ENVI中图像融合方法介绍

ENVI中图像融合方法介绍
ENVI中图像融合方法介绍

ENVI中的融合算法

融合方法有很多,典型的有HSV、Brovey、PC、CN、SFIM、Gram-Schmidt等。ENVI里除了SFIM以外,上面列举的都有。

(1)HSV可进行RGB图像到HSV色度空间的变换,用高分辨率的图像代替颜色亮度值波段,自动用最近邻、双线性或三次卷积技术将色度和饱和度重采样到高分辨率像元尺寸,然后再将图像变换回RGB色度空间。输出的RGB图像的像元将与高分辨率数据的像元大小相同。(2)Brovey锐化方法对彩色图像和高分辨率数据进行数学合成,从而使图像锐化。彩色图像中的每一个波段都乘以高分辨率数据与彩色波段总和的比值。函数自动地用最近邻、双线性或三次卷积技术将3个彩色波段重采样到高分辨率像元尺寸。输出的RGB图像的像元将与高分辨率数据的像元大小相同。

(3)用Gram-Schmidt 可以对具有高分辨率的高光谱数据进行锐化。第一步,从低分辨率的波谱波段中复制出一个全色波段。第二步,对该全色波段和波谱波段进行Gram-Schmidt 变换,其中全色波段被作为第一个波段。第三步,用Gram-Schmidt 变换后的第一个波段替换高空间分辨率的全色波段。最后,应用Gram-Schmidt反变换构成pan锐化后的波谱波段。(4)用PC 可以对具有高空间分辨率的光谱图像进行锐化。第一步,先对多光谱数据进行主成分变换。第二步,用高分辨率波段替换第一主成分波段,在此之前,高分辨率波段已被缩放匹配到第一主成分波段,从而避免波谱信息失真。第三步,进行主成分反变换。函数自动地用最近邻、双线性或三次卷积技术将高光谱数据重采样到高分辨率像元尺寸。

(5)CN波谱锐化的彩色标准化算法也被称为能量分离变换(Energy Subdivision Transform),它使用来自锐化图像的高空间分辨率(和低波谱分辨率)波段对输入图像的低空间分辨率(但是高波谱分辨率)波段进行增强。该功能仅对包含在锐化图像波段的波谱范围内的输入波段进行锐化,其他输入波段被直接输出,不发生变换。锐化图像波段的波谱范围由波段中心波长和FWHM(full width-half maximum)值限定,这两个参数都可以在锐化图像的ENVI头文件中获得。

(6)SFIM(基于亮度调节的平滑滤波)融合是通过平滑滤波将高分辨率影像匹配到低分辨率影像,与小波变换相似,但其算法过程和计算时间比小波变换要显著简化。

这几种方法中SFIM和Gram-Schmidt方法保真效果最好,在ENVI里面,Gram这种方法还可以自动融合,操作比较简单。

2 HSV算法

(1)自动融合

(注意:在两幅图像有相同地理坐标系统的情况下,该融合方法不需要在融合前需调整两幅图像分辨率一致,尺寸一致,ENVI系统会自动完成这一过程,输出图像的分辨率与高分辨图像保持一致;否则需要对图像进行处理以保证融合的影像地理位置相同,行列数相同)Transform->Image Sharpening->HSV

HSV(hue, saturation, and value:色调,饱和度,亮度值)

选择Transforms > Color Transforms >RGB to HSV。当出现Select RGB Input Bands对话框时,从一个显示的彩色图像或可用波段列表中选择三个波段进行变换(TM影像假彩色合成选432,真彩色合成可以选择321),接着将出现High Resolution input File对话框,这是选择高分辨率影像,将出现HSV Sharpening Parameters窗口,选择输出到“File”或“Memory”。点击“OK”开始处理。

(2)手动融合

融合图像间需要精确几何配准,并将多光谱图像采样与全色相同的分辨率,(注意:前两步在ENVI中可以可一步完成Map--->Registration--->Select GCPs: Image to Image)尺寸一致(行列数相等)。

A、选择多光谱波段组合,调色,突出地物反差,存储(可选);

B、高分辨率全色波段增强(滤波等),存储;(可选)

C多光谱影像和多分辨率全色波段需要调整为统一空间分辨率(Map--->Registration--->Select GCPs: Image to Image中已经完成),且裁为尺寸大小一致(用Basic Tools—>Resize Data可实

现空间重采样和取子区,可利用地理坐标进行精确裁剪,保证两融合图像行列数相同);

D、对多光谱影像进行彩色空间变换;(Transform->Color Transforms->RGB to HSV(USGS Munsell))

E、将高分辨率全色波段与彩色空间变换后的V波段进行直方图匹配,并存为V波段的数据

类型(Float point类型)(方法不唯一?)

(1)分别将高分辨率全色波段和V波段的直方图打开(Image窗口:Enhance->Interactive Stretching);

(2)分别在高分辨率全色波段影像和V波段的直方图窗口中,选择Histogram_Source--->band;(3)在高分辨率全色波段影像的直方图窗口中,将Stretch_type选为Arbitrary,以便于用指

定的直方图曲线来拉伸;

(4)用鼠标将V波段影像直方图的输入(Input Histogram标签)拖动至在高分辨率全色波

段影像的直方图的输出窗口(Output Histogram)中,然后点击Apply;

(5)在V波段的直方图窗口中,选择Options->Histogram Parameters,记录下Histogram Min

和Histogram Max两个值;

(6)在高分辨率全色波段影像的直方图窗口中,选择File—>Export Stretch,将刚才记下的

两个值分别填入Output Min和Output Max中;再将“Output Data Type”改为“Floating Point”,

然后给定文件名存储;

F、彩色空间变换的反变换。(Transform->Color Transforms->HSV to RGB(USGS Munsell)),

用H、S和经过E步骤处理的高分辨率全色波段影像进行反变换即可;

G、用Photoshop对融合后的影像进行调色(可选)。

ENVI主成分分析(PCA)是通过使用Principal Components选项生成互不相关的输出波段,达到

隔离噪声和减少数据集的维数的方法。由于多波段数据经常是高度相关的,主成分变换寻

找一个原点在数据均值的新的坐标系统,通过坐标轴的旋转来使数据的方差达到最大

ENVI主成分分析(PCA)是通过使用Principal Components选项生成互不相关

的输出波段,达到隔离噪声和减少数据集的维数的方法。

由于多波段数据经常是高度相关的,主成分变换寻找一个原点在数据均值的新的坐标系统,通过坐标轴的旋转来使数据的方差达到最大,从而生成互不相关的输出波段。

主成分(PC)波段是原始波谱波段的线性合成,它们之间是互不相关的。可以计算输出主成分波段(与输入的波谱波段数相同)。

第一主成分包含最大的数据方差百分比,第二主成分包含第二大的方差,以此类推,最后的主成分波段由于包含很小的方差(大多数由原始波谱的噪声引起),因此显示为噪声。由于数据的不相关,主成分波段可以生成更多种颜色的彩色合成图像。

ENVI 能完成正向和逆向的主成分(PC)旋转。

1.正向主成分(PC)旋转

正向PC旋转用一个线性变换使数据方差达到最大。当使用正向PC旋转时,ENVI 允许计算新的统计值,或根据已经存在的统计值进行旋转。输出值可以存为字节型、浮点型、整型、长整型或双精度型。也可以基于特征值来提取PC旋转的输出内容,生成只包含所需的PC波段的输出。

计算新的统计值和旋转

使用Compute New Statistics and Rotate选项可以计算数据特征值、协方差或相关系数矩阵以及PC正向旋转。

选择Transforms > Principal Components > Forward PC Rotation > Compute New Statistics and Rotate。

当出现Principal Components Input File对话框时,选择输入文件或用标准ENVI选择程序选取子集。将会出现Forward PC Rotation Parameters对话框。注意:点击“Stats Subset”按钮可以基于一个空间子集或感兴趣区计算统计信息。该统计将被应用于整个文件或文件的空间子集。详细介绍,请参阅第348

页的“根据子集进行统计”。

在“Stats X/Y Resize Factor”文本框中键入小于1的调整系数,用于计算统计值时的数据二次采样。

注意:键入一个小于1的调整系数,将会提高统计计算速度。例如:使用一个0.1的调整系数,在统计计算时将只用到十分之一的像元。

若需要,键入一个输出统计文件名。使用箭头切换按钮,选择是根据“Covariance Matrix”(协方差矩阵)还是根据“Correlation Matrix”(相关系数矩阵)计算主成分波段。

注意:一般说来,计算主成分时,选择使用协方差矩阵。当波段之间数据范围差异较大时,选择相关系数矩阵,并且需要标准化。

选用输出到“File”或“Memory”。在“Output Data Type”菜单中,选择所需的输出文件数据类型。

选择输出的主成分波段数。可以通过键入所需的数字,或用“Number of Output PC Bands”标签旁的增减箭头按钮来确定输出的主成分波段数。默认的输出波段数等于输入波段数。也可以用特征值来选择输出的主成分波段数,按照如下步骤操作。

A. 点击“Select Subset from Eigenvalues”标签附近的按钮,选择“YES”。统计信息将被计算,并出现Select Output PC Bands对话框,列出每个波段和其相应的特征值。同时也列出每个主成分波段中包含的数据方差的累积百分比。

B. 在“Number of Output PC Bands”文本框中,键入一个数字或点击箭头按钮,确定要输出的波段数。特征值大的主成分波段包含最大的数据方差。较小的特征值包含较少的数据信息和较多的噪声。为了节省磁盘空间,最好仅输出具有较大特征值的波段。

C. 在Select Output PC Bands对话框中,点击“OK”。输出的PC旋转将只包含选择的波段数。例如:如果选择“4”作为输出的波段数,则只有前4个主成分波段会出现在输出文件里。

在Forward PC Rotation Parameters对话框中,点击“OK”。

ENVI处理完毕后,将出现PC EigenValues绘图窗口,主成分波段将被导入可用波段列表中,并用于显示。

对PCA 输出应用掩膜

当进行正向PC旋转时,可以对输出结果应用掩膜。如果已经为输入文件指定了掩膜,可以设定输出图像中被掩膜遮蔽部分的输出值。

在ENVI主菜单中,选择Transforms > Principal Components > Forward PC Rotation > Compute New Statistics and Rotate。当出现文件选择对话框时,选择输入图像并应用掩膜。当出现Forward PC Parameters对话框时,在“Output Mask Value”文本框中,为被掩膜遮蔽部分键入一个输出值。掩膜将被应用于统计信息的计算,输出数据的被遮蔽区域被置为输入的掩膜值。

根据子集进行统计

使用“Stats Subset”按钮可以基于一个空间子集或感兴趣区来计算统计信息。该统计将被应用于整个文件或文件的空间子集。

在Forward PC Parameters对话框中,点击“Stats Subset”按钮。在Select Statistics Subset对话框中,从下列选项中选择:

要选取一个标准图像空间子集,点击“Calculate Stats On Image Subset”按钮,使用标准ENVI方法构建子集。要选取感兴趣区作为子集,点击“Calculate Stats On ROI”按钮来显示一个感兴趣区列表,然后点击感兴趣区名来选择它。提示:要将先前保存的感兴趣区添加到感兴趣列表中,在子集对话框中,点击“Restore ROIs”,选择感兴趣区文件,然后选择感兴趣区。

三、进行手动HSV数据融合

1.在ENVI主菜单选择TransformàColor TransformsàRGB to HSV,然后选择调整过大小的BJTM15m作为输入的RGB影像,输入要输出的文件名,点击ok进行变换,并显示变换后的影像。

2.拉伸第8波段影像并代替TM的数值波段(V,Value)。从ENVI主菜单中选择Basic ToolsàStretch Data,单击Band 8文件,然后点击ok。

3.在弹出的Data Stretching对话框的output Data部分中,在Min文本框中输入0,在Max中输入1,并输入一个输出文件名,点击ok将ETM+的全色波段数据拉伸为浮点型,范围在0到1之间。

4.HSV反变换。在ENVI主菜单选择TransformàColor Transformsà HSV to RGB,然后选择HSV正变换过的Hue和Saturation波段作为变换的H和S波段。

5.选择拉伸过的ETM+的全色波段作为变换的V波段,点击ok。在弹出的HSV to RGB Parameters对话框中输入要输出的文件名,点击ok进行反变换。

6.显示结果。显示HSV to RGB反变换后的影像,并选择LinkàLink Displays 动态叠加来分析比较这些影像。

四、ENVI自动HSV变换融合

1.在ENVI的主菜单选择Transform Image Sharpening HSV.

2.如果调整过大小的TM彩色影像已在显示窗口中,则可以在Select Input RGB Bands对话框中,选择R、G、B所相对应的调整过大小的ETM+多光谱影像波段,然后点击ok。

3.从High Resolution Input File对话框中选择ETM+第8波段影像,点击ok。输入文件名,并点击ok。

4.查看结果。

图像配准融合介绍

图像配准操作(Image Registration)是在不同条件下得到的并且位于不同坐标系下的同一场景(或物体)的二幅或者多幅图像进行对准叠加的过程由于成像条件不同,同一场景(物体)的多幅图像会在分辨率、成像模式、灰度属性、位置(平移和旋转)、比例尺度、非线性变形及曝光时间等方面存在很多差异,图像配准就是要克服这些困难,最终将这些图像在几何位置上进行配准,以便能够综合利用多幅图像中的信息满足一定的应用需求。概括来说,图像配准问题就是将位于不同坐标系下同一场景的二幅或多幅图像,寻找一种特定的最优几何变换,将两幅或多幅图像变换到同一坐标系的过程 背景、意义 背景 图像配准最早在美国70年代飞行器辅助导航系统、武器投射系统的末端制导以及寻地等应用研究中提出。经过20年的研究成功地用于中程导弹及战斧式巡航导弹上弹着点误差半径不超过十几米。80年代后很多领域都有大量配准技术的应用,如遥感领域、模式识别、自动导航、医学诊断、计算机视觉等。各个领域的配准技术都是对各自具体的应用背景结合实际情况量身订制的技术。但是不同领域的配准技术之间在理论方法上又具有很大的相似性。 目前国内外研究图像配准技术比较多的应用领域有:红外图像处理、遥感图像处理、数字地图定位和医学图像处理等领域。 70年代P.E.Anuta 提出用FFT (Fast Fourier Transform快速傅里叶变换)进行图像配准;D.I.Barnea和H.F.Silverman SSDA(Sequential Similarty Detection Algorithm 序贯相似性检测算法)进行图像配准该算法的优点是图像配准的处理速度相对其它算法来说得到了提高;W.Pratt 在数字图像处理中详细阐述了各种用于图像配准的相似度量函数;后来A.Roche等将相关相似度函数扩展并应用得到多模态图像配准当中(缺陷:不能处理较复杂的多模态图像间的配准、利用其计算的相似性的峰会较平坦、显著性较低、计算复杂度较高)P.E.Anuta 等提出了改进的基于边界信息计算的相关相似度量,有效地提高了该相似度量相对于光照变化的鲁棒性;P.Viola and W.M.Wells III,等在1997较早地将信息论中的交互信息用于图像的配准操作Thevenaz

遥感图像融合方法比较

1 绪论 1.1研究目的及意义 20世纪90年代中后期以后,搭载许多新型传感器的卫星相继升空,使得同一地区的遥感数据影像数目不断增多。如何有效地利用这些不同时相、不同传感器、不同分辨率的遥感数据便成为了遥感工作者研究的瓶颈问题,然而解决这一问题的关键技术就是遥感影像数据融合。 遥感数据融合就是对多个遥感器的图像数据和其他信息的处理过程,它着重于把那些在空间或时间上冗余或互补的多源数据,按一定法则(算法)进行处理,获得比单一数据更精确、更丰富的信息,生成一幅具有新的空间、波谱和时间特征的合成图像。 遥感是不同空间、时间、波谱、辐射分辨率提供电磁波谱不同谱段的数据。由于成像原理不同和技术条件的限制,任何一个单一遥感器的遥感数据都不能全面的反映目标对象的特征,也就是有一定的应用范围和局限性。各类非遥感数据也有它自身的特点和局限性。影像数据融合技术能够实现数据之间的优势互补,也能实现遥感数据与地理数据的有机结合。数据融合技术是一门新兴的技术,具有十分广阔的应用前景。所以,研究遥感影像数据融合方法是非常必要的。 1.2研究现状及发展的趋势 1.2.1研究现状 20世纪美国学者提出“多传感器信息融合”的概念认为在多源遥感影像数据中能够提取出比单一遥感影像更丰富、更有效、更可靠的信息。之后由于军事方面的要求,使得遥感影像数据融合技术得到了很大的发展,美、英,德等国家已经研制出了实用的遥感数据融合处理的系统和软件,同时进行了商业应用。 1)、融合结构 融合的结构可分为两类:集中式和分布式。集中式融合结构:各传感器的观测数据直接被送到中心,进行融合处理,用于关联、跟踪、识别等。分布式融合结构:每个传感器独立完成关联、识别、跟踪,然后由融合中心完成配准、多源关联的融合。 2)、融合的层次 图像融合可分为:像元级融合、特征级融合和决策级融合。 像元级融合是最低级的信息融合,可以在像素或分辨单位上进行,又叫做数据级融合。它是对空间配准的遥感影像数据直接融合,然后对融合的数据进行特征提取和属性说明。 特征级融合是由各个数据源中提取特征信息进行综合分析和处理的过程,是中间层次的融合。特征级融合分为目标状态信息融合和目标特征融合。 决策级融合是在信息表示的最高层次上进行融合处理。首先将不同传感器观测同一目标获得的数据进行预处理、特征提取、识别,以建立对所观测目标的初步理论,然后通过相关处理、决策级融合判别,最终获得联合推断结果,从而为决策提供依据。

《遥感原理与应用》实验报告——影像融合

实验名称:影像融合 一、 实验内容 1. 对TM 影像和SPOT 影像进行HSV 数据融合。 2. 查阅相关资料用envi 软件实现一种数据融合的方法,如Brovey 、PCA 等。 3. 利用均值、标准差、特征值等参数对上述两种方法的融合效果进行评价。 二、 实验所用的仪器设备,包括所用到的数据 电脑一台,Window7操作系统,遥感影像处理软件(ENVI4.3)英国伦敦的TM 影像数据lon_tm 和SPOT 影像数据lon_spot 。 三、 实验原理 1. 定义:图像(影像)融合是指将多余遥感影像按照一定的算法,在规定的地理坐标系中,生成新的图像的过程。 2. 目的: (1) 提高图像空间分辨率 (2) 改善分类 (3) 多时相图像融合用于变化检测 3. 基本原理 (1) HSV 变换法: HSV (hue, saturation, and value :色调,饱和度,亮度值)。首先将多光谱图像经HSV 变换得到H 、S 、V 三个分量。然后将高分辨率的全色图像代替V 分量,保持H 、S 分量不变。最后再进行HSV 变换得到具有高空间分辨率的多光谱图像。 (2) Brovey 变换法: 对彩色图像和高分辨率数据进行数学合成,从而使图像锐化。彩色图像中的每一个波段都乘以高分辨率数据与彩色波段总和的比值。函数自动地用最近邻、双线性或三次卷积技术将3个彩色波段重采样到高分辨率像元尺寸。输出的RGB 图像的像元将与高分辨率数据的像元大小相同。 4. 评价指标 (1) 均值与标准差 ∑==n i i x n μ1 1 (公式1) () 2 1 2∑=-=n i i μx σ (公式2) 上述两个式子中,n 表示图像总的像素的个数,xi 为第i 像素的灰度值。 (2) 特征值 设 A 是n 阶方阵,如果存在数m 和非零n 维列向量 x ,使得 Ax=mx 成立,则称 m

多模图像配准融合

多模图像配准融合

浅析多模态医学图像的配准与融合技术 来源:本站原创作者:朱俊林发布时间:2009-06-07 1 医学图像的配准技术简介 医学图像的配准技术是90年代才发展起来的医学图像处理一个重要分支,并且日益受到了医学界和工程界的重视。医学图像的配准是指对于一幅医学图像寻求一种或者是一系列的空间变换,使两幅图像的对应点达到空间位置和解剖结构的一致,这种一致是指人体上的同一解剖点在两张匹配的图像上有相同的空间位置。简单地说医学图像配准就是解决两幅图像的严格对齐问题。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的解剖点及手术感兴趣的点都达到匹配。 医学图像的配准按图像来源分为:单模态(mono-modality)与多模态配准(multi-modality)。单模态配准是指对来自同一成像设备的不同时刻或不同角度的图像进行配准。但在实际临床应用中,单一模态的图像往往不能提供医生所需要的足够信息,通常需要将不同模态的图像融合在一起得到更丰富的信息量,从而作出准确的诊断,制订出合适的治疗方案。所谓多模态配准,是将来自不同形式的医学图像进行空间上的对准,将对应的相同解剖位置标记出来以实现图像融合和进一步后期处理。多模态图像之间的配准使用最频繁,主要应用在诊断方面,可分为解剖—解剖的配准和解剖—功能的配准两大类,前者将显示组织形态学不同方面的两幅图像混合,后者将组织的新陈代谢与它相对于解剖结构的空间位置联系起来。目前,主要的研究工作重点是进行CT、MRI以及PET、fMRI等图像的配准。 2 医学图像融合技术简介 医学图像的融合是指将两幅(或两幅以上)来自不同成像设备或不同时刻获取的已配准图像,采用某种算法,把各个图像的优点或互补性有机结合起来,获得信息量更为丰富的新图像的技术。医学诊断往往要综合许多不同信息进行,传统的方法是,临床医生利用灯箱分别观看这些胶片,综合对比,得到结果。如果能够把这些互补信息以某种方式综合在一起作为一个整体作为医学诊断的依据,使得临床医生只要在一张综合图像上就能看到不同原始图像的信息,那么就能提供全方位的信息细节。 3 医学图像配准及融合的关系及意义 医学图像的配准和融合有着非常密切的关系,特别是对于多模态图像而言,配准和融合是密不可分的。配准是融合的前提,也是决定图像融合技术发展的关键技术,若事先不对待融合图像进行空间上的对准,那么融合后的图像也是毫无意义的。融合是配准的目的,通过来自不同影像设备的图像融合,可以得到更多的信息,提高影像数据的利用率。在多模态医学图像信息融合中,是要把相对应的组织结构融合在一起,而待融合的图像往往来自不同的成像设备,它们的成像方位、角度和分辨率等因素都是不同的,所以这些图像中相应组织的位置、大小等都是有差异的,必须先进行配准处理,才能实现准确地融合。

遥感影像融合处理方法

遥感影像融合处理方法 摘要:本文介绍了遥感影像数据融合技术,并给出了融合的一些基本理论、融合处理一般步骤以及常用融合处理方法,最后简要描述了融合评价的方式方法等。 关键词:遥感影像融合融合评价 1、前言 将高分辨率的全色遥感影像和低分辨率的多光谱遥感影像进行融合,获得色彩信息丰富且分辨率高的遥感融合影像的过程,成为遥感影像融合。全色影像一般具有较高空间分辨率,多光谱影像光谱信息较丰富,为提高多光谱影像的空间分辨率,可以将全色影像融合进多光谱影像。通过影像融合既可以提高多光谱影像空间分辨率,又能保留其多光谱特性。 2、遥感影像融合一般步骤 遥感影像信息融合一般流程主要分为两个阶段:图像预处理,图像融合变换。 图像预处理主要包括:几何校正及影像配准。几何校正主要在于去除透视收缩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响;影像配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异。 3 常用融合方式 3.1 IHS融合 IHS(亮度I、色度H、饱和度S)变换就是将影像从RGB彩色空间变换到IHS空间来实现影像融合的一种方法。由光学、热红外和雷达(微波)等方式得到的不同波段遥感数据,合成的RGB颜色空间是一个对物体颜色属性描述系统,而IHS色度空间提取出物体的亮度、色度、饱和度,它们分别对应每个波段的平均辐射强度、数据向量和的方向及其等量数据的大小。RGB颜色空间和IHS 色度空间有着精确的转换关系。IHS变换法只能用三个波段的多光谱影像融合和全色影像融合。 3.2 小波融合 小波变换,基于遥感影像的频域分析进行的,由于同一地区不同类型的影像,低频部分差别不大,而高频部分相差很大,通过小波变换对变换区实现分频,在分频基础上进行遥感影像的融合,常用于雷达影像SAR与TM影像的融合。

基于互信息的图像配准

信息论大作业 基于互信息的图像配准 班级:金融101 学号:2009302311 姓名:魏泉

1. 引言 随着医学、计算机技术及生物工程技术的发展,医学影像学为临床诊断提供了多种模态的医学图像,不同的医学图像提供了相关脏器的不同信息:CT(Computed Tomography ,电子计算机X 射线断层扫描)和MRI(Magneticresona nce ima ging ,核磁共振成像)以较高的空间分辨率提供了脏器的解剖结构信息。在实际临床应用中,单一模态的图像往往不能提供医生所需要的足够的信息,通常需要将不同模态的图像融合在一起,得到更丰富的信息,以便了解病变组织或器官的综合信息,从而做出准确的诊断或制订出合适的治疗方案。而图像配准是图像融合的重要前提,图像配准是指对一幅图像进行一定的几何变换而映射到另一幅图像中,使得两幅图像中的相关点达到空间上的一致。图像配准主要有两大类方法,基于灰度的方法和基于特征的方法。基于灰度的配准方法直接利用图像的灰度数据进行配准,从而避免了因分割而带来的误差,因而具有精度较高、鲁棒性强、不需要预处理而能实现自动配准的特点。在基于灰度的配准方法中,基于互信息的方法包括互信息和归一化互信息方法,它们已经被广泛使用并具有最高的精度。本文使用的是基于互信息的配准方法。 2. 图像配准技术 2.1图像配准技术的数学定义 数字图像可以用一个二维矩阵来表示,如果用 ),(1 y x I 、),(2y x I 分别表示待配准图像和参考图像在点(x,y)处的灰度值,那么图 像I 1、I 2的配准关系可表示为: ))),(((),(12 y x f g y x I I = (1) 其中f 代表二维的空间几何变换函数;g 表示一维的灰度变换函数。 配准的主要任务是寻找最佳的空间变换关系f 与灰度变换关系g ,使两幅图像实现最佳对准。其中,空间几何变换是灰度变换的前提,是实现精准配准的关键环节。 2.2几何变换 空间变换主要解决图像平面上像素的重新定位问题,式(1)中的空间几何变换函数f 可用空间变换模型进行描述,常用的空间变换模型有刚体变换、仿射变换、投影变换和非线性变换。刚体变换使得一幅图像中任意两点间的距离变换到另一幅图像中后仍然保持不变;仿射变换使得一幅图像中的直线经过变换后仍保持直线,并且平行线仍保持平行;投影变换是从三维图像到二维平面的投影;非线性变换把一条直线变换为一条曲线,一般用代数多项式来表示。仿射变换是最常用的一种空间变换形式,可以实现图像的平移、旋转、按比例缩放等操作,我们在实验中使用的是此变换模型。仿射变换可以用矩阵形式表示: 1[x 1y 1]=0[x 0y 1]T =0[x 0y 1]111221 2231 32 001t t t t t t ?? ? ? ???

高分辨率遥感图像融合方法的比较正式

包头师范学院 本科学年论文 论文题目:高分辨率遥融图像融合方法比较院系:资源与环境学院 专业:地理信息系统 学号:0912430022 姓名:郭殿繁 指导教师:同丽嘎 撰写学年:2010 至2011 学年 二零一零年十二月

摘要:目前,遥感中高分辨率全色遥感影像和低空间分辨率的多光谱遥感影像融合是影像融合技术应用的主流。本文通过对遥感影像四种融合方法的研究,并且用呼和浩特市快鸟影像图像融合举例,加深对四种融合方法的理解和理论应用,最后通过截取呼和浩特市快鸟影像的原始多波段彩色影像和原始高分辨率全色波段影像的一部分进行四种融合方法来进行精度的比较,以ENVI4.7软件作为平台,最终得出,Gram-Schmidt变换效果最好,HSV变换融合效果最差。 关键词:图像融合;PCA变换;Gram-Schmidt变换;Brovey变换;HSV变换;精度比较 Abstract: At present, the remote sensing high resolution full-color remote sensing image and low spatial resolution multi-spectral remote sensing image fusion is image fusion technology application of mainstream. This article through to four kinds of remote sensing image fusion method with the principle and analysis, and in Hohhot, fast image image fusion for example, the bird to deepen the understanding of four fusion method and theory, and finally by intercepting the original image Hohhot fast bird multichannel color image and primitive high-resolution full-color band image on the part of four fusion method for precision compared to ENVI4.7 software as a platform to finally arrive, the best effect, Schmidt transform - the worst. Fusion result transformation HSV. Key words: image fusion, PCA transform; Schmidt transform; the - Brovey transform; HSV transform; Precision;

Photoshop平面图像处理实验报告

Photoshop平面图像处理实验报告 一、实验项目 安徽大学宣传画 二、实验目的 (1)使用Photoshop基本工具实现宣传画制作; (2)利用所学知识使得构图美观,各图层间融合度高,辨识度高; (3)尽可能多的使用不同的方法完成制作; (4)学会使用一些常用工具的快捷键,例如“Alt+滚轮”可改变图像大小,“Ctrl+T”可对对象使用“自由变换”等; (5)习惯在新建图层上进行操作,习惯对需要进行较大改动的图层进行备份; (6)在图像放大的基础上进行精确抠图; (7)对图层边界进行模糊处理,提高融合度; (8)学会对绘制图形及文字添加效果,使其立体化(更加真实),或是(多彩化)更加绚丽; (9)学会对设计的图像进行分解与重组,例如球体就是由一层底色加效果、以及白色高光层组合而成; (10)要注意整体构图中的光影效果,使整体井然有序,而不是杂乱无章; (12)学会合理利用滤镜中的各种效果,设计出最为合适的组合; (13)不要忽视重叠图层的“叠加效果”,合理利用可提升叠加图层的融合度; (14)习惯给图层取名,方便修改。 三、实验步骤

(1)新建文件,打开图片(安徽大学校门)文件,使用移动工具拖曳至新建文件中。 (2)为使得校门朝向满足构图设计,使用“编辑——变换——水平翻转”功能,将其实现左右水平翻转。

(3)利用“磁性套索工具”将大门主体部分选出,再使用“选择——反选”功能,选出该图层中不需要的部分,利用“编辑——清除”使其被清除。 (4)使用“橡皮”工具,调整合适的笔锋、不透明度及流量大小对剩余主体部分多余的边角、门内的空隙进行擦除。 使用“编辑——自由变换”调整大小,移动到设计位置。

利用ENVI软件进行遥感图像的融合和增强实习报告

遥感图像处理实习报告 实验内容:影像融合与增强 班级:测绘1102班 学号:13 姓名: 指导老师:陈晓宁、黄远程、竞霞、史晓亮 西安科技大学 测绘科学与技术学院 二零一三年一月 实习三影像融合与增强

一、实习内容: 1.掌握ENVI中各种影像融合方法,并比较各方法的优缺点; 2.熟悉ENVI图像增强操作; 3.本实习的数据源为上节已经过校正的资源三号多光谱和全色影像。 二、实习目的: 1.了解和认识各种图像融合方法的原理、内容及要点; 2.熟悉、熟练操作ENVI软件中各种图像融合的方法、步骤并学会加以比较; 3.学习利用ENVI软件进行各种图像增强处理操作; 4.学会定性、定量分析比较图像融合的差异。 三、实习步骤: 1.图像融合: 三波段融合: HSV和Color Normalized (Brovey)变换: 1)从ENVI主菜单中,选择File → Open Image File,分别加载校正后的资源三号多光谱与全色影像到可用波段列表Available Bands List中; 2)选择多光谱3,2,1波段(可以根据需要选择)对应R,G,B,点击Load RGB将多光谱影像加载到显示窗口display#1; 3)在ENVI的主菜单选择Transform → Image Sharpening → HSV; 4)在Select Input RGB Input Bands对话框中,选择Display #1,然后点击OK。 5)从High Resolution Input File对话框中选择全色影像,点击OK。 6)从HSV Sharpening Parameters对话框中,选择重采样方法,并输入输出路径和文件名,点击OK。即可完成HSV变换融合;

实验报告四综述

成都信息工程大学遥感图像处理上机报告

1. 实验项目名称 遥感图像光谱增强处理 2. 实验目的 主成分分析:为了去除波段之间多余信息、将多波段的图像信息压缩到比原波段更有效的少数几个转换波段。 主成分逆变换:将主成分变换的图像重新恢复到RGB 彩色空间。缨帽变换:根据多光谱遥感中土壤、植被等信息在多维光谱空间中信息分布结构对图像 做的经验性线性正交变换。图像融合:将多源信道所采集到的关于同一目标的图像数据经过图像处理和计算机技术 等,最大限度的提取各自信道中的有利信息,最后综合成高质量的图像,以提高图像信息的利用率、改善计算机解译精度和可靠性、提升原始图像的空间分辨率和光谱分辨率,利于监测。 3. 实验原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 缨帽变换又称KT 变换。是一种经验性的多波段图像的线性变换,是Kauth 和Thomas(1976) 在研究MSS 图像反映农作物和植被的生长过程时提出的。在研究过程中他们发现MSS 四个波段组成的四维空间中,植被的光谱数据点呈规律性分布,像缨帽状,因此将这种变换命名为缨帽变换。 图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。该技术有基本的体系,主要包括的内容有:图像预处理,图像融合算法,图像融合评价,融合结果。图像融合系统的层次划分为:像素层融合、特征层融合、决策层融合,目前绝大多数融合算法研究都集中在这一层次上。 4. 数据来源

遥感图像的假彩色合成

北京化工大学 学士学位论文 遥感图像的假彩色合成 姓名:刘晓璐 班级:信息与计算科学0304班 学号:200362102

遥感图像的假彩色合成 摘要:遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内及其我国的许多政府部门,科研单位和公司得到了广泛的应用。在遥感数据源向着更高光谱分辨率和更高空间分辨率发展的同时,处理技术也更加成熟;在应用上,结合了地理信息系统(GIS)和全球定位系统(GPS),向着更系统化,更定量化方向发展,使遥感数据的应用更加广泛和深入。 假彩色增强是将一幅彩色图像映射为另一幅彩色图像,从而达到增强彩色对比,使某些图像达到更加醒目的目的。 本文的主要目的就是大遥感的多光谱图像用自然彩色显示。在遥感的多光谱图像中,有些是不可见光波段的图像,如近红外,红外,甚至是远红外波段。因为这些波段不仅具有夜视能力,而且通过与其他波段的配合,易于区分地物。 用假彩色技术处理多光谱图像,目的不在于使景物恢复自然的彩色,而是从中获得更多的信息。为了实现这样的目的,本文采用了MATLAB数学软件编程的方法以及运用Envi4.2 软件直接编辑图像这两种方法,并对其进行对比,得出最优的合成图像。 关键词:图像融合,假彩色合成,彩色增强,灰度级,RGB图像,

False color mapping for image fusion Abstract: A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the component of two original input images is determined. Second, the common component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous(an important consideration when it has to fit in an airplane, for instance). Key words: image fusion, false color mapping, color enhances, gray-level, RGB images

ENVI实验报告

实验报告 课程名称:系部名称:测绘工程学院专业班级:遥感科学与技术 11-1班学生姓名:学号: 指导教师:田静 实验报告1 实验报告 2 篇二:envi上机报告 《遥感软件应用与开发》 实验指导书、作业 系部名称:测绘工程学院 专业班级:遥感科学与技术11-1班 学生姓名: 学号: 指导教师:田静 测绘工程学院 目录 《遥感软件应用与开发》课程实验指导书???????????错误!未定义书签。 实验一:envi软件安装与基本功能操作?????????????3 实验二:影像的地理坐标定位和校正??????????????19 实验三:图像融合、图像镶嵌、图像裁剪 ???????????25 实验四:图像分类 ?????????????????????31 实验报告: ???????????????????????37 实验报告1: ????????????????????????38 实验报告2: ????????????????????????41 实验报告3: ????????????????????????44 实验报告4: ????????????????????????47 实验一:envi软件安装与基本功能操作 一、实验目的 熟悉遥感数据图像处理软件envi的安装过程,了解envi基本信息、基本概念及其主要 特性。对envi操作界面有一个基本的熟悉,对各菜单功能有一个初步了解,为后面的实验作 好准备。 二、实验学时 2学时 三、实验类型 实践 四、实验原理及内容 (1)遥感图像处理软件envi界面总体介绍 (2)envi软件能识别的图像类型介绍 (3)各种图像文件的打开 重点: envi能识别的文件类型 学生可自行阅读帮助文件学习。 五、实验步骤 1.envi的安装 2.遥感图像处理软件envi界面介绍

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

遥感图像光谱增强处理实验报告

一、实验名称 遥感图像光谱增强处理 二、实验目的 对图像进行主成分分析、主成分变换以及主成分百分比计算;观察图像在不同色彩空间之间相互转换的结果异同,对图像进行融合,用MODEL MAKER 建模方式进行图像处理。 通过以上操作初步掌握图像光谱增强处理过程,进一步理解影像光谱增强中不同增强方法的原理及其增强效果的差异。 三、实验原理 光谱增强是基于多光谱数据对波段进行变换达到图像增强处理,采用一系列技术去改善图象的视觉效果,或将图象转换成一种更适合于人或机器进行分析处理的形式。有选择地突出某些对人或机器分析有意义的信息,抑制无用信息,提高图象的使用价值。 主成分分析(PCA)用多波段数据的一个线性变换,变换数据到一个新的坐标系统,以使数据的差异达到最大。对于增强信息含量、隔离噪声、减少数据维数非常有用。 使用Color Transforms 工具可以将3-波段红、绿、蓝图像变换到一个特定的彩色空间,并且能从所选彩色空间变换回RGB。两次变换之间,通过对比度拉伸,可以生成一个色彩增强的彩色合成图像。 图像融合是将多幅影像组合到单一合成影像的处理过程。它一般使用高空间分辨率的全色影像或单一波段的雷达影像来增强多光谱影像的空间分辨率。 四、数据来源 本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM第三波段影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。

五、实验过程 1.主成分分析 1)打开并显示TM影像文件,从ENVI 主菜单中,选择File →Open Image File选择影像,点击Load Band 在主窗口加载影像。 2)主菜单选择Transforms—>Principal Components—>Forward PC Rotation —>Compute New Statistics and Rotate。在弹出的Principal Components Input File 对话框中,选择图像。 3)在Forward PC Rotation Parameters对话框中在输入统计系数,选择计算矩阵(选择协方差矩阵),输出统计文件及路线,统计波段数等相关参数的设置,单击Ok。

工作报告之envi彩色增强实验报告

envi彩色增强实验报告 【篇一:envi图像增强实验:】 envi图像增强及变换实验指导书: 一、打开.img文件 1. 2.从 windows 任务栏选择:start programs envi 3.2 envi 3.2 。当程序成功地载入和运行时,出现 eniv 主菜单。选择 file open image file. 当出现 enter data filename 对话框,点击文件名,再点击“ok” 或“open” 以打开选择的文件。如:can.img,此时会显示available bands list窗口. 二、显示单波段的灰白影像和多波段的彩色影像显示一幅灰阶图象 3. 4. 5.从 available bands list 内,选择“gray scale” 切换按钮。点 击需要的波段名,它将显示在一个标签为“selected band:” 的小文 本框中。在窗口底部点击“load band”,来导入波段到显示,并出 现一个图像窗口和相 应的缩放/滚动窗口。 显示一幅彩色合成图象 1. 从 available bands list 内,选择“rgb color” 切换按钮。 2. 在序列中点击所需要显示的红、绿和蓝波段名(或在每个r、g 或 b 波段使用切换按钮)。 3. 一旦波段名导入到标签为“r:”、“g:”、“b:” 的文本框中,点击“load rgb” 来显示彩色合成图像。envi 用 2% 的系统默认线性拉伸 值来显示所有图像。 三、图像增强: 在灰阶影像和彩色影像上分别利用主窗口的菜单enhance选项下的linear、linear0-255、linear2%、gaussian、equalization、 square root 各种增强方式的效果,以及熟练掌握并理解interactive stretching操作和意义。 四、图像变换: band ratios (波段比)

遥感图像融合质量评价方法

遥感图像融合质量评价方法 武坚李崇伟王积武李相全 (68011部队甘肃兰州 730020) 摘要:图像融合可为摄影测量与遥感提供高质量的遥感融合图像。遥感融合图像质量如何是图像使用者关心的一个重要问题。本文运用主观评价、客观评价、几何质量等三种评价方法对融合后的遥感图像的质量展开讨论。实践表明这些评价方法能够保证融合后图像高质量地应用于摄影测量与遥感生产。 关键词:主观评价客观评价几何质量质量评价 1.前言 摄影测量与遥感[1]是以数字影像为基础,来确定被摄物体的形状、大小、空间位置及其性质。遥感图像是摄影测量与遥感最原始、最基本的资料。高质量的遥感图像是完成摄影测量与遥感的基础。遥感影像融合[2]是将多传感器、多时相、多光谱和多分辨率影像的各自局部优势信息整合处理,以提供高分辨率、多光谱的单一图像,解决遥感影像解译过程中信息不足的问题。由此看出,图像融合可以为摄影测量与遥感提供高质量的遥感影像。 2.图像融合的评价方法 当前对融合后图像的质量评价主要是主观目视与统计相关信息参数相结合的办法,即:利用目视效果和信息熵、清晰度、平均梯度、偏差指数、均方根误差等参数统计分析,而对融合后图像的几何量测性则关注较少。对于摄影测量与遥感应用,几何精度是一个很重要的因素。本文结合摄影测量与遥感应用角度,来对分析融合后图像的质量做出评价。 站在通用图像处理角度,目前大多数对影像质量评价分为主观评价和客观评价,并结合起来使用。主观评价是通过目视观察进行分析,客观评价是利用图像的统计参数进行判定。严格意义上讲,融合图像的主客观评价应该是一致的,即图像的统计参数特征应该符合人眼的目视感觉。但由于遥感图像融合具有特殊性,它不仅仅要求提高融合图像的空间分辨率,而且要尽可能制约[2]。因此,对遥感融合图像的质量评价,应综合考虑空间细节的增强和光谱保持原始图像的光谱特征。此外,这两个要求在很大程度上是不太相容,相互信息的保持两个方面,利用图像的统计参数结合目视观察来分析与评价。 对于摄影测量与遥感而言,影像的几何质量(影像的可量测性)是很重要的一个因素,它将决定融合图像能否达到数字地形图生产的精度限差[4]。因此,从主观、客观、几何质量等三个方面对做出质量评价可以保证融合后图像高质量地应用于摄影测量与遥感生产。

实验六 图像融合

实验六、图像融合 一、实验目的 1熟悉图像融合的意义和用途,理解图像融合的原理; 2掌握图像融合的一般方法; 3掌握运用MA TLAB软件进行图像融合的操作。 二、实验原理 图像融合的目的把来自多传感器的数据互补信息合并成一幅新的图像,以改善图像的质量。图像融合最简单的理解就是两个(或多个)图像间的相加运算。这一技术广泛应用于多频谱图像理解和医学图像处理等领域。主要分为空域和频域相加。 本实验主要应用MA TLAB软件进行两幅图像的融合。方法有: 1图像直接融合; 2图像傅立叶变换融合; 3图像小波变换融合。 图像融合的MA TLAB程序如下: 1)调入、显示两幅图像的程序语句 load tartan; X1=X;map1=map; Load sinsin; X2=X;map2=map; %打开图像 Subplot(1 2 1) Image(X1),colormap(map1); Title(‘图像map1’) Subplot(1 2 2) Image(X2),colormap(map2); Title(‘图像map2’) %显示两幅图像 2)两幅图像直接融合的程序语句 figure,subplot(1 3 1) image((X1+X2)/2),colormap(map2); %在空域内直接融合 title(‘两图像直接相加融合’) %显示融合后的图像,并命名为“两图像直接相加融合” 3)两幅图像傅立叶变换融合的程序语句 F1=fft2(X1); F2=fft2(X2); %分别计算两幅图像的快速傅立叶变换 X=abs(ifft2(F1+F2)/2); %两幅图像在频域内相加后的傅立叶逆变换 Subplot(1 3 2) Image(X),colormap(map2); %显示融合后的图像 Title(‘两幅图像傅立叶变换融合’) %给融合后的图像命名并显示在图上 4)两幅图像小波变换融合的程序语句 [C1,L1]=wavedec2(X1,2, ‘sym4’); [C2,L2]=wavedec2(X2,2, ‘sym4’); %分别对两幅原图像进行小波分解 C=C1+C2; %对分解系数进行融合 X=waverec2(C,L1, ‘sym4’); %对融合后的信号进行图像重构 Subplot(1 3 3) Image(X/2),colormap(map2); %显示经过小波变换融合后的图像 Title(‘两图像小波变换融合’) %给融合后的图像命名并显示在图上

遥感影像分类实验报告

面向对象分类实验报告 姓名: 学号: 指导老师: 地球科学与环境工程学院

一、实验目的 面向对象法模拟人类大脑认知过程,将图像分割为不同均质的对象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息,结合各种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。 面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。首先我们要用一定方法对遥感影像进行分割,在提取分割单元(图像分割后所得到的内部属性相对一致或均质程度较高的图像区域)的各种特征后,在特征空间中进行对象识别和标识,从而最终完成信息的分类与提取。 二、实验意义 1、使用eCognition进行面向对象的影像分类的流程; 2、体会面向对象思想的内涵,学会将大脑认知过程转变为机器语言; 三、实验内容 3.1、影像的预处理 利用ERDAS软件将所给的全色影像和多光谱遥感影像进行融合,达到既满足高空间分辨率,又保留光谱信息。Image interperter-> spatial enhancement-> resolution merge.输入融合前的两幅影像,完成影像的预处理过程。 图 1 图像融合步骤

图 2 融合后的图像 3.2、使用eCongition 创建工程 a、使用规则集模式创建工程 图 3 模式选择 b、file->new projection ,打开Create Project和Import Image Layers两个

对话框,将上面的实验数据导入。(注意,数据以及工程文件保存路径不要有中文) 图 4 导入数据 c、选择数据修改波段名称,并设置Nodata选项。

相关文档
最新文档