2010-2014 年上海市某区管网末梢水质监测结果分析

2010-2014 年上海市某区管网末梢水质监测结果分析
2010-2014 年上海市某区管网末梢水质监测结果分析

水质全分析报告单

共附6页第1页 湖南省城市供水水质监测网郴州监测站 送检单位 郴州市自来水有限责任公司 样品类型 地表水、生活饮用水 采样环境 天气: 晴 气温:28 0C 受样日期 2013年 6 月 3日 报告日期 2013年 6月 10日 执行标准 GB3838—2002、GB5749—2006 检验项数 共35项 样品名称 检测结果 项 目 检测方法 单位 万华水厂源水 东江水厂源水 山河水厂源水 仙岭水厂出厂水 菁华园出厂水 万华水厂出厂水 海泉水厂出厂水 1 色度 铂—钴标准比色法 度 5 <5 <5 <5 <5 <5 <5 2 浑浊度 福尔马肼标准-散射光浊度 法 NTU 2.3 1.9 1.2 1.0 0.9 0.9 0.8 3 臭和味 嗅气和尝味法 级 0 0 0 0 0 0 0 4 肉眼可见物 现场观察 描述 无 无 无 无 无 无 无 5 pH 值 玻璃电极法 pH 单位 8.09 8.09 8.20 7.76 7.80 7.81 7.76 6 总硬度 乙二胺四乙酸二纳滴定法 mg/L 130 50 28 150 124 128 210 7 铁 火焰原子吸收分光光度法 mg/L <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 8 锰 火焰原子吸收分光光度法 mg/L <0.008 <0.008 <0.008 <0.008 <0.008 <0.008 <0.008 9 铜 火焰原子吸收分光光度法 mg/L <0.005 <0.005 <0.005 <0.005 <0.005 0.160 <0.005 10 锌 火焰原子吸收分光光度法 mg/L <0.003 0.022 0.176 <0.003 <0.003 <0.003 <0.003 11 挥发酚 4—氨基安替比林分光光度 法 mg/L <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 12 阴离子合成洗涤剂 亚甲蓝分光光度法 mg/L <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 13 硫酸盐 铬酸钡分光光度法 mg/L 13.4 8.4 16.7 22.8 13.9 6.2 41.6 14 氯化物 硝酸银容量法 mg/L 3.0 6.5 1.5 5.0 2.0 2.0 5.0 15 溶解性总固体 称量法 mg/L 163 68 68 181 166 168 285 16 氟化物 氟试剂分光光度法 mg/L 0.312 0.297 0.282 0.302 0.292 0.297 0.337 17 氰化物 异烟酸—吡唑酮分光光度法 mg/L <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 18 砷 氢化物原子荧光分光光度法 μg/L <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 19 硒 氢化物原子荧光分光光度法 μg/L 0.48 0.34 0.47 0.45 0.33 0.46 0.53 20 汞 氢化物原子荧光分光光度法 μg/L <0.025 <0.025 <0.025 0.030 0.030 0.056 0.051

水质在线监测系统管理规定

水质在线监测系统管理 规定 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

水质在线监测系统管理制度 一、保证在线监测系统正常稳定的运行,获取最多的有效数据和信息 二、保持公正、公平、公开的态度和坚持科学的原则,提供优质、热情、高 效的服务 三、热情、礼貌地应对咨询和提问,并耐心、细致地作出答复,当场不能作 出答复的,应做好详细的书面记录,便于之后解答 四、对在线监测系统获得的监测数据、统计报告、图表等与污水处理单位有 关的重要资料,必须严格保密,未经许可,不准向其他第三方机构提供 五、佩戴相应的有效证件,依法监测。并做好衣冠整齐,仪容整洁 六、坚持实事求是、秉公执法,绝不允许有玩忽职守、滥用职权、徇私舞弊 的思想和言行 七、在线监测子站房内配备各种必要的安全设施(通风、恒温、恒湿、消防 等设施),并定期检查,保证随时可以使用 八、各种仪器、器皿、工具、试剂、手册等应放在规定的场所,以提高工作 效率和避免错拿错用,造成安全等事故 九、操作和使用各种仪器设备及配置各种化学试剂,必须严格遵守安全使用 规则和操作规程,并认真填写使用状况和操作记录 十、使用易燃易爆、腐蚀、有毒试剂时,必须严格遵守相关规程进行操作。 不得在现场留存大量易燃易爆、腐蚀、有毒试剂。不得在子站房内吸烟、喧哗、饮食等。 十一、配置试剂或清洗器皿的废液,以及在线监测仪器排放的废液,必要时要先经过适当的转化等处理后,再行排放 十二、使用点、气、水、火时,应按有关规定进行操作,保证安全 十三、发生意外事故,根据事故种类,必要时应迅速切断电源、水源、火源,应立即采取有效措施,及时处理,并报告上级领导 十四、妥善保管好消防器材及其他安全防范、处理、急救用品,不得随意挪用。掌握相关安全用品的使用和维护技术,防范于未然 十五、下班或离开监测站房时,应检查门、窗、水、电、气的开关情况,取保安全,不得大意

2017年水质监测行业深度分析报告

2017年水质监测行业深 度分析报告 (此文档为word格式,可任意修改编辑!) 2017年8月 正文目录 1、政策利好叠加治水需求,水质监测最受益 (4) 1.1、水质监测:环境监测第二大市场,“十三五”最受益 (4) 1.2、上收监测事权,发展监测市场,第三方运维市场爆发 (7)

1.3、监测因子不断增加,市场急遽扩容 (8) 1.4:《水环境监测规范(2013)》 (9) 2、地表水监测爆发,第三方运维崛起 (10) 2.1、污染源监测:建设+运营市场空间有望达到43亿元 (11) 2.2、地表水监测:最大细分市场,2020年市场空间近百亿 (12) 2.3、地下水监测:31亿运维市场待释放 (16) 2.4、总结:地表水监测最看好,第三方运维提振行业增速 (18) 3、裂变:“河长制”释放需求,新模式下诞生龙头 (19) 3.1、行业集中度高,龙头市场份额缓慢提升 (19) 3.2、全面推行“河长制”,需求端迎来质变 (23) 3.3、第三方运维颠覆行业生态,提高行业竞争门槛 (24) 4、行业趋势:向环境治理延伸,向智慧环保发展 (27) 4.1、以环境监测为入口,切入环境治理市场 (27) 4.2、结合互联网,迈入“智慧环保”时代 (28) 5、投资建议:重点推荐理工环科、聚光科技、盈峰环境 (30) 5.1、理工环科:台州模式具备颠覆性,打造监测行业新龙头 (30) 5.2、聚光科技:做实环境监测主业,拓展下游环境治理领域 (32) 5.3、盈峰环境:立足监测,打造环境大平台 (33) 6、风险提示 (34) 图目录 图2、2008~2015年我国水质监测设备销售数量 (4) (5) 图3、水质监测是环境监测第二大市场 (5) 图4、我国环境监测产品年销售收入与增长率 (10) 图5、环境监测专用仪器仪表制造业营业收入情况 (11) 图6、我国环境污染源监测企业数量情况 (12) 图7、我国地表水水质监测点位数量情况 (13)

水质检测结果报告

广东水利电力职业技术学院水质检测 报告书 班级:10给排水2班 姓名:陈信武 学号:03号 小组:第二组 审核人:夏宏生老师、张工程师 报告日期:2012年6月22 日

检测报告

附:地表水环境质量标准基本项目标准限值单位:mg/L

各指标检测原理 (1)碱度 采用中和法。在水样中加入适当的指示剂,再用标准酸溶液滴定,当达到一定的PH 值,指示剂颜色就发生改变,从而判断滴定终点。以此分别测出水样中所含的各种碱度。 (2)氯化物 采用沉淀滴定法—银量法。 在中性至弱碱性范围内(PH6.5~10.5),以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀出来后,然后铬酸盐以铬酸银的形式被沉淀,产生砖红色,指示滴定终点到达。该沉淀滴定的反应如下:Ag+ + Cl- →AgCl↓ 2 Ag+ + CrO42- →Ag2 CrO4 ↓(砖红色) (3)COD 在水样中加入已知量的铬酸钾溶液,并在强酸介质下以银盐作为催化剂,经消解后,以试亚铁灵为指示剂用硫酸亚铁铵滴定水样中未被还原的重铬酸钾。由消耗的硫酸亚铁铵的量换算成消耗氧的质量浓度。 (4)总磷 中性条件下,过硫酸钾溶液经加热消解产生反应,将水中的有机磷、无机磷、悬浮物内的磷氧化为正磷酸。在酸性介质中,正磷酸与钼酸铵反应。在锑盐存在下生成磷钼杂多酸,立即被看坏血酸还原,生成蓝色的络合物,在700nm波长下有最大吸收度。 (5)pH值(玻璃电极法) pH值由测量电池的电动势而得。该电池通常由饱和甘汞电极作参比电极,用经PH 标准缓冲液校准好的pH计(酸度计)直接测定水样的pH值 (6)高锰酸盐指数 高锰酸盐指数是在规定条件下,水中有机物被高锰酸钾氧化所需的氧量。酸性条件下,水样加入过量已标定的高锰酸钾水溶液,沸水浴反应30分钟,取下趁热加入过量草酸钠,与剩余的高锰酸钾反应,紫红色消失,用高锰酸钾回滴过量的草酸钠,滴定至淡粉色,0.5分钟内不消失。通过计算得出水样中耗氧量。 (7)DO 采用碘量法。水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化为高价锰,生成四价锰的氢氧化物棕色沉淀。加酸后,氢氧化物棕色沉淀溶解并与碘离子反应而释

燃气管理信息系统(MIS)

摘要燃气公司新建成的管理信息系统(MIS),一般综合了燃气输配、营销服务和管理的主要业务,它是建立在管理与信息技术基础上的信息化统一管理平台。本文通过介绍燃气公司MIS的主要内容、功能以及特点,说明了燃气公司建设MIS的必要性,最后阐述了系统建设的体会和建设中的关键问题。 关键词:燃气公司系统管理信息化网络 1引言 随着城市天然气和煤气需求快速增长,以及供气服务质量要求不断提高,供气企业必须提高自身的技术和管理水平才能适应新形势及获取更好的效益。采用建立在信息技术基础上综合的管理信息系统作为手段,用于提高管理水平已经是公认的发展趋势。早在九十年代初期就有少数供气企业采用了计算机参与管理,但是那个时候的计算机只是做一些简单计算、原始的列表打印等工作。九十年代后期开始了针对业务项目的专项管理,有了燃气收费管理、生产报表、调度管理、人事管理、计划统计、工程管理、办公自动化、设备管理等各种独立业务的管理信息系统,这些管理应用软件一般是建立在单台计算机上的,尽管如此,在这些业务领域中简化了大量繁琐的操作,管理水平得到了相应提高[1]。二十一世纪出现的SOA构架体系的思想和信息技术的快速发展,城市高速数据通信网络的大量兴建,建立在网络平台上的应用软件开发应用给燃气公司综合管理信息系统的建立提供了有力支持。此时,企业综合管理信息系统的建设有了良好的环境条件,大好的机遇是供气企业发展管理信息化的极佳时机。燃气公司的燃气管理信息化工作一般经历了以上三个步骤发展,建成燃气公司生产经营一体化管理信息系统,实现信息的准确高效传递和共享,辅助领导决策。

|博锐|39 2.1系统网络平台 燃气公司其营业网点、管线公司、输配公司、燃气站分布比较广泛,通过VPN网络的建设,能将各个信息孤岛连接到一个广域网络平台上,形成公司虚拟局域网络系统[1]。详见图1。 2.2系统软件平台 大多数公司服务器操作系统采用Windows 2003 server或者其他系统,IIS6.0;开发工具采用.net系列;数据库采用Oracle 9i;客户端操作系统采用Windows xp sp2或者Windows 2000 sp4,IIS5.5;网络版杀毒软件;备份软件为Veritas windows server 9.i(中文)或其他主流产品;地下管线系统采用主流的GIS软件平台做第二次开发。 2.3系统硬件平台 以20万用户规模的燃气公司为例,采用2台Dell 6850做双机热备份数据库服务器(主要是营销数据以及办公自动化数据)、1台DELL PV122T 磁带机做备份、1台DELL PV220S 磁盘整列柜、1台Dell 6850作为地下管网运行数据库服务器、1台Dell 6850作为生产输配数据库服务器、1台Dell 2850作为域控及备份服务器、1台Dell 2850作为Web服务器、1台Dell 2850网络安全及邮件服务器。网络平台配置了Cisco Catalyst 5000、3550交换机设备以及

水质监测常用概念监测数据的五性 (2)

水质监测常用概念(1) 一、监测数据的五性 从质量保证和质量控制的角度出发,为了使监测数据能够准确地反映水环境质量的现状,预测污染的发展趋势,要求环境监测数据具有代表性、准确性、精密性、可比性和完整性。环境监测结果的“五性”反映了对监测工作的质量要求。 1.代表性(representataion) 代表性是指在具有代表性的时间、地点,并按规定的采样要求采集有效样品。所采集的样品必须能反映水质总体的真实状况,监测数据能真实代表某污染物在水中的存在状态和水质状况。 任何污染物在水中的分布不可能是十分均匀的,因此要使监测数据如实反映环境质量 现状和污染源的排放情况,必须充分考虑到所测污染物的时空分布。首先要优化布设采样点位,使所采集的水样具有代表性。 2.准确性(accuracy) 准确性指测定值与真实值的符合程度,监测数据的准确性受从试样的现场固定、保存、传输,到实验室分析等环节影响。一般以监测数据的准确度来表征。 准确度常用以度量一个特定分析程序所获得的分析结果(单次测定值或重复测定值的 均值)与假定的或公认的真值之间的符合程度。一个分析方法或分析系统的准确度是反映 该方法或该测量系统存在的系统误差或随机误差的综合指标,它决定着这个分析结果的可靠性。

准确度用绝对误差或相对误差表示。 准确度的评价方法: 可用测量标准样品或以标准样品做回收率测定的办法评价分析方法和测量系统的准确 度。 (1)标准样品分析 通过分析标准样品,由所得结果了解分析的准确度。 (2)回收率测定 在样品中加入一定量标准物质测其回收率,这是目前实验室中常用的确定准确度的方 法,从多次回收试验的结果中,还可以发现方法的系统误差。 按下式计算回收率P: 回收率p(%)=(加标试样测定值-试样测定值)/加标量×100% (3)不同方法的比较 通常认为,不同原理的分析方法具有相同的不准确性的可能性极小,当对同一样品用 不同原理的分析方法测定,并获得一致的测定结果时,可将其作为真值的最佳估计。 当用不同分析方法对同一样品进行重复测定时,若所得结果一致,或经统计检验表明 其差异不显着时,则可认为这些方法都具有较好的准确度,若所得结果呈现显着性差异,则应以被公认的可靠方法为准。 3.精密性(precision) 精密性和准确性是监测分析结果的固有属性,必须按照所用方法的特性使之正确实现。

排水管网水质监测方案

排水管网水质监测系统解决方案 系统概述 排水管网水质监测系统主要在雨污水管道以及排水河道的关键节点布设水质监测设备,实时掌握城市排水管网水质情况,水质监测数据传输到管网水质监测系统平台及各个应用系统中实现对管网水质监测、预警,通过系统建设,实现了实时水质监测,能精准快速定位水质问题;系统适用于黑臭水体、排水管网、河道水等水环境应用场景。 系统架构 1、感知层 感知层的设备通过传感网络获取感知信息。感知层是物联网的核心,是信息采集的关键部分。 2、网络层 网络层是数据通信的核心,是数据传输的主要通道,网络层主要采用无线传输和以太网通信。 3、通信服务层 通信服务层由物联网设备管理平台组成,实现数据的汇集与管理,为水质监测系统平台及

其他应用平台提供专业、便捷的数据接口服务。 4、应用层 应用层为排水管网水质监测系统平台及第三方应用平台,为排水管理部门、管线权属单位等相关部门提供数据展示、决策分析等信息服务。 系统功能 1、实时监测 实时监测水质点位的环境状态,根据预先设定报警规则,对排水管网、河道的水质指标超阈值等异常情况进行实时告警监测。 2、GIS一张图 在电子地图上显示监测点位、基本信息、实时状态等,也可以通过文本形式展示监测位置、基本信息、实时状态、历史状态记录等信息。 3、调度管理 掌握水质监测点运行状况,当排水管网、河道水质发生异常状况时,系统自动进行事故分析,高效协调相关部门的协同工作。 4、大数据分析 对大量的水质数据进行重组、汇总及对比分析,对水质污染问题进行定位,为水质问题追溯提供依据。 系统特点 1、监测范围广 从“源头-过程-收纳体”进行全过程的水质进行监测,保障排水管网正常运行。 2、检测指标多 管网、排口、河道、黑臭水体均进行不同指标、不同检测原理进行水质监测、分析。 3、选型多样化

饮水安全工程水质监测结果分析

饮水安全工程水质监测结果分析 1.1对象 在云南省16个州(市)选择100个县(市、区)的1067个农村饮水安全 工程实行基本情况调查,并在枯水期和丰水期分别采集出厂水和末梢水,对18个指标实行监测。监测范围涵盖了云南省77.5%的县(市、区),不同水处理方式和不同水源类型的供水工程。 1.2.1基本情况调查 根据《国家农村饮水安全工程水质卫生监测方案》要求,采用国家统 一的调查表,对工程所在地、水源类型、供水方式、供水覆盖人口、 消毒方式实行调查。 按照《生活饮用水标准检验方法》(GB/T5750–2006)中水样采集与保 存的相关规定实行。 1.2.3检验方法 按照《生活饮用水标准检验方法》(GB/T5750–2006)中相关的检验方 法实行。 1.2.4水质检测指标 色度、浑浊度、铁、锰、pH值、肉眼可见物、溶解性总固体、臭和味、总硬度、氟化物、硝酸盐氮、砷、耗氧量、氨氮、硫酸盐、氯化物、 总大肠菌群、细菌总数,共18个指标。 1.2.5水质卫生评价 按照《生活饮用水卫生标准》(GB5749–2006),在检测的18个项目 中有1项不合格,则该水样判为不合格。 1.3质量控制

调查、水样采集和检测由县级疾控中心专业人员承担,并经统一培训。参加检测的实验室均通过省级计量认证,实验室所用仪器设备经检定 并在有效期内,检测的每批样本均带平行质控样,对检测结果过高或 过低的样本实行复检,两次检测数据的误差在允许值内,保证数据真 实可靠。 2结果 2.1基本情况调查 2.1.1供水处理方式和人口覆盖情况 本次共调查云南省16个州(市)、100个县(市、区)、1067个农村安 全饮水工程的基本情况,工程覆盖533.54万人。其中经过滤沉淀和消 毒处理(以下简称完全处理)的工程153个,占14.34%(153/1067),覆 盖365.11万人,占68.43%(361.11/533.54);沉淀过滤的工程332个,占31.11%(332/1067),覆盖65.37万人,占12.25%(65.37/533.54); 仅消毒的工程78个,占7.31%(78/1067),覆盖37.63万人,占 7.05%(37.63/533.54);无处理设施的工程504个,占 47.24%(504/1067),覆盖65.43万人,占12.26%(65.43/533.54)。 2.1.2水源类型和人口覆盖情况 以地面水为水源的工程占62.79%;以地下水为水源的工程占37.21%。 饮用以地面水为水源的人占75.32%。饮用以地下水为水源的人占 24.68%。 2.2水质检测结果 2.2.1总体情况 2013年共检测水样4268份,合格1253份,合格率为29.36%。其中 出厂水枯水期检测1067份,合格396份,合格率为37.11%;出厂水丰 水期检测1067份,合格245份,合格率为22.96%;末梢水枯水期检测1067份,合格377份,合格率为35.33%;末梢水丰水期检测1067份,

城市燃气管网GIS系统

城市燃气管网GIS系统 城市燃气GIS系统解决方案 (成都方位导向科技开发有限公司) 公司自主研发,利用GIS技术,FLEX富客户表现技术,空间数据库,采用B/S 开发,java 跨平台部署,实现城市燃气高压管线、低压管线、阀们、外业工程车辆的调度安排、作业管理、应急指挥等纳入到信息化的管理当中。一方面,通过本系统的事务处理的能力对阀门,管线报警预警并同时进行工程车辆出警调度管理,另一方面,通过本系统的智能化处理技术,将管线采集作业情况实现智能化采集入库。提高管线采集作业管理。 系统总体架构 系统总体架构是以面向对象(OOP)的设计为基础,以面向服务(SOA)的设计为应用扩展,系统主要采用Browser - Server(B/S)表现形式。系统服务端是基于J2EE技术标准规范下进行开发的,有着良好的安全性、扩展性以及跨平台的适应能力,GIS服务平台采用本公司自己的一套解决方案MAPHAOSERVER进行应用开发,MAPHAOSER企业级GIS平台跨平台部署,支持发布WMS\WFS地图服务,支持shp\tab\dwg\dgn\等目前国内外GIS各种矢量数据以及光栅图的发布;支持缓冲区分析、叠加分析、路径分析、网络分析等各种空间分析算法;支持浏览器端直接绘制点、线、面矢量数据入库。数据库选用PostgreSQL。

系统维护管理端应用环境 服务端:可在windows或者linux的服务器上部署系统,维护简单。客户端:终端用户只需要浏览器即可访问,支持各种主流浏览器。 系统主界 面 系统功能简介 1.阀门管理 ①.能查询到所有的阀门列表,并以表格形式展示。

②.能根据阀门的各种参数模糊查询阀门。 ③.查询到的阀门,点击定位后,能在地图上定位该阀门。 ④.在表格中能删除选定阀门。 ⑤.在表格中能修改选定阀门。 ⑥.可以直接在地图上绘制点并输入阀门其他参数添加阀门。

水质监测报告讲解

水质监测报告姓名:李紫 学号:2013021181 班级:13级化学班

目录 1、白龙潭简介 2、水质监测的意义 3、监测的对象及目的 4、水样的采集及保存 5、水质指标测定 5.1流速 5.2电导率 5.3 PH值 5.4总碱度 6、心得体会 7、参考文献 取样地:白龙潭 采样日期:2016年3月20日 小组成员:李运美、姬翠玲、马露楠、向艳、杨琪、李紫、周茂杰、万志焕、赵敏

一、白龙潭简介 1、地理位置:位于玉溪市东北的龙马山下,距州城约10公里。 2、水文、气候、地质和地貌 水文:水体自身清澈、清凉 气候:玉溪气候温和,年平均气温在16℃左右,年内温度变化不大,一般最热月与最冷月的月平均温差在10度之间,以春秋气候为主,冬夏短而春秋长。这里夏季不热,6-8月的月平均温度不过20-21℃,极端最高气温不超过32℃;冬季不冷,最冷的12月和1月份的平均温度也在9℃左右。玉溪的降雨不多,年平均降雨量约800-950毫米,雨日130-150天,光照条件较好,年平均日照时数有2100-2300小时。 地质、地貌:玉溪地处低纬高原,属中亚热带湿润季风气候,境内山脉纵横,河湖众多,山地、峡谷、湖泊、盆地相间,海拔高差悬殊,地貌极其复杂。而白龙潭地处龙马山下,是山地。3、周围居民分布情况以及污染情况 因其地处州城外约10公里外,比较偏远,周围有少数居民,周围没有污染。 二、水质监测的意义 1、可为确定水质标准提供数据,具有法律意义; 2、判别水质情况,预报水质的污染趋势;

3、为不同用途的用水提供水源; 4、为环境科学研究提供数据(建立模型和数据推导); 5、可鉴定生产工艺和净化设备的效益(经济效益、环境效益)。 三、监测的对象及目的 1、水质监测对象 此次我们监测的是地处州城外约10公里的白龙潭,在龙马山下,且周围并没有工厂等污染源,我们取的是出水处。 2、质监测目的 一般而言,经常性监测地表水及地下水是为了评价环境质量监测;监视性监测生产和生活过程排放的水是为了使其达标排放;应急监测之事故监测是为了采取应急治理方案;为环境管理——提供数据和资料;为环境科学研究——提供数据和资料。 这次的水体监测目的,一方面是环境监测课程的要求,是对我们平时监测理论知识掌握的考核,加强我们自主实验动手的能力;另一方面,有助于巩固我们对环境监测一般工作程序的理解,尤其是对水质监测方案的掌握。 四、水样的采集及保存 1、采集前的准备 ⑴、选择盛水容器和采样器对采样器具的材质要求:化学性能稳定,大小和形状适宜;不吸附待测组分;容易清洗并可反复使用,采样前要清洗干净。聚乙烯塑料容器用于测定金属、放射性元素及其他无机物的监测项目,玻璃容器用于测定有机物和生物

水质检测报告

公司Qianxinan Huaka Detection CO.,LTD 检测报告 报告编号: 项目名称: 项目地址: 委托单位: 报告日期:

声明 1、本报告只适用于检测目的范围。 2、本报告仅对来样或采样分析结果负责。 3、本报告涂改无效。 4、本报告无编写、复核、审核、签发人签字无效。 5、本报告无本公司检验检测专用章、骑缝章及章无效。 6、未经本公司书面批准,不得部分复制本报告。 7、本检测结果仅代表检测时委托方提供的工况条件下项目测值。

项目名称: 编写: 复核: 审核: 签发: 签发日期:2018年04月11日 本公司通讯资料: 联系地址: 邮政编码: 联系电话: 传真: 电子邮件(Email):

水质监测 检测报告 一、检测目的 二、检测内容 检测内容详见表2.1。 表2.1 检测内容

三、质量保证 1、执行《环境监测质量管理技术导则》(GB12348-2008),检测分析的质量保证和质量控制严格按国家有关规定及监测技术规范和环境监测质量控制手册进行。 2、检测分析仪器均采用经计量检定部门检定合格的仪器。 3、检测人员持证上岗。 4、检测采样记录及分析测试结果按监测技术规范有关要求进行数据处理和填报,进行三级审核,确保检测数据的有效性。 四、质控手段 1、样品检测均按照相关规定进行空白实验、加标回收率、质控样跟踪。 2、质控样品测定结果详见表 4.1。 表4.1 质控样品测定结果 五、检测结果 样品类型:地表水 5.1地表水的样品信息详见表5. 1。

表5.1地表水的样品信息 接样日期:2018年04月05日来样编号: 5.2地表水的检测结果详见表5.2。 ————报告结束————

燃气管网信息系统建设中的GIS应用

燃气管网信息系统建设中的GIS应用 GIS技术是将地理科学作为基础,通过计算机技术形成地理空间数据库,还可以实时模拟不同地区的实际地理状况,在军事和航空等多个领域有较为广泛的应用。随着城市化的持续深入,城市燃气管网也朝着现代化和自动化的趋势发展,应用了大量信息技术,GIS技术也不例外。在城市燃气管网的管理中,GIS技术具有较强的应用价值,可以提高管理的效率,保障城市燃气管网的安全运行。接下来,就燃气管网信息系统建设中的GIS应用展开论述。 标签:燃气管网;信息系统;GIS应用 引言 就其本质方面而言,地理科学是GIS技术的基础,而计算机技术对于地理空间数据库的形成十分有益。它能够对不同区域当中具体地理情况进行实时模拟,被广泛应用于航空和军事等方面。在城市化进程不断加快的背景下,城市燃气管网的设计、运行、管理模式逐渐向自动化和现代化的方向发展,其中包括GIS技术在内的信息技术被广泛应用。GIS技术应用于城市燃气管网的管理工作当中,其价值较高,能够从根本上将燃气管网的管理效率提升上来,进而有效确保城市燃气管网运行的稳定和安全。 1 GIS技术概述 GIS是指地理信息系统,主要是应用计算机技术,进行空间数据信息的采集、编辑以及存储,还能够进行空间的显示。GAS将数据库和图形管理系统进行有机结合,将两者的优势集于一体。GIS技术最早应用于测绘和资源环境管理等领域,然后又拓展到城市规划以及土地管理等多个领域。GIS在我国地下管线系统管理中的应用最早是在80年代中期,一線城市开始将GIS技术应用于自来水管网以及燃气管网管理中,有效提高了城市地下管网的管理效果,为有关部门的决策提供了可靠的参考依据,实现了城市的现代化管理。 2在城市燃气管网系统建设工作运用GIS技术的必要性 有效应用GIS技术在一定程度上促进了城市燃气管网的建设。其一,在具体情况中,铺设燃气管网工作要求提前规划好,但GIS系统可以将城区建设的具体情况提供给燃气管道的规划设计人员作参考,进而从根本上确保规划的科学性、合理性。其二,GIS系统可以从根本上提高燃气管道的维修效率。而燃气管道本身具有一定的复杂性,一旦有故障产生,维修人员在GIS系统的帮助下,可以尽快将故障的具体位置找到,进而有效确保维护工作的顺利进行。 3 燃气管网信息系统建设中的GIS应用措施 3.1 GIS应用于管网的信息管控

排水管网排口监测系统方案

排水管网排口监测系统解决方案 系统概述 排水管网排口监测系统通过在雨污水排口布设排口流量计、水质监测仪等设备,实时掌握排口流量、水质、河道液面高度以及现场视频状况,实现雨污水排口状态的实时感知和城域化汇集管理,并通过传输网络将采集到的数据接入到各个应用系统中,实现实时监测告警,通过现场真实画面反馈排口运行情况。 系统架构 1、感知层 感知层的设备通过传感网络获取感知信息。感知层是物联网的核心,是信息采集的关键部分。 2、网络层 网络层是数据通信的核心,是数据传输的主要通道,网络层主要采用NB-IoT通信网络,具备覆盖广、连接多、速率快、成本低、功耗低、架构优等特点。 3、通信服务层 通信服务层由物联网设备管理平台组成,实现数据的汇集与管理,为管网监测平台及其他应用平台提供专业、便捷的数据接口服务。

4、应用层 应用层为运维部门、管线权属单位、大数据局、运维管理、决策分析等信息服务。 系统功能 1、实时监测告警 实时监测排水管网气象状况,根据预先设定报警规则,实现气象异常情况告警。 2、GIS地图展示 在电子地图上显示监测点位、基本信息、实时状态等。 3、调度运行 对排水管网分区气象异常分析、处理,高效协调相关部门的协同工作。 4、视频监控 获取有效数据、图像或声音信息,对突发性异常事件的过程进行及时的监视和记忆。 5、数据分析 对大量的排口监测数据进行重组、汇总及对比分析,挖掘出有利于提升排水管网排口管理水平和效率的有价值数据。 系统特点 1、易于集成 系统提供设备底层通讯协议及多种语言的数据接入解析demo程序、协议解析库,30分钟即可完成设备数据调用接口集成。 2、扩展性强 系统对传感器监测项做了对应的扩展预留设计;系统的管理业务流程具备可扩展性;软件平台应用子系统预留了接口具备扩展性。 3、实时性高 基于4G无线传输,传输距离远、信号强度高、数据传输稳定。在现式实时上传监测数据,

生活饮用水水质检测结果分析报告

生活饮用水水质检测结果分析报告 水是居民生活不可缺少的重要组成部分,保证饮用水安全、合格直接关系到人民群众的基本生活和社会稳定。见此,新巴尔虎左旗水务局于2012年05月13日委托呼伦贝尔市疾控中心对白音查干地区居民生活饮用水进行了检测。根据饮用水水质检测结果现对送检水样做如下分析: 1、检测对象:此次水质检测采样地点为白音查干,采样数量为2份,分别为20米深机井和80米深机井。 2、采样方法:每份送检水质以高压灭菌玻璃瓶取样500mL,供水质微生物指标检测使用;以聚乙烯塑料壶取样2.5Kg,供一般感官性状、理化指标检测使用。 3、检测方法:检验依据为GB/5750-2006《生活饮用水标准检验方法》和GB/5749-2006《生活饮用水卫生标准》,微生物检测指标4项,包括:菌落总数、总大肠菌群、耐热大肠菌群、大肠埃希氏菌。一般感官性状、理化检测指标共29项,包括:色度、浑浊度、

臭和味、肉眼可见物、PH、耗氧量、氨氮、总硬度、溶解性总固体、氟化物、氯化物、亚硝酸盐氮、硝酸盐氮、硫酸盐、磷酸盐、六价铬、挥发酚类、碘化物、汞、硒、砷、铜、铁、锰、锌、铅、镉、三氯甲烷和四氯化碳。 4、检测结果:根据GB/5749-2006《生活饮用水卫生标准》,20米深水样,微生物4项检测指标均合格。一般感官性状、理化29项检测指标中有5项超标,分别为:色度、浑浊度、氟化物、铁、锰,不合格项目率为%;80米深水样,微生物4项检测指标中有2项不合格,分别为:总大肠菌群、耐热大肠菌群。一般感官性状、理化29项检测指标中有12项超标,分别为:色度、浑浊度、臭和味、耗氧量、总硬度、溶解性总固体、氟化物、氯化物、硝酸盐氮、硫酸盐、铁、锰,不合格项目率为:%。其中,2份送检水样的不合格项目集中在色度、浑浊度、氟化物、铁、锰5个项目上。 5、结果分析:呼伦贝尔市疾控中心水质检测结果显示,白音查干地区居民生活饮用水水质多数检测项目均符合GB/5749-2006《生活饮用水卫生标准》的要求。且20米深生活饮用水的项目合格率高

管网水质管理

管 网 水 质 控 制 标 准 内蒙古长泰水务有限公司生产技术部

管网水质控制标准 1.1 水质管理 1.1.1 供水单位应根据《生活饮用水卫生标准》GB5749对供水水质和水质检验的要求,结合本地区情况建立管网水质管理制度,对管网水质进行检测。 [条文说明]生活饮用水包括人的日常饮水和日常生活用水。供水系统的水质直接关系到社会公众的身体健康,因此必须符合现行《生活饮用水卫生标准》GB5749的规定。 1.1.2 当操作阀门可能影响管网水质时,应错过高峰供水时间段,宜安排在夜间进行。 1.1.3 供水单位应采取有效措施保证管网末端余氯达标。 [条文说明]管线较长,末端余氯不达标,首先考虑的是水厂出厂水余氯适当提高,当出厂水余氯已经较高时,应选择适当的地点补充加氯,以保证管网末端余氯达标。 1.1.4当城镇有新增水源,或原有水源供水量发生较大变化时,应临时增大管网水质检测点及检测频率,特别是供水分界线附近的水质检测。 [条文说明]当城镇有新增水源,或原有水源供水量发生较大变化时,应临时增大管网水质检测点及检测频率,特别是供水分界线附近的水质检测。若管网水质有较大影响,应根据检测的数据,分析原因,进行处理。

1.1.5 当管网水质出现异常时,应增加水质监测频率和相关指标检测。水质检验结果连续超标时,应查明原因,采取措施,防止扩散,并应及时报告城市供水行政主管部门和卫生监督部门。 [条文说明]由于管网水质关系到供水的安全,当管网水质出现异常时,一方面应查明原因,采取措施,防止扩散;另一方面同时报告城镇供水行政主管部门和卫生监督部门。 1.2 水质监控 1.2.1供水单位应在供水管网用户端设立一定数量的具有代表性的管网水质监测取样点,对管网水质实施监测。管网的水质监测取样点数,一般应按每两万供水人口设一个采样点计算。当供水人口在20万以下或100万以上时,可酌量增减。 [条文说明]水质监测取样点是指人工采集水样并进行检测的管网点位。 1.2.2水质监测取样点的设立应考虑水流方向等因素对水质的影响,应在输水管线的近端、中端、远端和管网末梢、供水分界线及大用户点附近设置,监测点应尽量均衡地分布在管网中。 1.2.3供水单位应建立在线水质监测系统。在线监测点设置数量,应根据供水规模确定,有条件时可按每10km2设置1~2个点,宜在主要水质控制点设置在线监测点。 1.2.4水质在线监测点的检测项目可根据实际需求确定(如浊度、

水质在线自动监测管理教学内容

水污染源在线监测系统的运营管理方法 1、定期进行仪器现场巡查,进行必要的校准、维护、维修、耗材更换工作。以 保障仪器准确可靠运行。 2、负责每天进行一次仪器运行状态检查,如发现问题则在第一时间解决。 3、按仪器运行要求定期对系统进行校准,以保证仪器数据的准确有效。 4、应对在线监测站建立专人负责制,制定操作及维修规程和日常保养制度,建 立日常运行记录和设备台账,建立相应的质量保证体系,并接受环境保护管理部门的台账检查。 5、应每月向有关环境保护管理部门作运营工作报告,陈述站点在线监测系统的 运营情况。 6、安排相对固定的专业人员负责运营维护工作。 7、应备有常用耗材与配件及必要的交通工具,以保障维修及时。 8、接受环保部门的监督、指导、考核,及时汇报重大事故或仪器严重故障的情 况。 一、日常管理 1、质量保证与质量控制制度 1.1操作人员应按国家相关规定,经培训考核合格,持证上岗。 1.2在线监测仪器在有效使用期内应通过检定或校验。应具备运行过程中定期自 动标定和人工标定功能,以保证在线监测系统监测结果的可靠性和准确性。 1.3采用国家级样品,若采用自配标样,应用有证标准样品对自配标样进行验证, 验证结果应在标准值确定度范围内。标样浓度应与被测废水浓度相匹配。每周用国家认可的质控样(或按规定方法配制的标准溶液)对自动分析仪进行一次标样溶液核查,质控样(或标准溶液)测定的相对误差应不大于标准值的±10%,若不符合,应重新绘制校准曲线,并记录结果。 1.4样品的测定值应在校准曲线的浓度范围内。 1.5按照国家规定的监测分析方法进行实际水样比对试验,比对试验时,实验室 质量控制按照有关规定执行,比对试验实验室监测分析方法请见《水污染源在线监测系统运行于考核基数规范(试行)》(HJ/T355-2007)中的表2,比对试验相对误差值应满足HJ/T355-2007表1中规定的性能指标要求。

供水管网水质在线监测、自来水管网水质监测系统

供水管网水质在线监测、自来水管网水质监测系统 系统概述: 供水管网水质在线监测(自来水管网水质监测系统)可应用于水资源循环利用的各个环节,实现对饮用水及生产、生活污水水质的实时连续监测。该系统在及时掌握水源地水质状况、预警重大或突发性水质污染事故、保障饮水安全、控制污水达标排放等方面发挥了重要作用。 系统拓扑图: 江、河、湖泊、水库 水源地取水口 自来水厂 加压泵站 排污口 污水处理厂 水质监测设备 DATA-9201 服务器 水质监测中心 远程访问客户端 GPRS/CDMA/ 3G/4G/光纤 供水管网水质在线监测(自来水管网水质监测系统)拓扑图

系统功能: ◆ 实时监测水源地及饮用水的水温、溶解氧、pH 、电导率、盐度、浊度、蓝绿藻,氨氮离 子、余氯等参数,并可扩展其它监测功能。 ◆ 实时监测排污口及污水处理厂污水的浊度、PH 、COD 、氨氮离子、溶解氧、重金属离子 等参数,并可扩展其它监测功能。 ◆ 水质监测数据超标、水质分析设备故障、现场供电异常时,自动报警。 ◆ 具备监测数据、报警数据的查询、统计、分析功能,可自动生成统计报表和趋势曲线。 ◆ 具备现场设备的实时监控、远程维护、远程诊断等智能管理功能。 ◆ 可扩展远程拍照或视频实时监控功能。 ◆ 可集成控制系统,实现对泵、阀或其它设备的就地、远程控制功能。 ◆ 平升系统软件支持与其它平台对接,实现多系统联动,以快速应对突发性水污染事件。 供水管网水质在线监测(自来水管网水质监测系统)现场及软件界面: 江苏太湖水质监测现场 吉林小区加压泵站水质监测现场 北京水厂水质监测现场 北京供水管网水质监测现场 河北企业排污水质监测软件界面

生活饮用水水质检测结果分析1

东宁县生活饮用水水质监测结果分析 为了掌握居民生活饮用水水质卫生状况,为政府有关部门提供决策依据,确保居民饮用水卫生安全,对东宁县生活饮用水现状进行了调查。县内下设6个镇,129个行政村。拥有人口21.2万人,其中12万人生活在农村。现有1个水厂供县城居民生活饮用水,其它村镇是深井水或蓄水池。现将监测结果报告如下。 一、材料与方法 1、监测水样 根据不同水源及供水设施,对农村集中式供水选择10个村30个监测点,学校自备式供水5个监测点,分散式供水5个监测点。分别在枯水期和丰水期采集出厂水、末梢水进行检测分析;分散式供水和学校自备式供水监测点仅做出厂水分析;城镇水厂1个,监测点11个分别在每季度中采集出厂水、管网末梢水进行检测分析。 2、监测指标 农村集中式供水、学校自备式供水、分散式供水检验项目包括:菌落总数、总大肠菌群、色度、浑浊度、臭和味、肉眼可见物、pH值、氨氮、耗氧量、铁、锰、氟化物、砷、铅、汞、镉、铬共计17项。城镇水厂出厂水检验项目32项。城镇管网监测指标为总大肠菌群、菌落总数、色度、浑浊度、臭和味、肉眼可见物、PH值、二氧化氯共计8项。 3、检验依据与评价 水样的采集和检测按照《生活饮用水标准检验方法》(GB/T5750-2006)执行,评价方法按照《生活饮用水卫生标准》(GB5749-2006)执行。检测项目中一项不符合标准即判定为该样品不合格。 二、结果分析 全年共监测水样111份,总合格数为80份,总合格率72.1%。不同类型检测结果分布情况见表○1 表1 不同类型检测结果分布情况 合格比较高。主要原因是学校自备井在房前屋后生活区内,多为浅井,周围10米左右有厕所,且自备井无消毒设施。出厂水主要原因是水源地缺少保护,水日处理量超过正常处理能力,效果不明显。不同季度检测结果分布情况见表○2 表2 不同季度检测结果分布情况 丰水期合格率略高于枯水期,两者之间有明显差异。主要原因是由于丰水期水量充沛水质好于枯水期。主要不同类型水质检测不合格项目超标率(见表3)从高到低依次为:总大肠菌群15.3>浑浊度12.6>氨氮10.6>铁10.6>PH值5.4>菌落总数3.6>锰2.4。 表3 不同类型水质检测超标项目分布情况统计

水质分析监测实践报告

水质分析检测实习 1 实习地点: 山东利源海达环境工程有限公司是以清华大学、山东大学、天津大学及济南大学为技术依托,具有多项自主知识产权和国家专利的高科技股份制企业。 公司注册资金1680万元,现有正式员工80人,其中博士2人,硕士7人,各类工程技术人员56人。公司旗下设有投资运营公司、技术研发公司及工程试验中心,专业从事污水处理工程投资、运营、技术研发及推广等业务。公司机构设置有:市场营销部、技术支持部、工程项目部、运营投资公司、物资采购部、财务管理部、办公室及设备制造中心。公司以环境工程治理、能源管理为己任,集科研开发、规划设计、工程承包、安装调试、设备制造、售后服务于一体,具有环保专项设计、环保设施运营等资质。 公司与国内多家知名专业科研院所和高校在环境工程领域结成优势互补的联合体,互为依托,资源共享,依靠强有力的研发力量,保证了技术的先进性和成熟性。公司作为山东大学、济南大学在环境工程、给水排水工程专业实习基地,在水处理、废气处理、噪声、空气净化、固废无害化处理技术方面,达国内先进水平,且多项处理技术处于同行业领先地位。 2 实习时间: 2016年3月8日-2017年3月5日 3 实习目的: 社会实践是环境工程专业学生的一门主要实践性课程,是学生将理论知识同生产实践相结合的有效途径,培养学生树立理论联系实际的工作作风,以及检测现场中将科学的理论知识加以验证、深化、巩固和充实,并培养学生进行调查、研究、分析和解决实际问题的能力,为后继专业课学习、实验研究和毕业设计打下坚实的基础。通过生产实习,拓宽学生的知识面,增加感性认识,把所学知识条理化系统化,学到从书本学不到的专业知识,并获得本专业国内外科技发展现状的最新信息,激发学生向实践学习和探索的积极性,为今后的学习和将从事的技术工作打下坚实的基础。 4 实习要求: 严格按照实习计划规定进行,作好计划、实习过程、总结各个环节;实习期间,至少每周联系老师一次,联系方式以为面谈、邮件、电话、短信等为主;联系内容为技术咨询、疑难咨询、实习进展汇报、安全通告等;返校按期上交实习

相关文档
最新文档