基于知识图谱的效率可视化研究

基于知识图谱的效率可视化研究
基于知识图谱的效率可视化研究

6个方面分析知识图谱的价值和应用

6个方面分析知识图谱的价值和应用 知识对于人工智能的价值就在于,让机器具备认知能力和理解能力。构建知识图谱这个过程的本质,就是让机器形成认知能力,理解这个世界。一、知识图谱无处不在说到人工智能技术,人们首先会联想到深度学习、机器学习技术;谈到人工智能应用,人们很可能会马上想起语音助理、自动驾驶等等,各行各业都在研发底层技术和寻求AI场景,却忽视了当下最时髦也很重要的AI技术:知识图谱。当我们进行搜索时,搜索结果右侧的联想,来自于知识图谱技术的应用。我们几乎每天都会接收到各种各样的推荐信息,从新闻、购物到吃饭、娱乐。个性化推荐作为一种信息过滤的重要手段,可以依据我们的习惯和爱好推荐合适的服务,也来自于知识图谱技术的应用。搜索、地图、个性化推荐、互联网、风控、银行……越来越多的应用场景,都越来越依赖知识图谱。二、知识图谱与人工智能的关系知识图谱用节点和关系所组成的图谱,为真实世界的各个场景直观地建模。通过不同知识的关联性形成一个网状的知识结构,对机器来说就是图谱。形成知识图谱的过程本质是在建立认知、理解世界、理解应用的行业或者说领域。每个人都有自己的知识面,或者说知识结构,本质就是不同的知识图谱。正是因为有获取和形成知识的能力,人类才可以不断进步。知识图谱对于

人工智能的重要价值在于,知识是人工智能的基石。机器可以模仿人类的视觉、听觉等感知能力,但这种感知能力不是人类的专属,动物也具备感知能力,甚至某些感知能力比人类更强,比如:狗的嗅觉。而“认知语言是人区别于其他动物的能力,同时,知识也使人不断地进步,不断地凝练、传承知识,是推动人不断进步的重要基础。”知识对于人工智能的价值就在于,让机器具备认知能力。而构建知识图谱这个过程的本质,就是让机器形成认知能力,去理解这个世界。 三、图数据库知识图谱的图存储在图数据库(Graph Database)中,图数据库以图论为理论基础,图论中图的基本元素是节点和边,在图数据库中对应的就是节点和关系。用节点和关系所组成的图,为真实世界直观地建模,支持百亿量级甚至千亿量级规模的巨型图的高效关系运算和复杂关系分析。目前市面上较为流行的图数据库有:Neo4j、Orient DB、Titan、Flock DB、Allegro Graph等。不同于关系型数据库,一修改便容易“牵一发而动全身”图数据库可实现数据间的“互联互通”,与传统的关系型数据库相比,图数据库更擅长建立复杂的关系网络。图数据库将原本没有联系的数据连通,将离散的数据整合在一起,从而提供更有价值的决策支持。四、知识图谱的价值知识图谱用节点和关系所组成的图谱,为真实世界的各个场景直观地建模,运用“图”这种基础性、通用性的“语言”,“高保真”地表达这个多姿多彩世界的各种

知识图谱构建方法研究

基于多数据源的知识图谱构建方法研究 摘要:针对多数据源的融合应用,构建了基于多数据源的知识图谱。首先,对不同领域内的数据源构建相应本体库,并将不同本体库通过数据融合映射到全局本体库,然后,利用实体对齐和实体链接方法进行知识获取和融合,最后,搭建知识图谱应用平台,提供查询和统计等操作。在实体对齐方面,利用传统的基于相似性传播实体对齐方法,获得良好的实体对齐效果;在实体链接方面,提出了基于约束嵌入转换的预测推理方法,实验结果表明,在预测准确率上取得较好的结果。 0 引言 在大数据时代背景下,随着海量数据的出现以及多数据源融合交叉应用,传统的数据管理模式以及查询方式受到一定的制约。近年来,知识图谱(Knowledge Graph)[1]作为一种新的知识表示方法和数据管理模式,在自然语言处理、问题回答、信息检索等领域有着重要的应用。知识图谱是结构化的语义知识库,用于以符号形式描述物理世界中的概念及其相互关系;其基本组成单位是“实体-关系-实体”三元组,以及实体及其相关属性-值对,实体间通过关系相互联结,构成网状的知识结构[2]。 随着谷歌知识图谱的发布,知识图谱的构建与应用研究引起了学术界和工业界的广泛关注。在国内,知识图谱的构建与研究已经起步,相应取得许多重要的研究成果。如:搜狗的知立方、百度知心;复旦大学GDM实验室设计了一种面向图书阅读领域的中文知识图谱[3];金贵阳等[4]利用知识图谱和语义网技术,提出构建企业知识图谱的方法,并应用于钢铁企业信息集成,提高了企业信息查询的效率;胡芳槐[5]在博士论文中研究了基于多数据源的中文知识图谱构建方法,涉及到本体层构建、实体层的学习等,同时构建行业领域知识图谱的应用平台;王巍巍等[6]构建了双语影视知识图谱,包括影视本体库的构建、实体的链接、实体匹配等,并搭建了应用平台与开放数据访问接口;鄂世嘉等[7]提出了一种端到端基于中文百科数据的中文知识图谱自动化构建方案,并开发面向用户的中文知识图谱系统。 现有的行业领域知识图谱通常采用手工构建方式,缺乏统一的构建方法,且这类知识库目标是特定行业领域,因此,其描述范围极为有限。针对这些问题,提出了将不同领域知识库进行融合成一个知识图谱,旨在构建语义一致、结构一致的多数据融合知识图谱,实现对不同领域内的知识进行查询和展示,从而提高了数据查询效率。 本文提出一个多数据源融合的知识图谱构建流程,并对关键技术进行研究,包括数据源的获取、领域本体库的构建、全局本体库的构建、实体对齐、实体链接以及应用平台的搭建。文中利用某地区的医院医疗保健数据、空气污染监测数据和环境监测数据,构建了多数据融合的知识图谱。 1 知识图谱构建过程 知识图谱构建是知识图谱得以应用发展的前提,涉及实体抽取和实体及实体之间关系的建立,同时还需要很好地组织和存储抽取的实体与关系信息,使其能够被迅速的访问和操作[8]。知识图谱构建过程通常可以分成两步:知识图谱本体层构建和实体层的学习[5]。本体层构建通常包含术语抽取、同义词抽取、概念抽取、分类关系抽取、公理和规则学习;实体层学习则包含实体学习、实体数据填充、实体对齐和实体链接等。 知识图谱的构建方法通常有自顶向下和自底向上两种[2]。所谓自顶向下的方法是指先构建知识图谱的本体,即从行业领域、百科类网站及其它等高质量的数据源中,提取本体和模式信息,添加到知识库中;而自底向上的方法是指从实体层开始,借助于一定的技术手段,对实体进行归纳组织、实体对齐和实体链接等,并提取出具有较高置信度的新模式,经人工审核后,加入到知识图谱中。然而,在实际的构建过程中,并不是两种方法孤立单独进行着,而是两种方法交替结合的过程。本文在构建多数据源的知识图谱时采用两种方法的结合,首先采用自顶向下的方式来构建本体库,然后采用自底向上的方式进行提取知识来扩展知识图谱。

科学知识图谱在学科评价中的应用研究[开题报告]

(2011届) 本科毕业论文(设计) 开题报告 题目:科学知识图谱在学科评价中的应用研究学院:商学院 专业:信息管理与信息系统 班级: 学号: 姓名: 指导教师: 开题日期:

一、选题的背景、意义 1.该选题的历史背景及国内外现状 科学知识图谱,是将传统的文献计量方法与现代的文本挖掘和复杂网络、数学、统计学、计算机科学方法以及可视化技术等有机地整合在一起的一种综合分析科学发展的知识发现方法。从20世纪 50年代至今,科学知识图谱的研究已经有几十年的历史。 (1)引文分析理论的发展促进了科学知识图谱的兴起。20世纪60年代,加菲尔德(Eugene Garfield)创办科学引文索引 (SCI)。1965年,普赖斯以SCI为数据来源,发表了一篇科学计量学的杰作《科学论文的网络》。在这篇论文中,普赖斯第一次提出并界定了“研究前沿”的概念。到了20世纪70、80年代,匈牙利的三位学者T.布劳温 (Tibur Braun)、W.格伦采尔 (Wolfgang Glanze1)和A.舒伯特 (Andres Schubert)以SCI数据库为基础,出版了《科学计量学指标》,这实际上是世界科学地图和科学知识图谱的雏形。 (2)复杂网络系统和社会网络分析的兴起丰富了引文分析理论与方法。美国社会心理学家斯坦利·米尔格兰姆(Stanley Milligram)于1967年通过社会网络人际关系的“六度分隔”试验发现了著名的“小世界”现象。90年代中期,比利时情报计量学专家埃格赫 (Leo Egghe)和鲁索 (Ronald Rousseau)合作出版了《情报计量学引论》,促进了科学知识图谱的产生。进入21世纪,社会网络分析的探索与应用向纵深发展,风靡全球。 (3)信息可视化为科学知识图谱提供了强大的技术支持。1999年陈超美出版了该领域的第一部学术专著《信息可视化与虚拟环境》,R.斯宾塞 (Robert Spence)2000年出版了《信息可视化》之后相关研究如雨后春笋般涌现。 总体来讲,无论是企业还是科研领域,我国对知识图谱的关注滞后于国外。相比国外知识图谱的研究状况,我国起步稍晚,但是也取得了一些成绩。国内在知识图谱的应用方面缺少理论上的实证分析,主要是将知识图谱作为一个工具,应用于各个领域,而且相对于国外,应用研究还比较薄弱。目前而言,国内知识图谱研究中存在主要困难和问题如下: (1)研究手段和方法的严重滞后 国内近几年有关知识图谱的研究也有一些,如大连理工大学的刘则渊教授带领的团队进行了科学计量学、管理学人机工程学学科以及国内所有工程领域研究前沿的知识图谱构建;武汉大学的马费成、刘青林、社科院的蒋颖等也对国内外知识管理、数字资源管理、战略管理、文献计量学等领域进行了共词图谱的绘制;南京大学的邓三鸿、浙江大学的潘有能等初步建立了图书情报学科的学科知识地图;金莹以CSSCI 数据粗略构建了我国社会科学的学

数据分析与可视化知识分享

数据分析与可视化

数据分析与可视化 1.什么是数据分析? 数据分析是基于商业目的,有目的的进行收集、整理、加工和分析数据,提炼有价信 息的一个过程。其过程概括起来主要包括:明确分析目的与框架、数据收集、数据处理、 数据分析、数据展现和撰写报告等6个阶段。 1、明确分析目的与框架 一个分析项目,你的数据对象是谁?商业目的是什么?要解决什么业务问题?数据分 析师对这些都要了然于心。基于商业的理解,整理分析框架和分析思路。例如,减少新客 户的流失、优化活动效果、提高客户响应率等等。不同的项目对数据的要求,使用的分析 手段也是不一样的。 2、数据收集 数据收集是按照确定的数据分析和框架内容,有目的的收集、整合相关数据的一个过 程,它是数据分析的一个基础。 3、数据处理 数据处理是指对收集到的数据进行加工、整理,以便开展数据分析,它是数据分析前 必不可少的阶段。这个过程是数据分析整个过程中最占据时间的,也在一定程度上取决于 数据仓库的搭建和数据质量的保证。 数据处理主要包括数据清洗、数据转化等处理方法。 4、数据分析 数据分析是指通过分析手段、方法和技巧对准备好的数据进行探索、分析,从中发现 因果关系、内部联系和业务规律,为商业目提供决策参考。 到了这个阶段,要能驾驭数据、开展数据分析,就要涉及到工具和方法的使用。其一 要熟悉常规数据分析方法,最基本的要了解例如方差、回归、因子、聚类、分类、时间序 列等多元和数据分析方法的原理、使用范围、优缺点和结果的解释;其二是熟悉1+1种数据分析工具,Excel是最常见,一般的数据分析我们可以通过Excel完成,后而要熟悉一个专业的分析软件,如数据分析工具SPSS/SAS/R/Matlab等,便于进行一些专业的统计分析、数据建模等。 5、数据展现 一般情况下,数据分析的结果都是通过图、表的方式来呈现,俗话说:字不如表,表 不如图。借助数据展现手段,能更直观的让数据分析师表述想要呈现的信息、观点和建 议。 常用的图表包括饼图、折线图、柱形图/条形图、散点图、雷达图等、金字塔图、矩 阵图、漏斗图、帕雷托图等。 6、撰写报告

知识可视化应用于学科教学的新观点

知识可视化应用于学科教学的新观点——访瑞士知识可视化研究开拓者马丁·爱普教授 2015-06-29 MOOC 本文由《开放教育研究》杂志授权转载 作者:本刊特约记者赵慧臣、王淑艳 编者按 随着多媒体技术的发展,如何有效应用知识可视化优化教学过程,成为图像时代教学面临的重要挑战。瑞士卢加诺大学马丁·爱普(Martin J.Eppler)教授是推动知识可视化研究的重要开拓者,在促进知识可视化的教学应用方面成绩显著。2004年,他界定了知识可视化的定义,提出视觉传播与视觉认知是知识可视化的理论基础,推动知识可视化正式成为新的研究领域。2005年,他整合形式多样的视觉表征形式,形成“可视化方法周期表”,用以揭示不同形式视觉表征的异同。他和团队构建了“视觉素养”在线学习教程,提供可视化教学设计方案和案例,大力推动知识可视化在专业教学中的应用,为利用可视化方式优化教学过程提供了参考。他开发了知识传播网(https://www.360docs.net/doc/c015276267.html,)、视觉素养网(https://www.360docs.net/doc/c015276267.html,)等知名网站,利用网络课程提升教师、学生的视觉素养,推广知识可视化及其教学应用成果。他与多所高校合作,

开展知识可视化的综合研究,对不同学校、不同学科人员如何开展协同研究具有参考价值。借助于本次访谈,我们能了解马丁·爱普教授如何看待知识可视化教学应用的最新发展与未来趋势,及其研究团队如何利用知识可视化优化教学的。 关键词:知识可视化;可视化教学;知识传播 记者:马丁·爱普教授,很荣幸您能接受我们的采访。您是知识可视化研究方面的权威,在知识可视化及其教学应用方面开展了卓有成效的研究。您能否先向中国读者简单介绍一下知识可视化是什么?具有什么优势? 马丁·爱普:很高兴接受您的访问。知识可视化指应用视觉表征手段,促进群体知识的创造和传播。我们通过绘制草图、知识图表、视觉隐喻等视觉方式表征知识,促进人际间的知识传播和创新。在多媒体技术支持下,知识可视化制作工具越来越多,方法更简易。常用的知识可视化工具有思维导图软件Mind manager和概念图软件Inspiration 等。 知识可视化的优势可体现在社会、情感和认知三方面。在社会方面,它有助于推动知识在生产者和学习者之间的传播;在情感方面,它引导学习者主动探究图形的意义,有助于从文化情感层面促进知识创新和迁移;在认知方面,它可以呈现新旧知识间的联系,引导学习者记

科学知识图谱研究综述

?新技术应用? 科学知识图谱研究综述 梁秀娟 (湘潭大学公共管理学院 湖南湘潭411105) 文 摘 随着可视化技术的发展,将其与引文分析技术相结合,可以直观、形象地向人们揭示学科以及学科之间的联系。本文结合国内外在引文分析和可视化方面的最新研究,从起源、概念、绘制方法、应用及研究展望等方面对科学知识图谱进行了较为详细的分析。 关键词 引文分析 可视化 科学知识图谱 Rev i ew of M app i n g Knowledge D o ma i n s L i a ng X i ujuan (Public Manage ment School of Xiang Tan University,XiangTan HuNan,411105) Abstract:W ith the devel opment of visual technol ogy which co mbined with citati on analysis technol2 ogy,it can reveal the link bet w een subjects intuitively and vividly.I n this paper,combined with the latest research on citati on analysis and visualizati on,we make a detailed intr oducti on in the areas of mapp ing knowledge domains fr om the origin,concep ts,techniques,app licati ons and the latest p r o2 gress. Key words:Citati on analysis,V isualizati on,Mapp ing knowledge domains 随着信息技术、可视化技术和科学计量学、文献计量学理论的发展,以图形的方式来揭示学科间的联系已不再是一件难事。而近年来科学计量学、文献计量学研究领域兴起的热点之一,就是如何在准确、翔实地传达知识的基础上以可视化的图像直观、形象地向人们揭示学科以及学科之间的联系。科学知识图谱(Mapp ing Knowledge Domains)正是在这一研究领域中出现的一个新的热点。 1 科学知识图谱的起源 科学知识图谱是引文分析与数据、信息可视化相结合的产物。引文分析是指利用各种数学及统计学的方法和比较、归纳、抽象、概括等逻辑方法,对科学期刊、论文、著者等各种分析对象的引证与被引证现象进行分析,以揭示其数量特征和内在规律的一种文献计量分析方法[1]。正式的引文分析始于上个世纪50年代初,1964年美国的尤金?加菲尔德(Eugene Garfield)创立引文数据库S C I(Science Citati on I ndex,科学引文索引),为学者们利用引文分析法分析学科领域知识结构提供了强有力的工具。S C I不仅为引文分析奠定了数据平台,而且使得规范化、高质量的引文分析成为可能。60年代早期,加菲尔德等人开始了基于引文数据的开拓性研究,他们在《应用引文数据撰写科学历史》(The use of citati on data in writing the hist ory of science)中绘制了DNA研究领域的历史发展图谱;不久之后,普赖斯用相同的数据在其一系列经典著作———《巴比伦以来的科学》《小科学,大科学》《科学文献的网络》中,进行了知识图谱绘制的开创性工作。尽管当时并没有使用“知识图谱”这一概念,但是,实际上以引文分析为基础的“知识图谱”理论与方法己经应运而生了[2]。国内自上个世纪80年代引入S C I,很快引起了广大学者的极大兴趣,被越来越多的科学研究者所认同和使用,主要用于揭示科学结构、研究科学史的发展规律、评价科研绩效、预测研究领域热点等方面。 与此同时,计算机技术的快速发展及其在科学计算领域的应用,为数据和信息处理提供了有力的

基于知识图谱的职业能力达成度可视化评测系统

基于知识图谱的职业能力达成度可视化评测系统 发表时间:2019-07-22T15:42:14.883Z 来源:《基层建设》2019年第13期作者:刘力铭孟昉[导读] 摘要:基于知识图谱的职业能力达成度可视化评测系统,利用知识图谱半监督的方式对学生职业能力进行关系抽取,通过深度学习的方式不断迭代抽取越来越多的职业能力评价实例,形成用于评价教学质量监控体系中职业能力达成度的各类诊断量表,构建代表学生职业能力综合评价的知识图谱。 广州合致信息科技有限公司广东广州 510000摘要:基于知识图谱的职业能力达成度可视化评测系统,利用知识图谱半监督的方式对学生职业能力进行关系抽取,通过深度学习的方式不断迭代抽取越来越多的职业能力评价实例,形成用于评价教学质量监控体系中职业能力达成度的各类诊断量表,构建代表学生职业能力综合评价的知识图谱。并在系统中以可视化的方式展示出来,一方面用于学校了解人才培养过程质量,形成下一阶段人才培养工作目标;另一方面用于人才培养对象了解经过培养,自身与职业岗位需求差距,以及改进方法。关键词:知识图谱;半监督方式;职业能力诊断;职业能力评价 1 引言 迄今为止,我国职业教育人才培养质量评估主要是通过学校内部的教学质量评价和职业资格考试(鉴定)实现的,采用的评价指标体系达不到大规模质量监控的信度和效度要求,无法藉此进行校际间和区域间的比较。由于相关技术支持不足,评价结果无法全面反映人才培养的质量,更没有建立起对评价结果与人才培养模式间对应关系的解释模型。即使目前社会影响很大的技能大赛,在大规模推广时也遇到了经济成本以及评分者间信度和试题效度等技术问题。知识图谱在教育质量监控体系中职业能力达程度研究与应用对职业教育质量保障体系建设具有重要的参考价值。开展科学的职业能力测评(包括职业能力测评模型、测评实施方案以及测评结果分析研究),科学诊断学生职业能力、职业承诺和职业认同感的发展水平,对不同地区、不同院校间的课程与教学质量进行比较,可以获得人才培养质量的准确信息和重要参数,为各级政府制定政策提供依据,从而提高职业教育体系设计和教育质量控制水平,为在职业教育领域建立“能够迅速提醒决策者及时纠正任何不利趋势”(PISA 定义)的质量保障机制奠定方法论和技术基础。 2 研究目标 基于知识图谱的职业能力达成度可视化评测系统为有效协助高职院校学生了解自我职业规划发展方向,强化专业与就业职业能力,结合职业规划探索及职业能力诊断,透过自我诊断,针对能力缺口进行学习,提高职场竞争力。针对职业兴趣量表的测验水平提升计划计有下列几项目标: ①进行职业兴趣量表的项目分析、信度分析与效度评鉴。对于题目质量进行诊断,必要时进行修题,确保量表题目的表面效度。 ②建构职业兴趣量表的双重计分系统,即16个专业兴趣倾向分数系统与6类职业性格取向分析系统。 ③建立16个专业职业兴趣索引。包括16个专业与目前高职校院科系对照索引,16个专业与Holland职业性格对照索引。 3 研究内容 3.1职业兴趣诊断与兴趣量表关联性分析依据国内产业及职业状况归纳发展出16大职业规划种类及20项就业途径。兴趣诊断内容则参考SCCI的兴趣诊断(Career Cluster Interest Survery)期包括三种问项“我最喜欢哪些活动”、“我认为自己有哪些特质”、“我喜欢哪些科目”,由受评者自我评量,选择自己认为最适合职业规划种类项目(可复选或不选),藉由比较其强弱落点,得出个人最感兴趣的职业类型范围。 3.2基于知识图谱的职业能力达成度可视化评测系统配合职业能力分析部分,针对在职人士问卷调查结果回收后,将针对计划职业能力架构进行分析。 3.2.1 职业能力分析部分分为基本职业能力与专业职业能力两部分: 1. 基本职业能力分析项目: ①因素分析,检查基本职业能力向度的适应性; ②Cronbach α分析,删除低向度Cronbach α值的题目; ③统计检定(如:单一样本t检定检查该项基本职业能力的“常用程度” 以及“影响工作绩效的程度”是否显著大于量表的中位数),以确定该项职业能力确为常用且重要的基本职业能力。 ④建立各职业规划类型的基本职业能力剖面图。 2. 专业职业能力分析项目: ①检查子项的折半信度:将该就业途径下专业职业能力题目按单双数拆解,计算其相关系数以检查其内部一致性信度。 ②单一样本t检定:检查由在职人士评定的每一项专业职业能力的“常用程度”以及“影响工作绩效的程度”是否显著大于量表的中位数,删除于“常用程度”及“影响工作绩效的程度”皆不显著的子项,藉以确认专业职业能力子项的内容效度。 4 项目设计 4.1 项目量表设计基于上述的研究动机,本研究的具体工作主要透过数据分析方式,了解基于知识图谱的高职职业能力诊断的职业兴趣量表与全国职业能力测评中心进行信、效度的检验与分析,同时放入O*NET的工作价值观探索量表作为效标参照。因此,所采的数据搜集方式为纸本问卷法,资料搜集后,将进行信、效度的检查,并依数据分析出基于知识图谱的高职职业能力诊断职业兴趣量表中的16类职业类型与Holland的RIASEC关联程度。 表一:研究设计表

常见的知识可视化的几种工具简介

常见的知识可视化的几种工具简介 (一)概念图(Concept Map) 概念图是康乃尔大学的诺瓦克(J.D. Novak)博士(Novak, J. D. & Gowin, D. B,1984) 根据奥苏贝尔(David P. Ausubel)的有意义学习理论提出的一种教学技术。根据诺瓦克(J.D. Novak)博士的定义,概念图是用来组织和表征知识的工具。它通常将某一主题的有关概念置于圆圈或方框之中,然后用连线将相关的概念和命题连接,连线上标明两个概念之间的意义关系。概念图是使用节点代表概念、连线表示概念间关系,由包含一个概念的节点及连接组成。连接被贴上标签并用箭头符号指示方向,被贴上标签的连接解释节点之间的关系,箭头描绘关系的方向,“概念-连接词-概念“这样一个三元组形成了一个命题。另外,概念图是具有层次结构的,最高级的概念处在顶端。人们可以用适合的关联词来说明不同层次的概念之间的关系,并确定不同分支之间的横向联系。概念图这种知识可视化方法最大的优点在于对知识的体系结构(概念及其概念之间的关系)一目了然的表达出来,还突出表现了知识体系的层次结构。概念图还是很好的结构化知识评估工具。为了方便使用计算机辅助创建和评估概念图,美国评估、标准和学生测试中心(Center for Research on Evaluation, Standards, and Student Testing,简称CRESST)对概念图的概念和连接词进行了预定义,提出了知识地图(Knowledge Maps)。 (二)思维导图(Mind Map)思维导图最初是20世纪60年代英国人托尼·巴赞(Tony Buzan)(1999)创造的一种笔记方法。托尼·巴赞(1999)认为:传统的草拟和笔记方法有埋没关键词、不易记忆、浪费时间和不能有效的刺激大脑四大不利之处,而简洁、效率和积极的个人参与对成功的笔记有至关重要的作用。在草拟和笔记的办法成效越来越小的情况下,需要一种可以不断增多回报的办法,这种办法就是思维导图。尽管思维导图的初始目的只是为了改进笔记方法,它的作用和威力还是在日后的研究和应用中不断显现了出来,被广泛应用于个人、家庭、教育和企业。托尼·巴赞认为思维导图是对发散性思维的表达,因此也是人类思维的自然功能。他认为思维导图是一种非常有用的图形技术,是打开大脑潜能的********,可以应用于生活的各个方面,其改进后的学习能力和清晰的思维方式会改善人的行为表现。(三)认知地图(Cognitive Maps)认知地图也被称为因果图(Causal Maps),是由Ackerman & Eden(2001)提出的,它将“想法“(ideas)作为节点,并将其相互连接起来。想法不同于概念(concepts),它们大多是句子或段落。认知地图(Eden, 1988;Eden,1992)是以个体建构理论(Personal Construct Theory)为基础提出的,其中的“想法“都是通过带箭头的连接线连起来,但连接上没有连接词,连接线的隐含意思是“因果关系“或“导致“,且没有层次的限制。Cognitive Maps用来帮助人们规划工作,促进小组的决策。 (四)语义网络(Semantic Networks)在心理学中,语义网络被定义为词语或概念的语义相似性或相关程度。然而,Fisher(1990)将其定义为节点和连接组成的网络,有连接词但不严格限制在层次结构上。这样,语义网络更像概念图,而不像主流心理学和计算机科学中定义的那样。与概念图一样,语义网络以概念和有意义的、不受限的连接词为基础,形成基本的实例或命题。Fisher(2000)认为语义网络可以被看成多维的,而非二维的。语义网络可以非常大,包含成百上千的相互关联的概念。由于它非常大,使用者在某一时刻只能看到其中的一个部分,也就是与中心概念直接关联的概念。 (五)思维地图(Thinking Maps) Thinking Maps(Thinking maps,2004)是由David Hyerle

科学知识图谱研究综述

#新技术应用# 科学知识图谱研究综述 梁秀娟 (湘潭大学公共管理学院湖南湘潭411105) 文摘随着可视化技术的发展,将其与引文分析技术相结合,可以直观、形象地向人们揭示学科以及学科之间的联系。本文结合国内外在引文分析和可视化方面的最新研究,从起源、概念、绘制方法、应用及研究展望等方面对科学知识图谱进行了较为详细的分析。 关键词引文分析可视化科学知识图谱 R evie w of M apping Know ledge Dom ains L iang X i u j uan (Pub lic M anage m en t School of X iang Tan Un iversity,X iangTan H uN an,411105) Abst ract:W it h the develop m ent o f v isual techno logy w hich co mb i n ed w ith citation analysi s techno-l ogy,it can reveal the link bet w een subjects int u iti v e l y and v ividly.I n t h is paper,co mb i n ed w it h the latest research on citation ana l y sis and v isua lizati o n,w e m ake a de tailed introducti o n i n t h e areas o f m apping kno w ledge do m a i n s fro m the or i g i n,concepts,techniques,applications and the latest pr o-gress. K ey w ords:C itati o n analysis,V isualization,M app i n g kno w ledge do m ains 随着信息技术、可视化技术和科学计量学、文献计量学理论的发展,以图形的方式来揭示学科间的联系已不再是一件难事。而近年来科学计量学、文献计量学研究领域兴起的热点之一,就是如何在准确、翔实地传达知识的基础上以可视化的图像直观、形象地向人们揭示学科以及学科之间的联系。科学知识图谱(M app i ng K now l edge Dom ains)正是在这一研究领域中出现的一个新的热点。 1科学知识图谱的起源 科学知识图谱是引文分析与数据、信息可视化相结合的产物。引文分析是指利用各种数学及统计学的方法和比较、归纳、抽象、概括等逻辑方法,对科学期刊、论文、著者等各种分析对象的引证与被引证现象进行分析,以揭示其数量特征和内在规律的一种文献计量分析方法[1]。正式的引文分析始于上个世纪50年代初,1964年美国的尤金#加菲尔德(Eugene G arfield)创立引文数据库SCI(Science C itati on Index,科学引文索引),为学者们利用引文分析法分析学科领域知识结构提供了强有力的工具。SCI不仅为引文分析奠定了数据平台,而且使得规范化、高质量的引文分析成为可能。60年代早期,加菲尔德等人开始了基于引文数据的开拓性研究,他们在5应用引文数据撰写科学历史6(T he use of c itati on data i n w riti ng the hist o ry o f sc i ence)中绘制了DNA研究领域的历史发展图谱;不久之后,普赖斯用相同的数据在其一系列经典著作)))5巴比伦以来的科学65小科学,大科学65科学文献的网络6中,进行了知识图谱绘制的开创性工作。尽管当时并没有使用/知识图谱0这一概念,但是,实际上以引文分析为基础的/知识图谱0理论与方法己经应运而生了[2]。国内自上个世纪80年代引入SCI,很快引起了广大学者的极大兴趣,被越来越多的科学研究者所认同和使用,主要用于揭示科学结构、研究科学史的发展规律、评价科研绩效、预测研究领域热点等方面。 与此同时,计算机技术的快速发展及其在科学计算领域的应用,为数据和信息处理提供了有力的

知识图谱概述与应用

导读:知识图谱(Knowledge Graph) 是当前的研究热点。自从2012年 Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。 各大互联网企业在之后的短短一年纷纷推出了自己的知识图谱产品以作为回 应。比如在国,互联网巨头百度和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业- 互联网金融,知识图谱可以有哪方面的应用呢? 目录: 1. 什么是知识图谱? 2. 知识图谱的表示 3. 知识图谱的存储 4. 应用 5. 挑战 6. 结语 1.什么是知识图谱? 知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。

知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。 不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关 联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。 另外,对于稍微复杂的搜索语句比如”Who is the wife of Bill Gates“ ,Google能准确返回他的妻子Melinda Gates。这就说明搜索引擎通过知识图谱 真正理解了用户的意图。

知识图谱构建方法研究

知识图谱构建方法研究 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

基于多数据源的知识图谱构建方法研究摘要:针对多数据源的融合应用,构建了基于多数据源的知识图谱。首先,对不同领域内的数据源构建相应本体库,并将不同本体库通过数据融合映射到全局本体库,然后,利用实体对齐和实体链接方法进行知识获取和融合,最后,搭建知识图谱应用平台,提供查询和统计等操作。在实体对齐方面,利用传统的基于相似性传播实体对齐方法,获得良好的实体对齐效果;在实体链接方面,提出了基于约束嵌入转换的预测推理方法,实验结果表明,在预测准确率上取得较好的结果。 0 引言 在大数据时代背景下,随着海量数据的出现以及多数据源融合交叉应用,传统的数据管理模式以及查询方式受到一定的制约。近年来,知识图谱(Knowledge Graph)作为一种新的知识表示方法和数据管理模式,在自然语言处理、问题回答、信息检索等领域有着重要的应用。知识图谱是结构化的语义知识库,用于以符号形式描述物理世界中的概念及其相互关系;其基本组成单位是“实体-关系-实体”三元组,以及实体及其相关属性-值对,实体间通过关系相互联结,构成网状的知识结构。 随着谷歌知识图谱的发布,知识图谱的构建与应用研究引起了学术界和工业界的广泛关注。在国内,知识图谱的构建与研究已经起步,相应取得许多重要的研究成果。如:搜狗的知立方、百度知心;复旦大学GDM实验室设计了一种面向图书阅读领域的中文知识图谱;金贵阳等利用知识图谱和语义网技术,提出构建企业知识图谱的方法,并应用于钢铁企业信息集成,提高了企业信息查询的效率;胡芳槐在博士论文中研究了基于多数据源的中文知识图谱构建方法,涉及到本体层构建、实体层的学习等,同时构建行业领域知识图谱的应用平台;王巍巍等构建了双语影视知识图谱,包括影视本体库的构建、实体的链接、实体匹配等,并搭建了应用平台与开放数据访问接口;鄂世嘉等

知识可视化的几种工具

知识可视化的几种工具(转载) 关键词:知识可视化 (一)概念图(Concept Map) 概念图是康乃尔大学的诺瓦克(J.D. Novak)博士(Novak, J. D. & Gowin, D. B,1984) 根据奥苏贝尔(David P. Ausubel)的有意义学习理论提出的一种教学技术。根据诺瓦克(J.D. Novak)博士的定义,概念图是用来组织和表征知识的工具。它通常将某一主题的有关概念置于圆圈或方框之中,然后用连线将相关的概念和命题连接,连线上标明两个概念之间的意义关系。概念图是使用节点代表概念、连线表示概念间关系,由包含一个概念的节点及连接组成。连接被贴上标签并用箭头符号指示方向,被贴上标签的连接解释节点之间的关系,箭头描绘关系的方向,“概念-连接词-概念”这样一个三元组形成了一个命题。另外,概念图是具有层次结构的,最高级的概念处在顶端。人们可以用适合的关联词来说明不同层次的概念之间的关系,并确定不同分支之间的横向联系。概念图这种知识可视化方法最大的优点在于对知识的体系结构(概念及其概念之间的关系)一目了然的表达出来,还突出表现了知识体系的层次结构。概念图还是很好的结构化知识评估工具。为了方便使用计算机辅助创建和评估概念图,美国评估、标准和学生测试中心(Center for Research on Evaluation, Standards, and Student Testing,简称CRESST)对概念图的概念和连接词进行了预定义,提出了知识地图(Knowledge Maps)。 (二)思维导图(Mind Map)思维导图最初是20世纪60年代英国人托尼·巴赞(Tony Buzan)(1999)创造的一种笔记方法。托尼·巴赞(1999)认为:传统的草拟和笔记方法有埋没关键词、不易记忆、浪费时间和不能有效的刺激大脑四大不利之处,而简洁、效率和积极的个人参与对成功的笔记有至关重要的作用。在草拟和笔记的办法成效越来越小的情况下,需要一种可以不断增多回报的办法,这种办法就是思维导图。尽管思维导图的初始目的只是为了改进笔记方法,它的作用和威力还是在日后的研究和应用中不断显现了出来,被广泛应用于个人、家庭、教育和企业。托尼?巴赞认为思维导图是对发散性思维的表达,因此也是人类思维的自然功能。他认为思维导图是一种非常有用的图形技术,是打开大脑潜能的万能钥匙,可以应用于生活的各个方面,其改进后的学习能力和清晰的思维方式会改善人的行为表现。 (三)认知地图(Cognitive Maps)认知地图也被称为因果图(Causal Maps),是由Ackerman & Eden(2001)提出的,它将“想法”(ideas)作为节点,并将其相互连接起来。想法不同于概念(concepts),它们大多是句子或段落。认知地图(Eden, 1988;Eden,1992)是以个体建构理论(Personal Construct Theory)为基础提出的,其中的“想法”都是通过带箭头的连接线连起来,但连接上没有连接词,连接线的隐含意思是“因果关系”或“导致”,且没有层次的限制。Cognitive Maps用来帮助人们规划工作,促进小组的决策。 (四)语义网络(Semantic Networks)在心理学中,语义网络被定义为词语或概念的语义相似性或相关程度。然而,Fisher(1990)将其定义为节点和连接组成的网络,有连接词但不严格限制在层次结构上。这样,语义网络更像概念图,而不像主流心理学和计算机科学中定义的那样。与概念图一样,语义网络以概念和有意义的、不受限的连接词为基础,形成基本的实例或命题。Fisher(2000)认

基于Web的领域知识图谱构建平台的研究与实现

基于Web的领域知识图谱构建平台的研究与实现领域知识图谱通常是从特定领域资源中抽取实体和实体之间的 语义关系而构建的语义网络,它包含的知识体系具有很强的领域针对 性和专业性。领域知识图谱构建平台则是为领域专家提供的,基于海 量数据构建领域针对性强、准确度高的知识体系的简单易用的半自动化工具,应具备如下三个特点:构建流程定义完备;能够涵盖领域知识 图谱构建过程中数据获取、信息抽取、知识融合、构建图谱、知识更新等各个流程;引入大数据处理能力;海量数据处理加工成为知识的 过程离不开大数据平台的支持,因此平台需要具备大数据处理能力; 简单易用,可操作性强;由于领域知识图谱具有很强的领域针对性和 专业性,使用门槛过高不利于领域专家在构建过程中进行监督与干预。但是在当前大多公开的领域知识图谱构建平台中,还存在知识图谱构 建流程定义不完善、缺乏大数据相关技术的支持和对于领域专家来说可操作性差的问题与挑战:当前大多公开的领域知识图谱构建平台对 于知识图谱构建流程定义不完善,孤立地强调了知识图谱构建环节的 某几个方面,诸如知识图谱中的数据采集、知识表示、图谱可视化等,不足以支撑全生命周期知识图谱构建工作;当前大多公开的领域知识 图谱构建平台鲜少提及知识图谱构建过程中对应需要大数据相关技 术的支持,缺乏对知识图谱实际构建过程的指导价值。在基于平台构 建领域知识图谱的过程中,为保证精确度,往往需要领域专家的监督 与干预,但是自然语言处理技术和大数据处理流程对于领域专家来说 理解难度大,技术实现门槛高,可操作性差,对领域知识图谱的普及和

应用产生了一定的限制。针对以上问题与挑战,本文重点围绕领域知识图谱的构建技术和流程进行研究与分析,完成了基于Web的领域知识图谱构建平台的设计与实现,主要研究内容有以下三项:1)设计并实现了基于Web的领域知识图谱构建平台,为领域专家提供构建流程定义完备、具备大数据处理能力且简单易用的知识图谱构建服务。在开发过程中为实现知识图谱构建流程的自定义编排,提出并实现了一种可视化Web服务组合编排技术。此外,还提出并实现了 DSACC(Dynamics Scheduling Algorithm for Concurrent Connections)算法,解决了知识图谱可视化过程中大数据量渲染的前端性能优化问题。2)提出并实现了一种基于大数据驱动的领域知识图谱构建方法,在完成第一项研究内容后,本文对知识图谱构建流程进一步总结,旨在研究在知识图谱构建过程中对应需要大数据相关技术的支持,为知识图谱的实际构建过程提供一定的参考价值。3)以基于Web的领域知识图谱构建平台为工具,以一种基于大数据驱动的领域知识图谱构建方法为指导,完成人工智能产业知识图谱的构建。图谱涵盖3458家人工智能企业,1087个人工智能领域技术标签,16324条专利数据,69866条相关新闻,全面展示人工智能产业发展现状,进一步证明平台与方法的有效性和完整性。

个方面分析知识图谱的价值和应用

6个方面分析知识图谱的价值和应用知识对于人工智能的价值就在于,让机器具备认知能力和理解能力。构建知识图谱这个过程的本质,就是让机器形成认知能力,理解这个世界。一、知识图谱无处不在说到人工智能技术,人们首先会联想到深度学习、机器学习技术;谈到人工智能应用,人们很可能会马上想起语音助理、自动驾驶等等,各行各业都在研发底层技术和寻求AI场景,却忽视了当下最时髦也很重要的AI技术:知识图谱。当我们进行搜索时,搜索结果右侧的联想,来自于知识图谱技术的应用。我们几乎每天都会接收到各种各样的推荐信息,从新闻、购物到吃饭、娱乐。个性化推荐作为一种信息过滤的重要手段,可以依据我们的习惯和爱好推荐合适的服务,也来自于知识图谱技术的应用。搜索、地图、个性化推荐、互联网、风控、银行……越来越多的应用场景,都越来越依赖知识图谱。二、知识图谱与人工智能的关系知识图谱用节点和关系所组成的图谱,为真实世界的各个场景直观地建模。通过不同知识的关联性形成一个网状的知识结构,对机器来说就是图谱。形成知识图谱的过程本质是在建立认知、理解世界、理解应用的行业或者说领域。每个人都有自己的知识面,或者说知识结构,本质就是不同的知识图谱。正是因为有获取和形成知识的能力,人类才可以不断进步。知识图谱对于人工智能的重要价值在于,知识是人工智能的基石。机器可

以模仿人类的视觉、听觉等感知能力,但这种感知能力不是人类的专属,动物也具备感知能力,甚至某些感知能力比人类更强,比如:狗的嗅觉。而“认知语言是人区别于其他动物的能力,同时,知识也使人不断地进步,不断地凝练、传承知识,是推动人不断进步的重要基础。”知识对于人工智能的价值就在于,让机器具备认知能力。而构建知识图谱这个过程的本质,就是让机器形成认知能力,去理解这个世界。 三、图数据库知识图谱的图存储在图数据库(Graph Database)中,图数据库以图论为理论基础,图论中图的基本元素是节点和边,在图数据库中对应的就是节点和关系。用节点和关系所组成的图,为真实世界直观地建模,支持百亿量级甚至千亿量级规模的巨型图的高效关系运算和复杂关系分析。目前市面上较为流行的图数据库有:Neo4j、Orient DB、Titan、Flock DB、Allegro Graph等。不同于关系型数据库,一修改便容易“牵一发而动全身”图数据库可实现数据间的“互联互通”,与传统的关系型数据库相比,图数据库更擅长建立复杂的关系网络。图数据库将原本没有联系的数据连通,将离散的数据整合在一起,从而提供更有价值的决策支持。四、知识图谱的价值知识图谱用节点和关系所组成的图谱,为真实世界的各个场景直观地建模,运用“图”这种基础性、通用性的“语言”,“高保真”地表达这个多姿多彩世界的各种关系,并且非常直观、自然、直接和高效,不需要中间过程

相关文档
最新文档