遮挡斜坡上部的崩塌物。这种措施常用于中、小型崩塌或人工边坡崩塌的防治中,通常采用修建明硐、棚硐等工程进行,在铁路工程中较为常用。(2)拦截。对于仅在雨后才有坠石、剥落和小型崩塌的地段,可在坡脚或半坡上设置拦截构筑物。如设置落石平台和落石槽以停积崩塌物质,修建挡石墙以拦坠石;利用废钢轨、钢钎及纲丝等编制钢轨或钢钎棚栏来栏截这些措施,也常用于铁路工程。(3) 支挡。在岩石突出或不稳定的大孤石下面修建支柱、支挡墙或用废钢轨支撑。 (4)护墙、护坡。在易风化剥落的边坡地段,修建护墙,对缓坡进行水泥护坡等。一般边坡均可采用。(5) 镶补沟缝。对坡体中的裂隙、缝、空洞,可用片石填补空洞,水泥沙浆沟缝等以防止裂隙、缝、洞的进一步发展。(6)刷坡、削坡。在危石孤石突出的山嘴以及坡体风化破碎的地段,采用刷坡技术放缓边坡。(7)排水。在有水活动的地段,布置排水构筑物,以进行拦截与疏导。滑坡:是指斜坡上的土体或者岩体,受河流冲刷、地下水活动、地震及人工切坡等因素影响,在重力作用下,沿着一定的软弱面或者软弱带,整体地或者分散地顺坡向下滑动的自然现象。俗称“走山” “垮山” “地、、滑” “土溜”等。、产生滑坡的主要条件:一是地质条件与地貌条件;二是内外营力(动力) 和人为作用的影响。第一个条件与以下几个方面有关:(1)岩土类型:岩土体是产生滑坡的物质基础。一般说,各类岩、土都有可能构成滑坡体,其中结构松散,抗剪强度和抗风化能力较低,在水的作

边坡变形监测方案

边坡变形监测方案探※※※※※※※※ 探※2008届学生 探※《变形监测》探※课程论文探※※※※※※※※ 变形监测方案 论文名称边坡变形监测方案 0802601班班级 杨波,20号,姓名学号 市政与测绘工程学院院系 测绘工程专业 黄长军指导老师 2012年4月25日 目录 、工程概 3 3

、监测内 3 3

三、监测实施流 四、报警方 五、监测点布置及监测方 六、监测技术要 七、人员及仪器 、工程概况: 本项目穿行于重丘地区的群山峻岭之中,填深挖较多,深挖路堑和填路堤边坡普遍存 在,深挖路堑边坡共29处(大于30米),填路堤边坡6处。大部分路段坡度较陡,岩体 破碎松软,节理裂隙发育,断裂构造对本标段路堑边坡稳定性有一定的影响地下水较发 育,对边坡的整体稳定性有一定的影响。 、监测内容: 本标段边坡监测主要是指路堑边坡和路堤边坡监测,监测内容为人工巡视、裂缝观测、

坡面观测、路堤沉降观测和水平位移观测。 1、人工巡视和裂缝观测: 人工巡视是一项经常性的工作,我标将安排专人坚持每天进行巡 视。当坡体表面发现裂缝时监测组及时在裂缝处埋设裂缝观测装置,通过观测裂缝的变化过程和变化规律来分析坡体的变形情况和破坏趋势。 2、坡面观测: 边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用精度为2〃的 全站仪进行观测,采用直角坐标法量测。通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。 3、路堤沉降观测和水平位移观测: 沉降观测主要通过埋设沉降板观测路基的沉降情况,通 过数据分析指导施工; 水平位移观测主要为地面水平位移,采用位移边桩观测。 三、监测实施流程 边坡监测工作与边坡施工需要反复交叉开展,为了使边坡监测工作与边坡施工作业协调一致,特制定如下作业流程: 边坡开挖施工准备 不需要 需要埋设监测仪器 测点仪器埋设 不正常 初测、调试开挖边坡停挖或其他措施动态跟踪监测不满足满足稳定标准本级开挖完毕本级加固防护开挖完毕继续监测加固措施不满足满足稳定标准竣工 监测资料1、资料报送程序; 业主、监理审核确定坡面观测点与裂缝观测点监理确认测点仪器坡面及裂缝观测点埋设确定重点监测断面业主、监理等 审核测斜管、测力计埋设与安装监理确认测点仪器监理确认埋设记录监测断面 测点埋设记录埋设记录提交业主、监理、监测单位监测断面仪器埋设记录监理确认埋设记

岩质边坡

研究生试卷 2011 年—2012年度第2 学期 评分:________________________ 课程名称:地质灾害理论与防治 专业:岩土工程 年级:2011级 任课教师姓名:叶四桥 研究生姓名:曾龙全 学号:11110008 注意事项 1.答题必须写清题号; 2.字迹要清楚,保持卷面清洁; 3.试题随试卷交回; 4.考题课俺百分制评分,考查课可按五级分制评分; 5.阅完卷后,授课教师一周内讲成绩在网上登记并打印签名后,送研究生部备案; 6.试题、试卷请授课教师保留三年被查。

岩质边坡的稳定性 前言 岩质边坡,是岩体在自然重力作用或人为作用而形成一定倾斜度的临空面。由于岩质边坡的失稳不仅使坡体本身结构破坏,威胁周围的已有建筑物,形成重大安全隐患,而且引发岩石的崩滑塌落对下部的建筑物以及人的生命财产安全造成不可估量的损失,所以岩质边坡的稳定性一直岩土工程的重要研究内容之一。 在我国,随着国民经济的发展,特别是西部大开发的实施,水利工程、铁路、公路及城市等基础设施建设方兴未艾,在这些工程中出现了许多岩石边坡工程,如三峡高边坡等。实际工程建设中又尤以岩石边坡的失稳给交通、建筑等造成极大的危害。而由于实际岩体中含有大量不同构造、产状和特性等不连续结构面(比如层面、节理、裂隙、软弱夹层、岩脉和断层破碎带等) ,给岩质边坡的稳定分析带来了巨大的困难。为了对边坡进行准确的稳定性分析,从而采取适当的开挖和支护措施,国内外学者和工程人员提出了许多理论和方法,大大促进了岩质边坡稳定性分析方法的发展。 目前工程实践中岩质边坡稳定性分析方法主要有两大类方法,一种是在边坡滑动面确定的情况下,根据滑裂面上抗滑力和滑动力比值直接计算安全系数。这类方法以极限平衡法最为经典,此外,关键块理论也属于这样的确定性分析方法。另外一类方法则是借助计算机进行数值分析(例如有限元、离散元、块体元和DDA 等) 从而确定边坡的位移场和应力场,再用超载法、强度折减法等使边坡处于极限状态,从而间接得到安全系数。这种方法同时可以考虑位移协调条件和岩体本构关系等。 主题 1. 岩质边坡的分类 为了得到正确的稳定性分析结果,建立能正确描述边坡岩体工程地质特征的分析计算模型是至关重要。为此,人们提出了边坡岩体的多种分类方法,目前主要的是按岩性分有岩浆岩边坡、沉积岩边坡、变质岩边坡等;按岩体结构分有块状结构边坡、层状结构边坡、碎裂状结构边坡和散体结构边坡等。重庆交通大学的陈洪凯教授等提出了根据岩体结构面的控制性及现场易识性原则将公路岩质边坡划分为以下五类:顺层型高切坡、反倾型高切坡、顺层切割型高切坡、反倾切割型高切坡、块体砌筑型高切坡,有利于对岩质边坡稳定性更好的研究。 2. 影响岩质边坡的稳定性因素 岩质边坡中是岩体结构控制了岩体的稳定性。岩体结构是指结构面在岩体中的空间分布、组合规律及其所导致的岩体被切割状态。边坡稳定性的主要破坏是结构面的破坏,从成因上分为内部(自身)条件和外部条件。内部条件主要包括边坡的结构特征(如边坡的几何参数坡角和坡高)、岩土体强度参数。外部条件包括自然条件下的构造运动、地震、温度变化、地下水、雨旱交替及人类活动等;边坡受到众多不利因素的耦合作用,加速了边坡体内节理的发育、贯通。 高切坡受到人工开挖后岩体内部应力将发生变化。边坡被切削后,坡体临空的岩体应力释放,岩体结构逐渐松弛,坡体上出现了不同程度的卸荷裂缝随着应力的进一步释放,在坡体后缘 将会出现拉张裂缝。如图1中高切坡,边坡岩体中A点的初始应力为б 10、б 20 (一般为受压),

相关文档
最新文档