第十篇 统计、统计案例第3讲 变量间的相关关系与统计案例

第十篇 统计、统计案例第3讲 变量间的相关关系与统计案例
第十篇 统计、统计案例第3讲 变量间的相关关系与统计案例

第3讲 变量间的相关关系与统计案例

以选择题或填空题的形式考查回归分析及独立性检验中的基本思想方法及其简单应用. 【复习指导】

高考在该部分的主要命题点就是回归分析和独立性检验的基础知识和简单应用.复

习时要掌握好回归分析和独立性检验的基本思想、方法和基本公式.

基础梳理

1.相关关系的分类

从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关. 2.线性相关

从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线. 3.回归方程

(1)最小二乘法:使得样本数据的点到回归直线的距离平方和最小的方法叫最小二乘法.

(2)回归方程:两个具有线性相关关系的变量的一组数据: (x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b

^x +a ^,则 ??

???

b ^=∑i =1n (x i

-x )(y i

-y )∑i =1n (x i

-x )2

∑i =1n

x i y i

-n x

y

∑i =1

n

x 2i

-n x

2

a

^=y -b ^ x .

其中,b 是回归方程的斜率,a 是在y 轴上的截距. 4.样本相关系数

r=

i=1

n

(x i-x)(y i-y)

i=1

n

(x i-x)2∑

i=1

n

(y i-y)2

,用它来衡量两个变量间的线性相关关系.

(1)当r>0时,表明两个变量正相关;

(2)当r<0时,表明两个变量负相关;

(3)r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|>0.75时,认为两个变量有很强的线性相关关系.

5.线性回归模型

(1)y=bx+a+e中,a、b称为模型的未知参数;e称为随机误差.

(2)相关指数

用相关指数R2来刻画回归的效果,其计算公式是:R2=,R2的值越大,说明残差

平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R2表示解释变量对预报变量变化的贡献率,R2越接近于1,表示回归效果越好.

6.独立性检验

(1)用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例如:是否吸烟,宗教信仰,国籍等.

(2)列出的两个分类变量的频数表,称为列联表.

(3)一般地,假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:

2×2列联表

y1y2总计

x1 a b a+b

x2 c d c+d

总计a+c b+d a+b+c+d

K2=n(ad-bc)2

(a+b)(a+c)(c+d)(b+d)

(其中n=a+b+c+d为样本容量),可利用独立性检验

判断表来判断“x与y的关系”.

这种利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.

两个规律

(1)函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.

(2)当K2≥3.841时,则有95%的把握说事A与B有关;

当K2≥6.635时,则有99%的把握说事件A与B有关;

当K2≤2.706时,则认为事件A与B无关.

三个注意

(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.

(2)线性回归方程中的截距和斜率都是通过样本数据估计而来的,存在误差,这种误差会导致预报结果的偏差;而且回归方程只适用于我们所研究的样本总体.(3)独立性检验的随机变量K2=3.841是判断是否有关系的临界值,K2≤3.841应判断为没有充分证据显示事件A与B有关系,而不能作为小于95%的量化值来判断.

双基自测

1.(人教A版教材习题改编)下面哪些变量是相关关系().

A.出租车车费与行驶的里程B.房屋面积与房屋价格

C.身高与体重D.铁块的大小与质量

解析A,B,D都是函数关系,其中A一般是分段函数,只有C是相关关系.

答案 C

2.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图(1);对变量u,v有观测数据(u i、v i)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断

().

A.变量x与y正相关,u与v正相关

B.变量x与y正相关,u与v负相关

C.变量x与y负相关,u与v正相关

D.变量x与y负相关,u与v负相关

解析由题图(1)可知,各点整体呈递减趋势,x与y负相关;由题图(2)可知,各点整体呈递增趋势,u与v正相关.

答案 C

3.(2012·南昌模拟)某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是().

A.y^=-10x+200

B.y^=10x+200

C.y^=-10x-200

D.y^=10x-200

解析因为销量与价格负相关,由函数关系考虑为减函数,又因为x,y不能为负数,再排除C,故选A.

答案 A

4.(2012·枣庄模拟)下面是2×2列联表:

y1y2合计

x1 a 2173

x2222547

合计 b 46120

则表中a,b的值分别为().

A.94,72 B.52,50 C.52,74 D.74,52

解析∵a+21=73,∴a=52,又a+22=b,∴b=74.

答案 C

5.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2的观测值k =27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(有关,

无关).

解析由观测值k=27.63与临界值比较,我们有99%的把握说打鼾与患心脏病有关.答案有关

考向一相关关系的判断

【例1】?山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg):

施化肥量x 15202530354045

棉花产量y 330345365405445450455

(1)画出散点图;

(2)判断是否具有相关关系.

[审题视点] (1)用x轴表示化肥施用量,y轴表示棉花产量,逐一画点.

(2)根据散点图,分析两个变量是否存在相关关系.

解(1)散点图如图所示

(2)由散点图知,各组数据对应点大致都在一条直线附近,所以施化肥量x与产量y 具有线性相关关系.

利用散点图判断两个变量是否有相关关系是比较简便的方法.在散点图中如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系.即变量之间具有函数关系.如果所有的样本点落在某一函数的曲线附近,变量之间就有相关关系;如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.

【训练1】根据两个变量x,y之间的观测数据画成散点图如图所示,这两个变量是否具有线性相关关系________(填“是”与“否”).

解析从散点图看,散点图的分布成团状,无任何规律,所以两个变量不具有线性相关关系.

答案否

考向二独立性检验

【例2】?(2010·全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

性别

是否需要志愿者

男女

需要4030

不需要160270

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否有99%的把握认为该地区老年人是否需要志愿者提供帮助与性别有关?

(3)根据(2)的结论,能否提出更好的调查方法来估计该地区老年人中,需要志愿者提供帮助的老年人的比例?说明理由.

附:

P(K2≥k)0.0500.0100.001

k 3.841 6.63510.828

K2=n(ad-bc)2

(a+b)(c+d)(a+c)(b+d)

[审题视点] 第(2)问由a=40,b=30,c=160,d=270,代入公式可求K2,由K2的值与6.635比较断定.第(3)问从抽样方法说明.

解(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,

需要志愿者提供帮助的老年人的比例的估计值为70

500=14%.

(2)K 2

=500×(40×270-30×160)2

70×430×200×300

≈9.967.

由于9.967>6.635,所以有99%的把握认为该地区老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,采用分层抽样方

法,这要比采用简单随机抽样方法更好.

独立性检验的步骤:

(1)根据样本数据制成2×2列联表;

(2)根据公式K 2=n (ad -bc )

2

(a +b )(a +c )(b +d )(c +d )

计算K 2的观测值;

(3)比较K 2与临界值的大小关系作统计推断.

【训练2】 某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表: 甲厂: 分组 [29.86, 29.90) [29.90, 29.94) [29.94, 29.98) [29.98, 30.02) [30.02, 30.06) [30.06, 30.10) [30.10, 30.14) 频数 12

63

86

182

92

61

4

乙厂: 分组 [29.86, 29.90) [29.90, 29.94) [29.94, 29.98) [29.98, 30.02) [30.02, 30.06) [30.06, 30.10) [30.10, 30.14) 频数

29

71

85

159

76

62

18

(1)试分别估计两个分厂生产零件的优质品率;

(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.

甲 厂

乙 厂 合 计

优质品 非优质品 合 计

附 K 2

=n (ad -bc )2

(a +b )(c +d )(a +c )(b +d )

P (K 2≥k )

0.05 0.01 k

3.841

6.635

解 (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360

500×100%=72%;

乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320

500×100%=64%. (2)

甲 厂 乙 厂 合 计 优质品 360 320 680 非优质品 140 180 320 合 计

500

500

1 000

K 2

=1 000×(360×180-320×140)2500×500×680×320

≈7.35>6.635,

所以有99%的把握认为“两个分厂生产的零件的质量有差异”.

考向三 线性回归方程

【例3】?(2012·菏泽模拟)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.

x 3 4 5 6 y

2.5

3

4

4.5

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^; (3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程.预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

[审题视点] (2)问利用公式求a

^、b ^,即可求出线性回归方程. (3)问将x =100代入回归直线方程即可. 解 (1)由题设所给数据,可得散点图如图所示.

(2)由对照数据,计算得:∑i =14

x 2i =86,

x =

3+4+5+64=4.5(吨),y =2.5+3+4+4.5

4=3.5(吨). 已知∑i =1

4

x i y i =66.5, 所以,由最小二乘法确定的回归方程的系数为:

b

^=∑i =14

x i y i -4x ·y

∑i =1

4

x 2i -4x 2

66.5-4×4.5×3.5

86-4×4.52

=0.7,

a

^=y -b ^x =3.5-0.7×4.5=0.35. 因此,所求的线性回归方程为y ^=0.7x +0.35.

(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为: 90-(0.7×100+0.35)=19.65(吨标准煤).

在解决具体问题时,要先进行相关性检验,通过检验确认两个变量是否具

有线性相关关系,若它们之间有线性相关关系,再求回归直线方程.

【训练3】 (2011·江西)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:

父亲身高x /cm 174 176 176 176 178 儿子身高y /cm 175

175

176

177

177

则y 对x 的线性回归方程为( ). A .y =x -1

B .y =x +1

C.y=88+1

2x D.y=176

解析由题意得x=174+176+176+176+178

5=176(cm),

y=175+175+176+177+177

5=176(cm),由于(x,y)一定满足线性回归方程,

经验证知选C.

答案 C

阅卷报告15——数据处理不当导致计算错误而失分

【问题诊断】由于大多数省市高考要求不准使用计算器,而线性回归问题和独立性检验问题仍是近几年新课标高考的常考点,并且大多是考查考生的计算能力,就计算方面常有不少考生因计算出错而失分.

【防范措施】平时训练时首先养成勤于动手的习惯,亲自动手计算,再者考场上要保持心态放松,做题时细心认真,最终可减少错误的发生.

【示例】?(2011·安徽)某地最近十年粮食需求量逐年上升,下表是部分统计数据:

年份20022004200620082010

需求量(万吨)236246257276286

(1)利用所给数据求年需求量与年份之间的回归直线方程y^=bx+a;

(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.

实录(1)x=2 006,y=236+246+257+276+286

5=260.2.

b=

(2002-2006)(236-260.2)+(2004-2006)(246-260.2)+(2006-2006)(257-260.2) (2002-2006)2+(2004-2006)2+(2006-2006)2+(2008-2006)2+(2010-2006)2

+(2008-2006)(276-260.2)+(2010-2006)(286-260.2)

(2002-2006)2+(2004-2006)2+(2006-2006)2+(2008-2006)2+(2010-2006)2=6.2,

错因求b时计算出错,b值不准确.a=y-b x=260.2-6.2×2 006=-12 177. ∴y

^=6.2x-12 177.

(2)y ^

=6.2×2 012-12 177=297.4.

正解 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:

年份-2006

-4

-2 0 2 4 需求量-257 -21

-11

19

29

对预处理后的数据,容易算得, x =0,y =3.2,

b =(-4)×(-21)+(-2)×(-11)+2×19+4×29-5×0×3.2(-4)2+(-2)2+22+42-5×02

=260

40=6.5,a =y -b x =3.2.

由上述计算结果,知所求回归直线方程为y -257=b (x -2 006)+a =6.5(x -2 006)+3.2,

即y ^=6.5(x -2 006)+260.2.①

(2)利用直线方程①,可预测2012年的粮食需求量为 6.5(2 012-2 006)+260.2=6.5×6+260.2=299.2(万吨).

数学第一章统计案例测试1新人教A版选修1 2

高中新课标选修(1-2)统计案例测试题1 一、选择题 1.下列属于相关现象的是() A.利息与利率 B.居民收入与储蓄存款 C.电视机产量与苹果产量 D.某种商品的销售额与销售价格 答案:B 2.如果有95%的把握说事件A和B有关,那么具体算出的数据满足() A.23.841K?B.23.841K? C.26.635K?D.26.635K? 答案:A 3.如图所示,图中有5组数据,去掉组数据后(填字母代),剩下的4组数据的线性相关性最大() A.EB.CC.DD.A 答案:A 4.为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结 果(单位:人) 不患肺癌患肺癌不吸烟 7775 42 7817 吸烟 2099 49 2148 合计 9874 91

9 965 根据表中数据,你认为吸烟与患肺癌有关的把握有() A.90% B.95% C.99% D.100% 答案:C 5.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表: 晚上白天合计 男婴 24 31 55 女婴 8 26 34 合计 32 57 89 你认为婴儿的性别与出生时间有关系的把握为() A.80% B.90% C.95% D.99% 答案:B 6.已知有线性相关关系的两个变量建立的回归直线方程为yabx??,方程中的回归系数b() A.可以小于0 B.只能大于0 C.可以为0 D.只能小于0 答案:A 7.每一吨铸铁成本c y(元)与铸件废品率x%建立的回归方程568c yx??,下列说法正确的是() A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8% C.废品率每增加1%,成本每吨增加8元 D.如果废品率增加1%,则每吨成本为56元 答案:C 8.下列说法中正确的有:①若0r?,则x增大时,y也相应增大;②若0r?,则x增

高中数学第三章统计案例3.1独立性检验假设检验(hypothesistesting素材苏教版选修2_3202012251102

假设检验(hypothesis testing) 方法演变:t检验、z检验、F检验、卡方检验,方差分析( ANOVA) ?概述 假设检验是分析数据的一种方法。回答此类问题:“随机发生的事件的概率是多少?”另一方面的问题是:“我们从数据中发现的结果是真的吗?”当问题是有关大的总体而只能得到总体的一个样本时用假设检验。这种方法被用来回答在质量改进中一系列重要的问题,如“我们在过程中所做的改变对产出创造了有意义的差别吗?”或”顾客对场地A的满意度是不是比其他场地高?” 最常用的检验是:z检验、t检验、F检验、卡方(χ2)检验和方差分析。这些检验和其他的检验都是基于均值、方差、比例及其他统计量所形成的具有常见模式的频率分布。最有名的分布就是正态分布,它是:检验的基础。t检验、F检验和卡方(χ2)检验是基于t分布、F分布和卡方分布。 ?适用场合 ·想知道一组或更多组数据的平均值、比例、方差或其他特征时; ·当结论是基于更大总体中所取得的样本时。 例如: ·想确定一个过程的均值或方差有否改变; ·想确定很多数据集的均值或方差是否不同: ·想确定两组不同的数据集的比例是否不同; ·想确定真正的比例、均值或方差是否和一个定值相等(或大于或小于)。 ?实施步骤 假设检验的步骤由三部分组成:理解要解决的问题并安排检验(以下步骤1~3);数字计算通常由计算机完成(步骤4和步骤5);应用数值结果到实际问题中(步骤6)。虽然计算机能处理数字,但理解假没检验隐含的观念对第1部分和第3部分至关重要。 如果第一次接触假设检验,那么从看“注意事项”中的术语和定义开始。这些定义解释了假设检验的慨念,然后再回来看这个步骤。 本书不可能详细地涉及假设检验。这个步骤是个综述和快速参考。要得到更多的信息,查阅统计学参考书或请教统计学家。 1确定要从数据中获得的结论。选择适当的检验方法。用哪种检验取决于检验的目的和数据的种类。可以用表5.7和表5.8概括的常用的假设检验,或者请教统计学家以得到帮助。 2建立零假设和备择假设。确定问题是属于双尾检验、左尾检验还是右尾检验。 3选择显著性水平。。 4计算检验统计量,可借助计算机软件。 5用统计分布的统计表或计算机程序等来确定检验统计量的P值。对于z检验可用表A.1正态曲线以下的曲线。 6把P值与左尾或右尾检验的α或者双尾检验的α/2作比较,如果P值较小,那么拒绝零假设并会得到备择假设可能正确的结论。否则,不能拒绝零假设,并得出没有足够证据支持备择假设的结论。 ?备择步骤 步骤1~4同上。然后: 5用统计表或计算机程序确定如下所示的检验统计量的临界值和拒绝域。以z检验作为示例,对t检验、F检验或卡方检验,用统计量f、F或χ2来替换z。 6比较检验统计量和拒绝域。如果检验统计量值落在拒绝域内,拒绝零假设,结论是备择假设可能止确。否则,不拒绝零假设,结论是没有足够的证据支持备择假设。 ?示例:t检验

统计与统计案例真题与解析

统计与统计案例 A 级 基础 一、选择题 1.某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200人、高三n 人中抽取81人进行问卷调查,已知高二被抽取的人数为30,那么n =( ) A .860 B .720 C .1 020 D .1 040 2.为规范学校办学,某省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( ) A .13 B .19 C .20 D .51 3.“关注夕阳、爱老敬老”——某爱心协会从2013年开始每年向敬老院捐赠物资和现金,下表记录了第x 年(2013年是第一年)与捐赠的现金y (单位:万元)的对应数据,由此表中的数据得到了y 关于x 的线性回归方程y ^ =mx +0.35,则预测2019年捐赠的现金大约是( ) A.5万元 C .5.25万元 D .5.5万元 4.如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )

A.3,5 B.5,5 C.3,7 D.5,7 5.(2019·衡水中学检测)某超市从2019年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按(0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下: 记甲种酸奶与乙种酸奶的日销售量(单位:箱)的方差分别为s21,s22,则频率分布直方图(甲)中的a的值及s21与s22的大小关系分别是() A.a=0.015,s21s22 C.a=0.015,s21>s22D.a=0.15,s21

数学选修23第三章统计案例教案

第三章 统计案例 §3.1 独立性检验(1) 1. 某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515个成年人,其中吸烟者220人, 不吸烟者295人.调查结果是:吸烟的220人中有37人患呼吸道疾病(简称患病),183人未患呼吸道疾病(简称未患病);不吸烟的295人中有21人患病,274人未患病. 问题:根据这些数据能否断定“患呼吸道疾病与吸烟有关”? 为了研究这个问题,(1)引导学生将上述数据用下表来表示: 一.建构数学 1.独立性检验: (1)假设0H :患病与吸烟没有关系. 若将表中“观测值”用字母表示,则得下表: 如果实际观测值与假设求得的估计值相差不大,就可以认为所给数据(观测值)不能否定假设0H .否则,应认为假设0H 不能接受,即可作出与假设0H 相反的结论. (2)卡方统计量: 为了消除样本对上式的影响,通常用卡方统计量(χ22 ()-=∑ 观测值预期值预期值 )来进行估计. 卡方χ2统计量公式: χ2() ()()()() 2 n ad bc a b c d a c b d -=++++(其中n a b c d =+++) 由此若0H 成立,即患病与吸烟没有关系,则χ2的值应该很小.把37,183,21,274a b c d ====代入计算得 χ211.8634=,统计学中有明确的结论,在0H 成立的情况下,随机事件“2 6.635χ≥” 发生的概率约为0.01,即2 ( 6.635)0.01P χ ≥≈,也就是说,在0H 成立的情况下,对统计量χ2进行多次观测, 观测值超过6.635的频率约为0.01.由此,我们有99%的把握认为0H 不成立,即有99%的把握认为“患病与吸烟有关系”. 象以上这种用2 χ统计量研究吸烟与患呼吸道疾病是否有关等问题的方法称为独立性检验.

第一章《统计案例》练习

----------专业最好文档,专业为你服务,急你所急,供你所需------------- §1.1 独立性检验 1.当χ2>2.706时,就有________的把握认为“x 与y 有关系”. 2.分类变量X 和Y .(填序号) ①ad -bc 越小,说明X 与Y 的关系越弱; ②ad -bc 越大,说明X 与Y 的关系越强; ③(ad -bc )2越大,说明X 与Y 的关系越强; ④(ad -bc )2越接近于0,说明X 与Y 的关系越强. 3.通过随机询问110 χ2=110×(40×30-20×20) 60×50×60×50 ≈7.8,得到的正确结论是________. ①在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”; ②在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”; ③有99%以上的把握认为“爱好该项运动与性别有关”; ④有99%以上的把握认为“爱好该项运动与性别无关”. 4.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸 则有________的把握确定吸烟量与年龄有关. 5.下列说法正确的是________.(填序号) ①对事件A 与B 的检验无关,即两个事件互不影响;

----------专业最好文档,专业为你服务,急你所急,供你所需------------- ②事件A 与B 关系越密切,χ2就越大; ③χ2的大小是判断事件A 与B 是否相关的惟一数据; ④若判定两事件A 与B 有关,则A 发生B 一定发生. 6 设H 0:主修统计专业与性别无关,则 χ2的值约为________,从而得出结论有 把握认为主修统计专业与性别有关系,这种判断出错的可能性为________. 7.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的 零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表: (1)分别估计两个分厂生产的零件的优质品率; (2)由以上统计数据填写2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.

(新)高中数学第一章统计案例1_1独立性检验假设检验素材新人教B版选修1-21

假设检验 1、某厂生产的化纤纤度服从正态分布 )04.0,(2 μN 。某天测得25根纤维的纤度的均值39.1=x ,问与原设计的标准值1.40有无显著差异?(取05.0=α) 解 设厂生产的化纤纤度为X ,则总体)04.0,(~2μN X ,且总体方差2204.0=σ已 知。顾客提出要检验的假设为 40 .1:0=μH , 40.1:1≠μH 因为已知总体标准差04.0=σ,所以选用U 检验,且在0H 成立的条件下有 )1,0(~25 04.00 N X U μ-= 针对备择假设40.1:1≠μH ,拒绝域的形式可取为 } /{0 c n X U W >-= =σμ 为使犯第一类错误的概率不超过05.0=α,就要在40.10 =μ时,使临界值c 满足 ()05 .0=>c U P 成立。由此,在给定显著性水平05.0=α时,得到临界值为 96 .1975.02/1===-u u c α 故相应的拒绝域为

{} 96.1>=U W 利用来自总体的样本值求得 25 .125 /04.040.139.1-=-= u 即 975 .096.125.1u u =<= 成立。显然,样本未落在拒绝域内,因此在05.0=α水平上认为纤维的纤度与原设计的标准值1.40没有显著差异。 2、设某厂生产的洗衣机的使用寿命(单位:小时)X 服从正态分布),(2σu N 但2 ,σu 未 知。随机抽取20台,算得样本均值1832=X ,样本标准差=S 497,检验该厂生产的洗衣机的平均使用时数“2000=μ”是否成立?(取检验水平05.0=α) 解 待检验假设 2000 0=μ:H 20001≠μ:H H 的拒绝域: 21α - >t T =2.093 T 的观测值 512 .1/2000 -=-=n S X T W ∈ 不能拒绝 H ,可以认为洗衣机的平均使用时数“2000=u ”. 3、在正常情况下,某炼钢厂的铁水含碳量(%)X ~ ),.(2 554σN (σ未知)。一日测得5炉铁水含碳量如下:

高中数学 专题 统计与统计案例

一、选择题 1.利用系统抽样法从编号分别为1,2,3,…,80的80件不同产品中抽出一个容量为16的样本,如果抽出的产品中有一件产品的编号为13,则抽到产品的最大编号为( ) A .73 B .78 C .77 D .76 解析:样本的分段间隔为80 16=5,所以13号在第三组,则最大的编号为13+(16-3)×5 =78.故选B. 答案:B 2.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量如下表所示: 则这20A .180,170 B .160,180 C .160,170 D .180,160 解析:用电量为180度的家庭最多,有8户,故这20户家庭该月用电量的众数是180,排除B ,C ;将用电量按从小到大的顺序排列后,处于最中间位置的两个数是160,180,故这20户家庭该月用电量的中位数是170.故选A. 答案:A 3.(2017·高考全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图,根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

解析:根据折线图可知,2014年8月到9月、2014年10月到11月等月接待游客量都在减少,所以A 错误.由图可知,B 、C 、D 正确. 答案:A 4.(2018·宝鸡质检)对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,如图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则该样本中三等品的件数为( ) A .5 B .7 C .10 D .50 解析:根据题中的频率分布直方图可知,三等品的频率为1-(0.050 0+0.062 5+0.037 5)×5=0.25,因此该样本中三等品的件数为200×0.25=50. 答案:D 5.(2018·兰州模拟)已知某种商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下对应数据: 根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为y ^ =6.5x +17.5,则表中m 的值为( ) A .45 B .50 C .55 D .60 解析:∵x =2+4+5+6+8 5=5, y = 30+40+50+m +705=190+m 5 , ∴当x =5时,y =6.5×5+17.5=50, ∴190+m 5=50,解得m =60. 答案:D

(新人教A版)2020版高考数学大一轮复习第九章统计第3节变量间的相关关系与统计案例讲义理

考试要求 1.了解样本相关系数的统计含义,了解样本相关系数与标准化数据向量夹角的关系,会通过相关系数比较多组成对数据的相关性;2.了解一元线性回归模型的含义,了解模型参数的统计意义,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法,会使用相关的统计软件,会用一元线性回归模型进行预测;3.理解2×2列联表的统计意义,了解2×2列联表独立性检验及其应用. 知 识 梳 理 1.相关关系与回归分析 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是:散点图;统计量有相关系数与相关指数. (1)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关. (2)在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关. (3)如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系. 2.线性回归方程 (1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法. (2)回归方程:两个具有线性相关关系的变量的一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^ =b ^ x +a ^ ,则b ^ =∑n i =1 (x i -x - )(y i -y - )∑n i =1 (x i -x - )2=∑n i =1 x i y i -nx - y - ∑n i =1 x 2 i -nx -2,a ^=y --b ^x -.其中,b ^是回归方程的斜率,a ^ 是在y 轴上的截距. 回归直线一定过样本点的中心(x - ,y - ). 3.回归分析 (1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心:对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中(x - ,y - )称为样本点的中心. (3)相关系数 当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关. r 的绝对值越接近于1,表明两个变量的线性相关性越强. r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.

单元测试:选修2-3第三章《统计案例》

选修2-3第三章《统计案例》 (时间120分钟 满分150分) 一、选择题(共60分) 1.下列属于相关现象的是( ) A.利息与利率 B.居民收入与储蓄存款 C.电视机产量与苹果产量 D.某种商品的销售额与销售价格 2.已知盒中装有3只螺口与7只卡口灯泡,这些灯泡的外形与功率都相 同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1 次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为 ( ) A.310 B.29 C.78 D.79 3.如图所示,图中有5组数据,去掉组数据后(填字母代号),剩下的4组数据的线性相关性最大( ) A.E B.C C.D D.A 4.为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人, 得到如下结果(单位:人) 根据表中数据,你认为吸烟与患肺癌有关的把握有( ) A.90% B.95% C.99% D.100% 5.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表: 你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90% C.95% D.99% 6.已知有线性相关关系的两个变量建立的回归直线方程为$ y a bx =+,方程中的回归系数b ( ) A.可以小于0 B.只能大于0 C.可以为0 D.只能小于0 7.每一吨铸铁成本c y (元)与铸件废品率x %建立的回归方程568c y x =+,下列说法正确的是( ) A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8% C.废品率每增加1%,成本每吨增加8元 D.如果废品率增加1%,则每吨成本为56元 8.下列说法中正确的有:①若0r >,则x 增大时,y 也相应增大;②若0r <,则x 增大时,y 也相应增大;③若1r =,或1r =-,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上( ) A.①② B.②③ C.①③ D.①②③ 9.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表: 不患肺病 患肺病 合计 不吸烟 7775 42 7817 吸烟 2099 49 2148 合计 9874 91 9965 晚上 白天 合计 男婴 24 31 55 女婴 8 26 34 合计 32 57 89

统计案例一_----独立性检验

统计案例一独立性检验 研修学院数学教研室闻岩 一、课标要求 学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。 内容与要求 1.统计案例(约14课时) 通过典型案例,学习下列一些常见的统计方法,并能初步应用这些方法解决一些实际问题。 (1)通过对典型案例(如“肺癌与吸烟有关吗”等)的探究,了解独立性检验(只要求22列联表)的基本思想、方法及初步应用。 (2)通过对典型案例(如“质量控制”“新药是否有效”等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用(参见例1)。------删掉了 (3)通过对典型案例(如“昆虫分类”等)的探究,了解聚类分析的基本思想、方法及初步应用。------删掉了 (4)通过对典型案例(如“人的体重与身高的关系”等)的探究,进一步了解回归的基本思想、方法及初步应用。 说明与建议 1.统计案例的教学中,应鼓励学生经历数据处理的过程,培养他们对数据的直观感觉,认识统计方法的特点(如统计推断可能犯错误,估计结果的随机性),体会统计方法应用的广泛性。应尽量给学生提供一定的实践活动机会,可结合数学建模的活动,选择1个案例,要求学生亲自实践。对于统计案例内容,只要求学生了解几种统计方法的基本思想及其初步应用,对于其理论基础不作要求,避免学生单纯记忆和机械套用公式进行计算。 2.教学中,应鼓励学生使用计算器、计算机等现代技术手段来处理数据,有条件的学校还可运用一些常见的统计软件解决实际问题。 例1某地区羊患某种病的概率是0.4,且每只羊患病与否是彼此独立的。今研制一种新的预防药,任选5只羊做实验,结果这5只羊服用此药后均未患病。问此药是否有效。 初看起来,会认为这药一定有效,因为服药的羊均未患病。但细想一下,会有问题,因为大部分羊不服药也不会患病,患病的羊只占0.4左右。这5只羊都未患病,未必是药的作用。分析这问题的一个自然想法是:若药无效,随机抽取5只羊都不患病的可能性大不大。若这件事发生的概率很小,几乎不会发生,那么现在我们这几只羊都未患病,应该是药的效果,即药有效。 现假设药无效,5只羊都不生病的概率是 (1-0.4)5≈0.078. 这个概率很小,该事件几乎不会发生,但现在它确实发生了,说明我们的假设不对,药是有效的。 这里的分析思想有些像反证法,但并不相同。给定假设后,我们发现,一个概率很小几乎不会发生的事件却发生了,从而否定我们的“假设”。 应该指出的是,当我们作出判断“药是有效的”时,是可能犯错误的。犯错误的概率是0.078。也就是说,我们有近92%的把握认为药是有效的。 二、全国考纲的要求 17.统计案例 了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题. ①独立检验 列联表)的基本思想、方法及简单应用. 了解独立检验(只要求22

专题突破练20 统计与统计案例

专题突破练20 统计与统计案例 1. (2020吉林辽源高三检测,18)某城市在进行创建文明城市的活动中,为了解居民对“创建文明城市”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在[40,100]内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题: (1)算出第三组[60,70)的频数,并补全频率分布直方图; (2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表) 2.下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图. 为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①;y ^ =-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^ =99+17.5t. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.

3.(2020河南郑州高三检测,19)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图: (1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m 的工人数填入下面的列联表: (3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:K2=n(ad-bc)2 (a+b)(c+d)(a+c)(b+d) ,其中n=a+b+c+d.

第一章 统计案例 复习题

第一章 统计案例 复习题 一、选择题 1.下列属于相关现象的是( ) A.利息与利率 B.居民收入与储蓄存款 C.电视机产量与苹果产量 D.某种商品的销售额与销售价格 2.如果有95%的把握说事件A 和B 有关,那么具体算出的数据满足( ) A.2 3.841K > B.2 3.841K < C.2 6.635K > D.2 6.635K < 3.下列变量之间:①人的身高与年龄、产品的成本与生产数量;②商品的销售额与广告费; ③家庭的支出与收入.其中不是函数关系的有( ) A.0个 B.1个 C.2个 D.3个 4.当2 3.841K >时,认为事件A 与事件B ( ) A.有95%的把握有关 B.有99%的把握有关 C.没有理由说它们有关 D.不确定 5.已知回归直线方程 y bx a =+,其中3a =且样本点中心为(1 2),,则回归直线方程为( ) A.3y x =+ B.23y x =-+ C.3y x =-+ D.3y x =- 6.为了考察中学生的性别与是否喜欢数学课程之间的关系,在某校中学生中随机抽取了300名学生,得到如下列联表: 你认为性别与是否喜欢数学课程之间有关系的把握有( ) A.0 B.95% C.99% D.100% 7.在回归直线方程 y a bx =+中,回归系数b 表示( ) A.当0x =时,y 的平均值 B.x 变动一个单位时,y 的实际变动量 C.y 变动一个单位时,x 的平均变动量 D.x 变动一个单位时,y 的平均变动量 8.对于回归分析,下列说法错误的是( ) A.在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定 B.线性相关系数可以是正的,也可以是负的 C.回归分析中,如果21r =,说明x 与y 之间完全相关 D.样本相关系数(11) r ∈-, 9. 在画两个变量的散点图时,下面哪个叙述是正确的( ) (A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上 (C)可以选择两个变量中任意一个变量在x 轴上(D)选择两个变量中任意一个变量在y 轴上 10、一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm; B.身高在145.83cm 以上; C.身高在145.83cm 以下; D.身高在145.83cm 左右. 11、两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( ) A.模型1的相关指数2R 为0.98 B.模型2的相关指数2R 为0.80 C.模型3的相关指数2R 为0.50 D.模型4的相关指数2R 为0.25 12、在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( ) A.总偏差平方和 B.残差平方和 C.回归平方和 D.相关指数R 2 13、工人月工资y (元)依劳动生产率x (千元)变化的回归直线方程为?6090y x =+,下列判断正确的是( ) A.劳动生产率为1000元时,工资为50元 B.劳动生产率提高1000元时,工资提高150元 C.劳动生产率提高1000元时,工资提高90元 D.劳动生产率为1000元时,工资d 的90元 14、对分类变量X 与Y 的随机变量2K 的观测值K ,说法正确的是( ) A . k 越大," X 与Y 有关系”可信程度越小; B . k 越小," X 与Y 有关系”可信程度 越小; C . k 越接近于0," X 与Y 无关”程度越小 D . k 越大," X 与Y 无关”程度越大 15、在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )

高中数学统计案例--独立性检验 同步练习

统计案例--独立性检验 同步练习 1、下列关于卡方2χ的说法正确的是( ) A.2χ在任何相互独立问题中都可用与检验是否相关 B. 2χ的值越大,两个事件的相关性越大 C.2χ是用来判断两个相互独立事件相关与否的一个统计量,它可以用来判断两个事件是否相关这类问题 D. ) )()()(() (2d b c a d c b a bc ad n ++++-= χ. 2、在吸烟与患肺病这两个分类变量的计算中,下列说法中正确的是( ) A. 若统计量635.62>χ,我们有99%的把握说吸烟与患肺病有关,则某人吸烟,那么他有99%的可能患有肺病 B. 若从统计中求出,有99%的把握说吸烟与患肺病有关,则在100个吸烟者中必有99人患有肺病 C. 若从统计量中求出有95%把握说吸烟与患肺病有关,是指有5%的可能性使得推断错误 D. 以上说法均错误 3 A. 种子经过处理跟是否生病有关 B. 种子经过处理跟是否生病无关 C. 种子是否经过处理决定是否生病 D. 以上都是错误的 4、若由一个22?列联表中的数据计算得013.42=χ,那么有 的把握认为两个变量有关系. 5、独立性检验所采用的思路是:要研究A 、B 两类型因子彼此相关,首先假设这两类因子彼此 ,在此假设下构造2χ统计量.如果2χ的观测值较大,那么在一定程度上说明假设 . 6、某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该搜集那些数据? . 7、打鼾不仅影响别人休息,而且可能与患某种疾病有关,下表是一次调查所得数据,试问:每一晚都打与患心脏病有关吗?有多大把握认为你的结论成立?

8、为了研究某种新药的副作用(如恶心等),给50位患者服用此新药,另外50名患者服用 9、某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革的关系,随机抽取了189名员工进行调查,其中支持企业改革的调查者中,工作积极的54人,工作一般的32人,而不太赞成企业改革的调查者中,工作积极的40人,工作一般的63人. (1)根据以上数据建立一个2 2 的列联表; (2)对于人力资源部的研究项目,根据以上数据可以认为企业的全体员工对待企业改革的 态度与其工作积极性是否有关系?

高考一轮复习变量间的相关关系与统计案例

第3讲 变量间的相关关系与统计案例 【2015年高考会这样考】 以选择题或填空题的形式考查回归分析及独立性检验中的基本思想方法及其简单应用. 【复习指导】 高考在该部分的主要命题点就是回归分析和独立性检验的基础知识和简单应用.复习时要掌握好回归分析和独立性检验的基本思想、方法和基本公式. 基础梳理 1.相关关系的分类 从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关. 2.线性相关 从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线. 3.回归方程 (1)最小二乘法:使得样本数据的点到回归直线的距离平方和最小的方法叫最小二乘法. (2)回归方程:两个具有线性相关关系的变量的一组数据: (x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b ^x +a ^,则 ?? ??? b ^=∑i =1n (x i -x )(y i -y )∑i =1n (x i -x )2 = ∑i =1n x i y i -n x y ∑i =1 n x 2i -n x 2 , a ^=y -b ^ x . 其中,b 是回归方程的斜率,a 是在y 轴上的截距. 4.样本相关系数

r= ∑ i=1 n (x i-x)(y i-y) ∑ i=1 n (x i-x)2∑ i=1 n (y i-y)2 ,用它来衡量两个变量间的线性相关关系. (1)当r>0时,表明两个变量正相关; (2)当r<0时,表明两个变量负相关; (3)r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|>0.75时,认为两个变量有很强的线性相关关系. 5.线性回归模型 (1)y=bx+a+e中,a、b称为模型的未知参数;e称为随机误差. (2)相关指数 用相关指数R2来刻画回归的效果,其计算公式是:R2=,R2的值越大,说明残差 平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R2表示解释变量对预报变量变化的贡献率,R2越接近于1,表示回归效果越好. 6.独立性检验 (1)用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例如:是否吸烟,宗教信仰,国籍等. (2)列出的两个分类变量的频数表,称为列联表. (3)一般地,假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为: 2×2列联表 y1y2总计 x1 a b a+b x2 c d c+d 总计a+c b+d a+b+c+d K2=n(ad-bc)2 (a+b)(a+c)(c+d)(b+d) (其中n=a+b+c+d为样本容量),可利用独立性检验

第一章统计案例单元检测题及答案

第一章统计案例 命题人:卧龙寺中学鲁向阳审题人:唐军宁 第I卷 说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分,时间90分钟 一、选择题:(每小题5分,共计60分) 1.下列结论正确的是() ①函数关系是一种确定性关系;②相关关系是一种非确定性关系; ③回归分析是对具有函数关系的两个变量进行统计分析的一种方法; ④回归分析是对具有相关关系两个变量进行统计分析的一种常用方法.A.①②B.①②③C.①②④D.①②③④ 2.年劳动生产率x(千元)和工人工资y(元)之间回归方程为y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均() A.增加70元B.减少70元C.增加80元D.减少80元 3.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则 回归直线方程为() A.y=1.23x+4 B.y=1.23x+5 C.y=1.23x+0.08 D.y=0.08x+1.23 4.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到班级与成绩列联表如下: 则随机变量2K的观测值约为() A.0.60 B.0.828 C.2.712 D.6.004 5.下列属于相关现象的是() A.利息与利率C.电视机产量与苹果产量 B.居民收入与储蓄存款D.某种商品的销售额与销售价格 6.下列关系中是函数关系的是() A.等边三角形的边长和周长关系C.电脑的销售额和利润的关系B.玉米的产量和施肥量的关系 D.日光灯的产量和单位生产成本关系7. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93。用这个模型预测这个孩子10岁时的身高,则正确的叙述是() A.身高一定是145.83cm C.身高在145.83cm以下 B.身高在145.83cm以上D.身高在145.83cm左右 8. 变量y与x之间的回归方程表示() A. y与x之间的函数关系 B. y与x之间的不确定性关系 C. y与x之间的真实关系 D. y与x之间的真实关系达到最大限度的吻合

2021届高三新题数学9月(适用新高考)专题二十 统计与统计案例(原卷版)

专题二十 统计与统计案例 一、单选题 1.(2020·河南宛城·南阳华龙高级中学月考(文))在一组样本数据()11,x y ,()22,x y ,…,(),n n x y (2n ≥, 1x ,2x ,……,n x 不全相等)的散点图中,若所有样本点()(),1,2,,i i x y i n =???都在直线2 15 y x = +上,则这组样本数据的样本相关系数为( ) A .-1 B .0 C . 12 D .1 二、多选题 2.(2020·江苏省丰县中学期末)某俱乐部为了解会员对运动场所的满意程度,随机调查了50名会员,每位会员对俱乐部提供的场所给出满意或不满意的评价,得到如图所示的列联表,经计算2K 的观测值 5.059k ≈,则可以推断出( ) 附: A .该俱乐部的男性会员对运动场所满意的概率的估计值为 2 3 ; B .调查结果显示,该俱乐部的男性会员比女性会员对俱乐部的场所更满意; C .有97.5%的把握认为男性会员、女性会员对运动场所的评价有差异; D .有99%的把握认为男性会员、女性会员对运动场所的评价有差异. 第II 卷(非选择题)

三、解答题 3.(2020·河南宛城·南阳华龙高级中学月考(文))微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中0090的人使用微信,其中每天使用微信时间少于一小时的有60人,其余的员工每天使用微信时间不少于一小时,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中0075是青年人.若规定:每天使用微信时间不少于一小时为经常使用微信,那么经常使用微信的员工中 2 3 都是青年人. (1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,完成22?列联表: (2)由列联表中所得数据判断,能否在犯错误的概率不超过0.001的前提下认为“经常使用微信与年龄有关”? 2 2 ()()()()() n ad bc k a b c d a c b d -=++++ 4.(2020·江苏泰州·期末)某企业的甲、乙两种产品在东部地区三个城市以及西部地区两个城市的销售量x , y 的数据如下:

2019版高考数学总复习第十章算法初步统计统计案例58变量间的相关关系与统计案例课时作业文20180

课时作业 58 变量间的相关关系与统计案例 一、选择题 1.(2018·石家庄模拟(一))下列说法错误的是( ) A .回归直线过样本点的中心(x -,y - ) B .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1 C .对分类变量X 与Y ,随机变量K 2 的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小 D .在回归直线方程x ^=0.2x +0.8中,当解释变量x 每增加1个单位时,预报变量y ^ 平均增加0.2个单位 解析:本题考查命题真假的判断.根据相关定义分析知A ,B ,D 正确;C 中对分类变量 X 与Y 的随机变量K 2的观测值k 来说,k 越大,判断“X 与Y 有关系”的把握程度越大,故 C 错误,故选C. 答案:C 2.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元) 8.2 8.6 10.0 11.3 11.9 支出y (万元) 6.2 7.5 8.0 8.5 9.8 根据上表可得回归直线方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y --b ^x - .据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元 D .12.2万元 解析:∵x -=10.0,y -=8.0,b ^=0.76,∴a ^=8-0.76×10=0.4,∴回归方程为y ^ =0.76x +0.4,把x =15代入上式得,y ^ =0.76×15+0.4=11.8(万元). 答案:B 3.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 合计 爱好 40 20 60 不爱好 20 30 50 合计 60 50 110 由K 2 = n ad -bc 2a +b c + d a +c b +d ,

高中数学选修1-2第一章统计案例测试题带详细解答

选修1-2第一章、统计案例测试 一、选择题 1.已知x与y之间的一组数据: x0123 y1357 则y与x的线性回归方程为必过点( ) A.(2,2) B. (1.5 ,4) C.(1.5 ,0) D.(1,2) 【答案】B 【解析】 试题分析:由数据可知,,∴线性回归方程为必过点(1.5,4) 考点:本题考查了线性回归直线方程的性质 点评:解决此类问题常常用到线性回归直线方程恒过定点这一结论,属基础题 2.年劳动生产率(千元)和工人工资(元)之间回归方程为,这意味着年劳动生产率每提高1千元时,工人工资平均 A.增加70元B.减少70元C.增加80元D.减少80元 【答案】A 【解析】 试题分析:由题意,年劳动生产率(千元)和工人工资(元)之间回归方程为, 故当增加1时,要增加70元, ∴劳动生产率每提高1千元时,工资平均提高70元, 故A正确. 考点:线性回归方程. 点评: 本题考查线性回归方程的运用,正确理解线性回归方程是关键.3.已知某回归方程为:,则当解释变量增加1个单位时,预报变量平均:()

A、增加3个单位 B、增加个单位 C、减少3个单位 D、减少个单位 【答案】C 【解析】 解释变量即回归方程里的自变量,由回归方程知预报变量减少3个单位4.变量与相对应的一组数据为(10, 1), (11.3, 2), (11.8, 3), (12.5, 4), (13, 5);变量与相对应的一组数据为(10,5), (11.3, 4), (11.8, 3), (12.5, 2), (13, 1),表示变量与之间的线性相关系数,表示变量与之间的线性相关系数,则 A. B. C. D. 【答案】C 【解析】解:∵变量X与Y相对应的一组数据为(10,1),(11.3,2), (11.8,3),(12.5,4),(13,5), . X =(10+11.3+11.8+12.5+13) 5 =11.72 . Y =(1+2+3+4+5) 5 =3 ∴这组数据的相关系数是r=7.2 19.172 =0.3755, 变量U与V相对应的一组数据为(10,5),(11.3,4), (11.8,3),(12.5,2),(13,1) . U =(5+4+3+2+1) 5 =3, ∴这组数据的相关系数是-0.3755, ∴第一组数据的相关系数大于零,第二组数据的相关系数小于零, 故选C. 5.统计中有一个非常有用的统计量 ,用它的大小可以确定在多大程度上可以认为“两个分类变量有关系”,下表是反映甲、乙两个平行班(甲班A老师教, 乙班B老师教)进行某次数学考试,按学生考试及格与不及格统计成绩后的2×2列联表.

相关文档
最新文档