基于DSP的前馈控制变压变频逆变电源设计_范子林

基于DSP的前馈控制变压变频逆变电源设计_范子林
基于DSP的前馈控制变压变频逆变电源设计_范子林

第44卷第11期2010年11月

电力电子技术

Power Electronics

Vol.44,No.11November 2010

基金项目:国家自然科学基金重点项目(504437010);浙江省自然科学基金项目(X106873);台达电力电子科教发展计划项目(DREG2010004)定稿日期:2010-07-08

作者简介:范子林(1984-),女,山西大同人,硕士研究生,研究方向为电力电子与电气传动。

1引言

随着逆变电源的普及应用,改善逆变电源性能的各种控制方式应运而生并逐步完善。典型的

逆变电源控制方法包括电压平均值和电压瞬时值

双闭环、

电感电流瞬时值双闭环[1]以及改进的电容电流瞬时值双闭环控制[2]和电流滞环控制[3]等。这些控制方法基本都是基于检测偏差以消除偏差的反馈理论,这对由逆变器负载非线性而引起的

输出波形畸变有很好的抑制效果。但当逆变电源输出电压和频率的范围都很宽时,控制回路参数的调节会变得很困难。考虑到系统输出负载为线

性,在此提出一种简单高效的逆变器前馈控制方案。与常用的反馈控制相比,其优点有:①前馈控制属于开环控制,因而不存在反馈控制中的不稳

定问题,算法和调试都很简单;②前馈控制能迅速补偿由母线电压波动引起的输出畸变,而不需要经过负载,因而其快速性更好。

2

系统简介及SPWM 调制方式选择

2.1

系统简介

系统旨在为一种测试仪器提供可变压变频的逆变电源。电源直流母线电压由380V 的线电压经倍压整流、大电容滤波后得到。电源的输出电压和频率紧紧跟随输入交流控制信号,并要求输出功率最大不超过500W 。已知逆变电源的负载为缓慢变化的线性负载,逆变电源各项参数:输出电压有效值U o =0~500V ;输出频率为0~50Hz ;输出最大功率P o =500W ;输出电压失真度THD <3%;输入交流控制信号有效值U g =0~5V ,0~50Hz 。

基于DSP 的前馈控制变压变频逆变电源设计

范子林,王正仕,陈辉明,蔡超峰

(浙江大学,电气学院,浙江杭州

310027)

摘要:在分析研究逆变电源的各种典型控制方法后,提出一种基于DSP 的前馈控制方案,给出前馈控制的基本

原理,用Matlab 仿真验证了其可行性;根据该方案的特点讨论了其实现过程中可能遇到的问题,并给出解决方案及DSP 实现过程。另外,

为满足工程要求的最大功率限制,设计了一种通过差分采样电路获得逆变电流信号,后经数字PI 调节器实现限流的控制方案,并给出设计过程。实验证明,该方案可以很好地满足工程目标。

关键词:逆变电源;前馈控制;差分采样中图分类号:TM464

文献标识码:A

文章编号:1000-100X (2010)11-0044-03

Design of VVVF Inverter Power with Feed Forward Based on DSP

FAN Zi -lin ,WANG Zheng -shi ,CHEN Hui -ming ,CAI Chao -feng

(Zhejiang University ,Hangzhou 310027,China )

Abstract :To cater to the special demands in industrial applications ,a feed forward controller based on digital signal processor (

DSP ),compared with various kinds of typical controlling means ,is presented.The paper reveals the funda -mental principle of the feed forward controller ,which proved available by Matlab emulation.And also the problems that might be encountered when implemened are discussed ,along with the solutions and implementation procedure using DSP.In spite of this ,to meet the maximum power limit in industrial applications ,a differential sampling circuit is introducted to obtain current signal of the inverter ,and then current limiting is achieved using a digital PI regula -tor.Detailed design process is demonstrated ,which proved by experiments can cater to industrial needs very well.Keywords :inverter ;feed forward control ;differential sampling

Foundation Project :Supported by National Natural Science Foundation of China (No.504437010);Provincial Natural Science Foundation of Zhejiang (No.X106873);Scientific and Educational Developing Program of Delta on Power Electronics (No.DREG2010004)

44

2.2

SPWM 调制方式的选择

随着逆变器性能要求的不断提高,传统的模拟控制因其固有的局限性而愈加不能满足要求,此时不断成熟和完善的高速微处理器技术为逆变数字控制技术的发展提供了更为广阔的空间。与传统模拟控制相比,数字控制的优点有:①更加灵活方便,无需改变硬件电路,只需在软件中修改参数和算法即可实现控制策略的更改;②电路抗干扰能力更强,基本不存在模拟电路中出现的温漂和相同元极参数不一致的问题;③更容易实现先进的控制算法和策略等。

系统选用TMS320F28016来实现逆变器的控制。TMF320F28016是32位DSP 芯片,

集成12位A/D 转换器(ADC )

,可很方便地实现正弦脉冲宽度调制(SPWM )

。SPWM 分单极性调制、双极性调制和倍频调制3种方式。倍频SPWM 调制是对单极性SPWM 的改进,在不提高开关频率的基础上可得到二倍于开关频率的SPWM 波,同时谐波含量仍保持单极性的优良特性。因此系统采用倍频SPWM 调制方式。

3

前馈控制原理及DSP 实现

3.1

前馈控制原理

所谓前馈控制是指给系统提供一个前馈通道,检测系统干扰,并通过前馈通道改变控制量以达到消除干扰的目的,图1示出其原理框图。对于该系统而言,系统干扰是指母线电压的波动。

由平均值分析模型可知,在一个载波周期内:

u o1=u dc u g /U cm (1)

式中:u o1为在这个载波周期中输出电压的基波瞬时值;u dc 为母线电压;u g 为对应的调制波(输入交流控制信号)瞬时值;U cm 为三角波幅值。

u g =U gm sin ωt

(2)

式中:U gm 为调制信号幅值。

将式(2)代入式(1)

得:u o1=u dc U gm cm

sin ωt=u dc m a sin ωt

(3)

式中:m a 为幅度调制比。

由式(3)知当u dc 恒定时,m a ≤1,

且为定值,为提高直流电压利用率应使m a 尽量接近1。当u dc

有波动时,为保证输出电压正弦,必须保证u dc m a 不变,记无波动时母线电压为U ref ,实际的母线电压为u dc ,则u dc 的变化率为u dc /U ref ,于是得所需m a 的变化率为U ref /u dc 。

3.2

DSP 实现

由前馈控制原理可知,前馈控制的准确实施

依赖于母线电压采样的准确性和快速性。系统中母线电压的采样由DSP 内部的ADC 完成,由于线路噪声的影响,实际输入DSP 的信号并不能准确反

映母线电压的波动,因而需加入滤波环节。系统采用模拟加数字的混合滤波方案,采样信号输入DSP 前,加入RC 低通滤波器来抑制噪声干扰,输入DSP 后加入数字滤波器来进一步消除噪声干扰。

数字滤波方法很多[4],不同的滤波方法对各种噪声的效果不同,延时也不同。经比较分析后,考虑到不同负载下母线电压的波动情况各异,系统采用分段滤波的方法,即当负载较重时u dc 波动较大,采用限幅平均数字滤波的方法,先利用限幅滤波滤除大的高频干扰,然后利用滑动平均值滤波进一步减小零均值噪声和周期性干扰;当负载较轻时u dc 波动不大,这时采用限幅滤波加一阶滞后滤波的数字滤波法,限幅滤波功能同上。通过在不同负载段采用不同数字滤波器的方法,前馈控制下的逆变电源输出波形得到了很好的改善。

4限流环节及DSP 实现

由于系统要求最大功率不超过500W ,因而

需要加入限流环节。4.1

电流采样

因逆变电源的输出浮地,负载低端的电位随不同的开关管开关情况而浮动很大。

因而逆变电源的电流采样不能按常规方法将

采样电阻R s 上的信号直接送入运放。考虑后系统设计采用差分采样电路来实现逆变电源的电流采样。如图2所示,将R s 两端的电压分别经电阻分压后送入运放两端构成差分电路,同时在运放的正向输入端加一个直流偏置,将差分输入的交流信号抬升为全正值然后再放大,这样就省去了运放的负电压供给。运放的输出经电阻分压到适合

DSP

的范围后,

经A/D 采样口送入DSP 。图1

前馈控制原理框图

图2差分采样电路

基于DSP 的前馈控制变压变频逆变电源设计

45

第44卷第11期2010年11月

电力电子技术

Power Electronics

Vol.44,No.11

November2010

4.2DSP实现

鉴于系统输出电压和频率均为变化值,且负载变化缓慢的特性,为提高过流保护的快速性,在DSP的过流保护程序中通过检测电流的峰峰值作为判断过流的标准。检测采样电流由增大变为减小的转折点以确定正弦波的最高点,检测采样电流由减小变为增大的转折点以确定正弦波的最低点,用最高点减去最低点即得电流的峰峰值。当峰峰值大于设定值时就认为过流,按相同比例反向调节比较寄存器的值来起到限流的目的。

峰峰值判断方法的快速性要优于平均值检测,且无需检测电流的过零点,简化了程序设计。但是,由于峰峰值检测法中最高点最低点的检测是利用采样值的增减趋势得到,采样波形中的任何一个毛刺信号都可能被DSP误以为是最值点而产生误操作,这就要求电流采样波形必须绝对平滑,这给滤波工作带来了很大的难度。综合研究从电流采样到改变比较寄存器值的整个过程及系统的特殊性,设计采用一阶低通数字滤波加PI调节器的方法来实现逆变电源的限流。

模拟RC低通滤波器的传递函数为:

H(s)=1/(RC)

s+1/(RC)

(4)经z变换得H(z)=1/{RC[1-e-t/(RC)z-1]}于是得其差分方程为:

y(n)=e-t/(RC)y(n-1)+x(n)(5)考虑到保护的快速性,系统选用一阶低通滤波器来实现采样电流的滤波,且其滤波效果可通过调节数字PI调节器的参数来补偿。

模拟PI调节器的时域表达式为:

y(t)=K P e(t)+K I乙e(t)d t(6)离散化得第n个采样周期的输出为:

y(n)=K P e(n)+K I T s

n

i=1

Σe(n)(7)按上式设计PI调节器。不同于传统的PI调节器,系统是要通过PI调节器实现限流的目的,故只有当采样电流峰峰值达到限流值时它才会起作用。因而需设计在电流达到最大值之前PI调节器的输出一直被限制在最大值处。另外为防止在上电之初PI调节器起作用,应设计积分初值使PI 调节器[5]输出达到最大值。

5实验验证

按系统参数设计硬件电路,负载电阻为204Ω。

当输出电压有效值U

o =103V,频率f=50Hz,前馈

控制逆变电源输出电压波形及谐波分析如图3a

所示,其THD=1.812%。可见,前馈控制逆变电源

收到良好效果。当U

o

=103V,f=20Hz时,前馈控制

逆变电源输出电压波形及谐波分析如图3b所示,

其THD=2.117%。可见,前馈控制逆变电源在低频

时也满足设计要求。当U

o

=508V,f=50Hz时,前馈

控制逆变电源输出电压波形及谐波如图3c所示,

其THD=0.954%。可见,限流功能完成得很好。

6结论

提出一种基于DSP的前馈控制逆变电源技术

以改善输出电压波形质量。在限流环节采用差分

采样获取电流信号,后经PI调节器实现输出限

流。实验证明,该设计方案效果良好,简单可靠,且

具成本优势,有很高的实用价值。

参考文献

[1]LI Shao-lin,YANG Ping.Research on a SPWM Inverter

Power Supply System Based on DSP[A].2008Interna-

tional Conference on Computer Science and Software

Engineering[C].2008:150-153.

[2]许爱国.电容电流反馈瞬时值控制逆变数字控制技术

研究[D].杭州:浙江大学,2005.

[3]王志良,郝玉东,胡汉金.滞环控制的电流跟踪型SPWM

逆变器[J].西北工业大学学报,1996,(3):472-475.

[4]宋寿鹏.数字滤波器设计及工程应用[M].镇江:江苏

大学出版社,2009.

[5]J Selvaraj,N A Rahim,C Krismadinata.Digital PI Cur-

rent Control for Grid Connected PV Inverter[A].ICIEA

3rd IEEE Conf[C].2008:175-178.

图3

输出电压波形及谐波分析

46

变频调速系统设计可以分为两个重要部分

变频调速系统设计可以分为两个重要部分,软件设计与硬件设计。本设计首先简要阐述?了变频调速的基础技术,SPWM理论及常用的设计方法等。然后对变频调速的硬件做了系 统电路地描述。对整个系统的主电路、控制电路、各种保护电路及控制实现的软件都进行了?系统的分析。主电路部分给出了整流、滤波、逆变器等器件各个环节的参数的计算。控制电?路采用TMS320F2812、显示电路、输入电路、检测电路等,并配备了系统保护电路。在硬?件电路的基础上,用MATLAB工具对系统进行了开环和闭环系统的SPWM仿真。仿真实 验结果表明,这些设计使系统能够可靠工作,运行状态良好,达到了设计目的。最后给出了 各个软件设计的系统流程图。?关键词:变频调速,正弦波脉宽调制,IPM,智能功率模块,SPwM,TMS320F2812 4一 Summary -?Thevariable speed Call?bedivided into two?important parts:soft design?and hardware?design.The designfirstly explains?thebasic?techniques.of?the variable speed,thetheory

and method of theSPWM.Then the major?hardwarecircuit is introduced,Especilly?TMS320F2812 andIPM.The?calculation about?parameter?is madein the?major?circuit.At the same time the security of the circuit was?equipped.?DSPwas?regarded as the controller core of the SPWM.We establish?a system model?whichcontrol system speed open and close?loop with SPWM,wesimulate and?analyze the control?system through MATLAB.The simulation results demonstrate that it isa?high value to popularize?and?apply?the?controlling system.Final ly The

矢量控制变频器工作原理

矢量控制是20世纪70年代由前西德Blaschke等人首先提出来的对交流电动机的一种新的控制思想和控制技术,也是交流电动机的一种理想的调速方法。矢量控制的基本思想是将异步电动机的定子电流分为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流)并分别加以控制。由于在这种控制方式中必须同时控制异步电动机定子电流的幅值和相位,即控制定子电流矢量,因此这种控制方式称为矢量控制方式。 矢量控制方式使对异步电动机进行高性能的控制成为可能。采用矢量控制方式的交流调速系统不仅在调速范围上可以与直流电动机相匹敌,而且可以直接控割异步毫乏t产生的转矩。所以已经在许多需要进行精密控制的领域得到了应用。 由于在进行矢量控制时需要准确地掌握对象电动机的有关参数,这种控制有式芝云主要用于厂家指定的变频器专用电动机的控制。但是,随着变频调速理论和技术的发曩以及现代控制理论在变频器中的成功应用,目前在新型矢量控制变频器中已经增加了自调整(autotuning)功能。带有这种功能的变频器在驱动异步电动机进行正常运转之前可以自动地对电动机的参数进行辨识并根据辨识结果调整控制算法中的有关参数,从而使得对普通的异步电动机进行有效的矢量控制也成为可能。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/c313946178.html,/

变频器的主电路(一)

小孙学变频——第一讲变频器的主电路 小孙是蓝天公司的电气工程师,多年来从事电子设备的维修工作。近几年来,各种设备里应用的变频器越来越多,小孙被安排来专门从事变频器的调试和维护。 这一天,小孙从仓库里领出了一台变频器,打算配用到鼓风机上。按照规定,先通电测试一下。谁知一通电,就发现冒烟,立刻切断了电源。把盖打开后,发现有一个电阻很烫。小孙想,在开盖情况下再通电观察一次。这一回,电阻倒是不冒烟了,但不一会儿,变频器便因“欠压”而跳闸了。用万用表一量,那个电阻已经烧断了。 经人介绍,小孙找到了一位退休老高工张老师。 “你们那台变频器在仓库里存放了多长时间?”听完了小孙的情况介绍后,张老师问。 “大约一年多一点。” “我知道了。”张老师胸有成竹地说。“在分析电阻冒烟的原因之前,先要弄清楚变频器里整流滤波电路的特点。” “老师,我不大明白,变频器的中间为什么要加进一个直流电路呢?” “好吧,那我们就先从交-直-交变频器的基本结构讲起。”张老师拿了一张纸,不紧不慢地画出了交-直-交变频器的框图,如图1-1所示,然后说: “你瞧,电网的电压和频率是固定的。在我国,低压电网的电压和频率统一为380v、50hz,是不能变的。要想得到电压和频率都能调节的电源,必须自己‘变出来’,才便于控制。所谓‘变出来’,当然不可能象变魔术那样凭空产生出来,而只能从另一种能源变过来。这‘另一种能源’,便是直流电。 因此,交-直-交变频器的工作可分为两个基本过程: (1)交-直变换过程 就是先把不可调的电网的三相(或单相)交流电经整流桥整流成直流电。

(2)直-交变换过程 就是反过来又把直流电“逆变”成电压和频率都任意可调的三相交流电。 你方才说的那台变频器的问题,我的判断是出在‘交-直变换’里。我们就来讨论这部分电路吧。 图1-1 交-直-交变频器框图 1 交-直变换电路 “所谓交-直变换电路就是是整流和滤波。在低压电路里,哪种滤波方式效果最好?”老张又问。“应该是π形滤波。”小孙答。 “可是,变频器里却不能用π形滤波。” 图1-2 整流和滤波电路 (a)低压整流滤波电路(b)变频器整流滤波电路

变频器基本电路图

变频器基本电路图 目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。 1)整流电路 如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。 2)滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元

件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 3)逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。 通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司生产的IPMPM50 RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为2 0KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。 逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生意外情况时,对换流器件进行保护

基于PLC控制的变频器调速系统_毕业设计论文

目录 目录 (1) 第一章系统的功能设计分析和总体思路 (2) 1.1 概述 (2) 1.2 系统功能设计分析 (3) 1.3 系统设计的总体思路 (3) 第二章PLC和变频器的型号选择 (4) 2.1 PLC的型号选择 (4) 2.2 变频器的选择和参数设置 (5) 2.2.1 变频器的选择 (5) 2.2.2 变频调速原理 (6) 2.2.3 变频器的工作原理 (6) 2.2.4 变频器的快速设置 (7) 第三章硬件设计以及PLC编程 (9) 3.1 开环控制设计及PLC编程 (9) 3.1.1 硬件设计 (9) 3.1.2 PLC软件编程 (10) 3.2 闭环控制设计 (14) 3.2.1 硬件和速度反馈设计 (14) 3.2.3 闭环的程序设计以及源程序 (16) 第四章实验调试和数据分析 (21) 4.1 PID 参数整定 (21) 4.2 运行结果 (22) 第五章总结和体会 (22) 第六章附录 (24) 6.1 变频器内部原理框图 (24) 第七章参考文献 (25)

第一章系统的功能设计分析和总体思路 1.1 概述 调速系统快速性、稳定性、动态性能好是工业自动化生产中基本要求。在科学研究和生产实践的诸多领域中调速系统占有着极为重要的地位特别是在国防、汽车、冶金、机械、石油等工业中,具有举足轻重的作用。调速控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。 可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继续计算机、自动控制技术和通信技术为一体的新型自动装置。它具有抗干扰能力强,价格便宜,可靠性强,编程简朴,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。 目前在控制领域中,虽然逐步采用了电子计算机这个先进技术工具,特别是石油化工企业普遍采用了分散控制系统(DCS)。但就其控制策略而言,占统治地位的仍旧是常规的PID控制。PID结构简朴、稳定性好、工作可靠、使用中不必弄清系统的数学模型。PID的使用已经有60多年了,有人称赞它是控制领域的常青树。 变频调速已被公认为是最理想、最有发展前景的调速方式之一,采用变频器构成变频调速传动系统的主要目的,一是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求;二是为了节约能源、降低生产成本。用户根据自己的实际工艺要求和运用场合选择不同类型的变频器。 组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。在组态概念出现之前,要实现某一任务,都是通过编写程序来实现的。编写程序不但工作量大、周期长,而且轻易犯错误,不能保证工期。组态软件的出现,解决了这个问题。对于过去需要几个月的工作,通过组态几天就可以完成。组态王是海内一家较有影响力的组态软件开发公司开发的,组态王具有流程画面,过程数据记录,趋势曲线,

变频器控制电路的工作原理

变频器控制电路的工作原理? 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器,变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变?

r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:4极电机60Hz 1,800 [r/min],4极电机50Hz 1,500 [r/min],电机的旋转速度同频率成比例。 本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适和改变该值来调整电机的速度。另外,频率是电机供电电源的电信号,所以该值能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。n = 60f/p,n: 同步速度,f: 电源频率,p: 电机极数,改变频率和电压是最优的电机控制方法。如果仅改变频率,电机将被烧坏。特别是当频率降低时,该问题就非常突出。为了防止电机烧毁事故的发生,变频器在改变频率的同时必须要同时改变电压,例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频器的输出电压就必须从200V改变到约100V。例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到

变频器主电路选型

通用变频器综合设计 1、设计一个采用二极管整流桥和IGBT的交-直-交电压型变频器主电路,并选择主要元器件的参数。 输入电压范围: 380~480V(正负10%),输出功率11kw(当输出电压为380V时),功率因数75 ?,采用三相SVM PWM,fs=1~15kHz。 .0 cos= (1)选择整流桥和IGBT(EUPEC或三菱均可),根据三菱或EUPEC网站上的程序,计算整流桥和IGBT模块的结温、使用寿命:计算做热Ta=40o C的Rthc-a,选择自冷或风冷情况下的变频器的散热器。(2)Udmax=800V,选择电解电容的耐压和容量,计算电解电容的寿命,自己查资料,如EPCOS、CDE(无感电容)、BHC等。 2、设计上述变频器的保护方案(原理框图,各环节的设计依据,电路框图,主要参数) (1)选择三个输出交流侧霍尔电流传感器的过电流、过载保护方案,设计相应的保护电路(HL传感器,电流放大滤波通道,A/D转换参考电压为5V)。 (2)设计IGBT直通保护和输出短路保护(相间,对地),可选择用带保护的驱动IC实现。 (3)直流侧的电阻能耗制动电路,给出一种软件或硬件控制方案。(制动点的选择) (4)直流侧过电压保护的硬件电路

根据题目要求,本系统主电路可用三相二极管不可控桥式整流电路、中间直流环节和三相IGBT桥式逆变电路三部分组成,实现交-直-交电压型变频器的功能,其拓扑结构如图1所示。 图 1 交—直—交电压型变频器拓扑结构 AC-DC-AC主电路主要包括:整流电路、滤波电路、制动电路以及逆变电路。整流侧采用三相不可控二极管整流桥将交流电整流为直流电,这样功率因数接近于1。由于不控整流出来的电压是脉动的,需要经过滤波电路后供给逆变电路,所以直流侧电容起稳压和滤波的作用。因为考虑到电动机的回馈能量,防止直流侧电压升高,加入能耗制动电路,逆变桥采用三相桥式结构。图中,在直流侧电容前接入了一个与限流电阻相并联的开关,这是由于电容的电容量很大,当合闸突加电压时电容相当于短路,将产生很大的充电电流可能会损坏整流二极管,为了限制充电电流,可以采用限流电阻和延时开关组成的预充电电路对电容进行充电,当电源合闸后延时开关延时数秒,此时通过电阻对电容充电,当电容电压升高到一定值后,闭合开关将限流电阻短路,避免正常运行时的附加损耗。 一、整流逆变元件参数及热设计 1.1 主电路元件选择及其参数 1.1.1 整流二极管的选型

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

变频器原理经典图集

要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动! 变频器维修入门--电路分析图 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,内部都具有保护功能。 图2.4所示的电路是较典型的过流检测保护电路。由电流取样、信号隔离放大、信号放大输出三部分组成。

变频器主回路设计及计算

变频器主回路 ·设计、计算 ·要点及一些经验 主要内容 ·变频器主回路构成; ·主回路参数及所用元件的选择计算; ·主回路设计的要点及经验; ·主回路的保护; ·主回路设计的造成问题及对策; 变频器组成 变频器描述: 变频器是一种将输入固定电压和固定频率(通常为3相380V,50HZ)的电能转化为可调整电压和频率电能输出(Variable Voltage Variable Frequency,VVVF)的交流电气传动设备。 变频器分类: 交交变频器,交直交变频器; 交直交变频器分类: 电压源型变频器和电流源型变频器 产品构成 1、结构 壳体、电气部件和机械连接 涉及设计类型:产品设计、结构设计、热设计 2、电气(主回路) 主回路器件选型、计算 3、控制部分(控制回路) 主控制板(功能实现、波形发生,各种控制逻辑,……) 驱动板(主回路器件驱动和控制,各种参数检测和保护,辅助电源)人机界面(键盘)

变频器主回路构成及作用 主回路参数计算 输出容量:UoIo Po 3= 式中,Io :变频器输出电流 Uo :变频器输出电流 直流环节电压: UAC UAC UD 35.12 3== π 式中,UAC 为三相输出线电压 直流环节电流:IO IO ID 283.16 == π 式中,IO 为变频器额定输出电流 实用的近似关系: 1、三相380V 等级变频器额定输出电流与额定输出功率的关系 I=2*P 2、单相220V 等级变频器额定输出功率与输出电流的关系 I=5*P

电气连接 1、PCB 走线: 小功率(≤22KW ,西门子做到90KW )机型普遍采用。 优点:成本低,电感小,工艺好。 注意产品要求的通流能力,PCB 铜箔厚度和一致性。 2、塑胶绝缘导线: 输入:功率因数≤0.8时3Amm 2功率因数≥0.96(加直流电抗器)时4A/mm 2 输出:3A~3.5A/mm 2 优点:成本低,电感大,工艺上需注意固定等绝缘问题。 3、铜排: 6A~8Amm 2 成本高,电感大小与部线方式有关,常用于18.5KW 以上功率等级。 整流桥计算 流过整流管的电流有效值: ℃),满足设计要求(的查)(变频器的整流管:例:选择为变频器输出额定电流式中:过载系数αα)(整流管电流选择:的值标称值时对应导通的值,整流管手册值为平均值:)))() ))(1001901729.186176283.1368.05.15.16 368 .02~1908 .1~5.1.6 368.02~1368.032 3180120637.02577.03((120(180()(120A I MDD A Io I KW Io Io I I I I I I I I I I I Ir AV Vr AV vr AV Vr D D AV T AV T AV T D D AV T D D ==????=??==??=== = ??= =???π απ ππ 整流管电压额定值RRM U α???≥1.12AC RRM U U

变频调速电梯控制系统设计

摘要 电梯是一种用于电力拖动的特殊升降设备,是现代城市生活中必不可少且应用最广泛的垂直交通运输工具。随着社会的不断发展,电梯从手柄开关操纵电梯、按钮控制电梯发展到了现在的群控电梯,为高层运输做出了不可磨灭的贡献。 随着电力电子技术和计算机控制技术的飞速发展,交流变频调速技术的发展十分迅速。变频调速电梯使用了先进的PWM技术,明显改善了电梯运行质量和性能;调速范围广、控制精度高、动态性能好,舒适、安静、快捷,几乎可与直流电机相互媲美。同时也明显改善了电动机供电电源的质量,减少了谐波,提高了效率和功率因数,节能显著。 本设计在采用PLC和变频器相互结合而实现电梯常规控制的基础上,通过对变频器和PLC芯片的合理选择和设计,大大提高了电梯的控制水平,并改善了电梯运行的舒适感,使电梯达到了较为理想的控制和运行效果。 关键词:电梯,PWM控制,变频调速

ABSTRACT Summary elevator is a special electric traction equipment, is indispensable in modern urban life, and the most widely used vertical transportation. As society develops, elevator from the handle switch elevators, buttons control the elevator to the current group of Elevator, for senior transportation present. With power electronics and computer control technology and the rapid development, AC inverter technology development very rapidly. Variable speed elevator use advanced PWM, significantly improve the quality and performance elevator; speed range widely, control, precision, dynamic performance, comfortable, quiet, fast, almost comparable to the DC motor. At the same time significantly improved motor power quality, reduced harmonic, which improves the efficiency and power factor, energy-saving significantly. This design in use PLC and inverter elevator on the basis of conventional control, through the inverter and PLC chip design, selection and greatly improves the elevator control levels, and improves the comfort, Elevator makes elevator reaches more ideal control and operating results. Keywords: elevator, PWM, frequency

变频器工作原理图解

变频器工作原理图解 1 变频器的工作原理 变频器分为 1 交---交型输入是交流,输出也是交流 将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出 将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电 又称为间接变频器。 多数情况都是交直交型的变频器。 2 变频器的组成 由主电路和控制电路组成 主电路由整流器中间直流环节逆变器组成 先看主电路原理图

三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通

短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。 耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。 继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。 接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道, 由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压 高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。 一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。 直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 例如:某一时刻,V1 V2 V6 受基极控制导通,电流经U相流入电机绕组,经V W 相流入负极。下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。 为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线 上,通过放电电阻释放掉。 变频器主电路引出端子

基于PLC的变频调速系统设计

目录 第 1 章绪论 (1) 1.1 PLC (可编程序控制器)概述 (1) 1.2 PLC 特点 (1) 第2章VFO 变频器介绍 (3) 2.1 松下变频器VF0 系列简介 (3) 2.2 设定变频器模式 (3) 2.3 变频器的控制方式 (4) 2.3.1 U/f=C 的正弦脉宽调制(SPWM控制方式 (4) 232 电压空间矢量(SVPWM控制方式 (4) 233 矢量控制(VQ方式 (5) 2.3.4 直接转矩控制(DTC方式 (5) 2.3.5 矩阵式交—交控制方式 (5) 2.4欧姆龙CP1H勺特点及功能简介 (6) 2.4.1 欧姆龙CP1H功能简介 (6) 2.4.2 欧姆龙功能简介 (7) 2.5 变频器接线 (7) 2.5.1 主回路接线 (7) 2.5.2 控制回路接线 (8) 2.5.3 接线注意事项 (8) 第 3 章电机介绍 (9) 3.1 电机的规格指标参数 (9) 3.2 电动机的工作原理 (10) 3.3 电动机的接线 (10) 3.4 PLC 、变频器、电机三者的运行关系 (10) 第 4 章PLC 变频调速系统的设计与调试 (11) 4.1 系统设计程序 (11) 4.2 接线图 (12) 4.3 程序调试 (12) 第 5 章课程总结 (14) 参考文献 (15)

第1章绪论 1.1 PLC (可编程序控制器)概述 PLC(可编程控制器)应用广泛,其CPU功能较强,可靠性高,但在输入输出I/O方面,PLC存在价格过高,扩展模块不隔离,输入信号还要进行编程运算来完成采集,品牌繁多,互不兼容,用户使用起来不方便等缺点。其在工业现场因其编程方便,抗干扰能力强,获得了广泛的应用。但受到内部硬件电路的限制,在运算速度、数据处理能力等方面和PC机相比,要逊色很多。因此在工业现场对复杂模型进行控制时,可以借助上位机PC来建立生产模型,通过构建SCC监督式控制系统,让下位机PC为一DCC直接数字控制系统,实现复杂系统的控制。另外,还可通过上位机PC和下位机PC组建监控系统,达到对工业现场实时监控的目的。其中关键技术为PC机和PC之间的通讯。本文首先介绍PC机与PLC的通讯种类和机制,然后就采用高级语言VB和组态软件MCGS对完成以上二者通讯。 PC机和PLC有两种通讯方式,一种是PC机作主动者,即主局,PLC为从动者,即子局。另一种是PLC为主局,而PC机为子局。无论工作在哪种方式,数据一般都采用串行方式来传输,即可通过RS232 RE422或RS485电缆线来进行信息传递。 在进行通讯时,首先将PC机和PLC传递信息的波特率设置一致。另外还要对奇偶校验位、传输数据位数和停止位进行设置。在PC机和PLC进行通讯时,要使用命令帧和响应帧的形式来进行信息传递。 每次通信送出的一组数据称作“帧”。帧可以从持有发送权的一方传出。每送出一帧,上位机或PLC就将发送权交给另一方。当接收方收到终端(命令或响应的终字符)或分界符(分割帧的字符)信息后,就将发送权转到另一方。 1.2 PLC特点 PLC是面向用户的专用工业控制计算机,具有许多明显的特点 1. 可靠性高,抗干扰能力强 为了限制故障的发生或者在发生故障时,能很快查出故障发生点,并将故障限制在局部,采取了多种措施,使PC除了本身具有较强的自诊断能力,能及时给出出错信息,停止运

交流异步电动机变频调速系统设计

湖南工程学院应用技术学院毕业设计说明书 目:题 专业班级:号:学学生姓名: 完成日期: 指导教师: 评阅教师:

2011 年 6 月

院术学学院应用技湖南工程务任书(论文)毕业设计 设计(论文)题目:交流异步电机的调速控制系统设计 姓名专业班级学号 指导老师职称教研室主任 一、基本任务及要求: 主要设计完成可控硅交流调压调速系统的设计,主要完成: (1)交流调压调速的原理和调压调速的静、动态性能分析; (2)系统组成与工作原理; (3)主电路与控制电路设计; (4)元器件选型及参数计算; (5)软件设计; (6)系统应用与调试说明。 二、进度安排及完成时间: (1)第一至第三周:查阅资料,撰写文献综述和开题报告。 (2)第四周至第五周:毕业实习。 (3)第六周至第七周:交流调压调速的原理和调压调速的静、动态性能分析。 (4)第八周至第九周:系统组成与工作原理;主电路与控制电路设计。

(5)第十周至第十二周:元器件选型及参数计算;软件设计;系统应用与调试说明。 (6)第十三周至第十五周:撰写毕业设计论文。 (7)第十六周:毕业设计答辩 目录 摘 要 .................................................................. .... I ABSTRACT ............................................................ ..... II 第1章绪 论 (1) 1.1 变频调速技术简介 ................................................. 1 1.2 变频器的发展现状和趋 势 (2) 1.2.1 变频器的发展现状 ............................................. 2 1.2.2 变频器技术的发展趋势 ......................................... 2 1.2 研究的目的与意义 ................................................. 3 1.3 本次设计方案简 介 (4) 1.3.1 变频器主电路方案的选定 ....................................... 4 1.3.2 系统原理框图及各部分简介 ..................................... 5 1.3.3 选用电动机原始参数 ........................................... 6 第2章交流异步电动机变频调速原理及方 法 (7)

变频器原理与维修

变频器原理与维修 一、变频器原理介绍 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装臵。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。 整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM 波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型; 如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。 对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装臵时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加 二、变频器常见故障的分析与处理 1 变频器参数设臵类故障 在使用过程中变频器能否满足用户系统的要求,其参数设臵非常重要,如果参数设臵不

正确,变频器便不能正常工作。 1.1 变频器的参数设臵 生产厂在进行变频器出厂调试时,对变频器的每一个参数都设有一个默认值,这些默认参数值一般被称作工厂值。当用户使用的变频器是在这些参数值下工作时,则用户能以面板操作方式使变频器正常运行。但是,实际情况往往是面板操作并不能完全满足大多数用户传动系统的要求。所以,用户在正确使用变频器之前,必须要对变频器参数的默认值进行如下几个方面的辨识和重新设臵: 1)确认电机的功率、电流、电压、转速、最大频率等参数(这些参数可以从电机铭牌中查得)是否与默认值相符,如果不符时则要对默认值进行重新设臵; 2)确认变频器采取的控制方式(即速度控制、转矩控制、PID 控制或其他控制方式)后,一般还需要根据控制精度进行静态或动态辨识; 3)设定变频器的启动方式,一般变频器在出厂调试时设定为面板启动,用户可以根据实际情况选择自己的启动方式,可以用面板、外部端子、通讯等方式; 4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定等,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式的综和。 当正确设臵以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 1.2 变频器参数设臵类故障的处理 一旦发生了参数设臵类故障时,变频器都不能正常运行,这时可根据产品说明书对参数设臵进行修改。如果修改后仍不行,则最好是把所有参数恢复到出厂值,然后按上述步骤重新设臵,注意每一个公司的变频器其参数恢复方式也不尽相同。 2 过电压故障及处理

变频器原理图讲解

系列原理图简介 一.机型简介 整个30X系列包括以下几个类型,同功率的机型在硬件上的区别就是控制板的功能上有优化,驱动板都是相同的。不同功率段的硬件设计模式上,15KW以下包括15KW采取驱动板带整流桥+单管IGBT+DSP板的模式,30KW~45KW采用可控硅+驱动板45DRV不带整流部分+IGNT模块+DSP板的模式,55KW~75KW 采用可控硅+驱动板55POWER不带整流部分+55DRV+IGNT模块+DSP板的模式,90KW以上的结构和55KW不同之处在于55DRV不同。 二.系统框图 三.4KW驱动板 驱动板按功率段分,15KW以下的驱动板模式和18.5KW以上驱动板模式。这里主要以4KW小功率机型和45KW大功率机型为例讲解。先以4KW为例进行介绍。 驱动板主要包括整流滤波+软启动+开关电源+电源指示灯+UVW电流检测 +PWM光耦隔离+电平转换+故障保护电路+母线电压检测,下面分别介绍: 3.1软启动+母线电压检测 左图母线电压检测是变压器副边输出经过电阻分压后Udc信号给DSP,标准是母线电压为530V时Udc=1.50v;右图为软启动电路,刚通电瞬间电容相当于短路,母线电流很大,通过电阻R92限流来消耗能量,到电容充好电后通过继电器将R92短路,这里设定的是母线电压为400V继电器动作.右图中还有电源指示灯电路通过电阻分压方式设计. 3.2开关电源 单端反激式开关电源由反激式变压器+UC3844电源控制芯片+MOS管,单端反激工作原理: MOS管导通,母线电压加在变压器原边线圈,副边线圈为上负下正,二极管反向,副边绕组没有电流;MOS管截止,副边线圈为上正下负,绕组中储存的能量向负载释放.根据IN=I'N',在MOS管导通期间储存的能量在截止期间有多少释放,取决于截止时间. UC3844电源管理器主要是控制MOS管的脉冲占空比,根据IF,VF,+15V三个反馈信号调整输出脉冲占空比,IF>1v,VF>15V,+15V>15V,三种情况下都会自动调节.标准是+15V误差为±0.02V; 电感的作用,滤除占波开关电流中的脉动成份。从滤波效果看,电感量越大,效果越明显;但电感过大,会使滤波器的电磁时间常数变大,使输出电压对占空

电力电子变频调速系统设计

机电高等专科学校 课程设计报告书 课程名称:电力电子应用技术 课题名称:交直交变频调速系统 系别:自动控制系 班级:计控111班 姓名:闪雷

学号:111413108 2013年6月26日 目录 一、绪论 (1) 二、电气原理图 (1) 1、主电路图 (1) 2、控制电路图 (2) 三、关键点波形图 (2) 四、变频调速系统原理 (4) 1、主电路原理 (4) 2、控制电路原理 (7) 五、实验现象 (8) 六、故障分析 (8) 七、心得体会 (8)

八、参考文献 (9)

一、绪论 20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速围、高的稳速围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优势,由于变频器在启动过程中,输出频率由0Hz平滑地逐渐上升,电压从0V按比例上升到额定电压,电机无任何启动冲击,避免了由于电机启动产生的大电流对电机、电网、电气元件及所拖动机械设备的冲击和损坏。变频器在停止过程中,输出频率由运行频率平滑地逐渐下降到0Hz,电压从运行电压按比例逐渐到0V,实现了电动机软停止。变频启动可防止运输机械类载重物体受冲击和翻滚,提高传动设备的使用寿命。无级调速,自动化程度高,可实现无人管理。节能效果明显。保护功能完善,减少设备维修、故障。并且变频调速的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节电效果明显,而且易于实现过程自动化,深受工业行业的青睐。 交流异步电动机的调速方式有多种,诸如调压调速、变级调速、串级调速、滑差调速等,而变频调速优于上述任何一种调速方式,是当今国际上广泛采用的效益高、性能好、应用广的新技术。它采用微机控制、电力电子技术及电机传动技术取得工业交流异步电机的无级调速功能。目前在国外已广泛应用,是自动化电力传动的发展方向。 二、电气原理图 1、主电路图

相关文档
最新文档