_吡虫啉在节瓜和土壤中的残留分析方法研究

吡虫啉(imidacloprid)又称咪蚜胺、蚜虱净,是国内近年发展较快的一种新型硝基亚甲基类杀虫剂,主要通过选择性地抑制昆虫烟酸乙酰胆碱酯酶受体,阻断神经系统传导,造成死亡,具有内吸、触杀和胃毒作用。主要用于防治水稻、小麦、棉花等作物上的刺吸式口器害虫,

吡虫啉在节瓜和土壤中的残留分析方法研究

占绣萍1*,谢金招2

(1.上海市农业技术推广服务中心,上海201103;

2.江西省赣州市果树植保站,江西赣州341000)

Study on Imidacloprid Residue in Hairy Gourd and Soil by HPLC

Zhan Xiuping(Shanghai Agriculture Technical Extension Service Center,Shanghai201103,China)

Xie Jinzhao(Ganzhou City of Jiangxi Province Fruit Trees Plant Protection Station,Jiangxi 341000,China)

Abstract:A high-performance liquid chromatography(HPLC)method was developed for the determination of imidacloprid in hairy gourd and soil.The residues of hairy gourd sample and soil were extracted with acetonitrile,and the hairy gourd sample were cleaned up with Solid-phase extraction,(and the soil sample were not cleaned up),and condensed to dry.Determinations of

analytes were completed using HPLC with DAD detection.Under HPLC conditions,the de-

tectable limit of imidacloprid was estimated to be0.2ng,and the minimum determination con centration was0.02mg/kg in hairy gourd,and0.01mg/kg in soil respectively,The fortified recov eries of imidacloprid in hairy gourd and soil were in range of94.9%~119.7%and84.8%~107.1%,with relative standard deviations of1.46%~9.14%.

Key words:imidacloprid;HPLC;residue;hairy gourd

摘要:建立了一种用高效液相色谱仪分析节瓜及土壤中的吡虫啉残留量方法。样品用乙腈溶剂提取,节瓜样品过SPE小柱净化,土壤样品直接浓缩、定容,最后用液相色谱DAD 检测器测定。该方法条件下,吡虫啉的最小检出量为:0.2ng,在节瓜和土壤中最低检测浓度分别为0.02、0.01mg/kg,吡虫啉在节瓜和土壤样品中的回收率分别为94.9%~119.7%和

84.8%~107.1%,变异系数为1.46%~9.14%,满足农药残留分析要求。

关键词:吡虫啉;液相色谱;残留;节瓜

中图分类号:S481+.8;S482.3文献标识码:A文章编号:1002-5480(2013)03-17-04

收稿日期:2012-11-30

作者简介:占绣萍(1983-),女,汉,江西乐平人,农药学硕士,农艺师,从事农药残留分析研究。联系电话:64053928;

E-mail:zxp19830124@https://www.360docs.net/doc/cc15799907.html,。

如蚜虫、叶蝉、蓟马、白粉虱及马铃薯甲虫和麦秆蝇等。其化学结构式为。

作为市场上发展较快、应用广泛的农药之一,先后已经有不同文献报道其在番茄、萝卜、枸杞、烟草等作物及环境中的残留[1-6],但前处理方法较繁杂,未见报道在节瓜中的残留分析方法。本文参照文献方法对吡虫啉在节瓜及土壤中的残留前处理方法及色谱条件都进行了优化,筛选出简便、快速、准确、节省溶剂的残留分析方法。

1材料与分析方法1.1仪器

HP1260液相色谱仪(美国安捷伦公

司)、C 18反相色谱柱、制样机、国际型振荡器、高速匀浆机、高速离心机、漩涡混合器、电子天平、氮吹仪以及其它实验室常用仪器设备。

1.2试验材料与试剂试验材料:采自上海

市宝山郊区节瓜、土壤;吡虫啉标准样品(1000mg/L ,由天津环保所提供);NH 2固相萃取小柱。

试剂:无水硫酸钠、氯化钠(分析纯);乙腈、甲醇(色谱级);娃哈哈矿泉水等。

1.3色谱条件C 18反相色谱柱:YWG-C 18色谱

柱(250mm ×4.6mm ,10um );柱温:40℃;流速:

1.0mL/min ;进样量:20uL ;吸收波长:268nm ;

梯度洗脱条件如下:起始时间0min ,甲醇/水(0∶100,V /V );8.0min ,甲醇/水(95∶5,V /V ),

10.0甲醇/水(95∶5,V /V ),停止时间:12min ,延

迟时间:3min 。

1.4样品制备节瓜:节瓜样品送回实验室

后,将样品混匀,采用四分法缩分样品,取出其中的1/4在制样机中打碎,装到带盖的塑料瓶

中,贮存在-20℃的冰柜中冷冻保存。

土壤:样品送回实验室后,用电风扇迅速将样品吹干后,将样品混匀,采用四分法缩分样品,取出其中的1/4在粉碎机中将土壤打细,装到带盖的塑料瓶中,贮存在-20℃的冰柜中冷冻保存。

1.5提取方法节瓜样品:称取25g 样品加入

到250mL 三角瓶中,加50mL 乙腈高速匀浆1min 后用滤纸过滤,滤液收集到装有5~7g 无水氯化钠的具塞量筒里,收集滤液40~50mL ,盖上盖子,剧烈振荡1min ,在室温下静置1h ,使乙腈相和水相分层,从具塞量筒中吸取10mL 乙腈溶液至烧杯中,然后氮吹至近干,待测。

土壤样品:称取25g 样品加入到250mL 三角瓶中,加乙腈溶剂50mL 振荡提取60min ,将提取液转移至离心试管中,以3000r/min 的速度离心

5min ,静置待测。1.6

净化方法

节瓜:用二氯甲烷∶甲醇(95∶

5,V /V )混合淋洗液4mL 预淋NH 2固相萃取柱,

再用二氯甲烷∶甲醇(95∶5,V /V )混合淋洗液

10mL 分3次冲洗烧杯过NH 2柱洗脱并收集,经0.25um 微膜过滤,5mL 甲醇定容,上机待测。

土壤:吸取上清液5mL ,经0.25um 微膜过滤,上机待测。

2结果与讨论

2.1

土壤样品中提取溶剂和振荡时间的选择

添加吡虫啉标样到土壤样品中,加入乙腈溶剂

50mL 分别振荡30、60、90min 进行比较,结果

(表1)表明,90min 的回收率偏高,可能提出更多的杂质干扰标样;30min 的回收率偏低,时间太短,不能完全提取出吡虫啉的残留;振荡

60min 的回收率较稳定,提取效果较好。所以最

后选择振荡60min 进行提取。

表1

土壤样品不同振荡时间的回收率比较

振荡时间(min )

回收率(%)

R1R2R3平均R

3080.583.675.579.960102.298.7101.3100.790

120.8

115.0

109.7

115.2

2.2节瓜样品净化方法比较由于节瓜色素不是很深,故在常用的固相萃取柱中选择了NH2小柱,用二氯甲烷∶甲醇(95∶5,V/V)混合淋洗液和二氯甲烷∶甲醇(90∶10,V/V)混合淋洗液洗脱比较,发现后者洗出来的杂质较多,容易干扰标样,故选择用体积比为95∶5的二氯甲烷/甲醇混合溶剂较好。

2.3标准曲线、最小检出量与最低检出浓度取一定量的1000mg/L吡虫啉母液,分别稀释成

0.02、0.05、0.1、0.5、1、2mg/L6个不同浓度的标准溶液,摇匀,按照4.2仪器检测条件,以峰面积对进样绝对量做标准曲线,检测线性范围为0.4ng~40ng,得到线性回归方程为Y=97.252X+ 0.6245,相关系数为r=0.9999(标准曲线图1)。在上述条件下,吡虫啉的最低检出量为0.2ng。根据添加回收率试验,吡虫啉在节瓜、土壤中的最低检出浓度分别为0.02、0.01mg/kg。

2.4回收率实验分别在空白节瓜和土壤样品中加入4档浓度的吡虫啉标样,按上述方法对样品进行提取、净化、色谱测定后,计算添加回收率,结果(

表2、3),吡虫啉在节瓜样品回收率为94.9%~119.7%;在土壤样中的添加回收率为84.8%~107.1%。变异系数(CV)为1.46%~9.14%。

2.5色谱条件吡虫啉标样出峰时间约为7.3min。标样、样品空白、样品添加回收色谱图(图2~6)。

表2节瓜中吡虫啉的添加回收率

添加浓度(mg/kg)

回收率(%)

平均值

变异系数CV

(%)12345

0.25106.1112.1101.8106.9105.5106.5 3.48 0.5102.298.7101.3100.499.1100.3 1.46 0.1119.7111.5121.2116.9110.8116.0 4.07 0.0494.995.1105.4110.8116.5104.59.14

表3土壤中吡虫啉的添加回收率

添加浓度(mg/kg)

回收率(%)

平均值

变异系数CV

(%)12345

0.0294.0100.093.383.890.592.3 6.38 0.1101.4100.4107.199.4105.2102.7 3.23 0.493.691.991.790.390.591.6 1.47 0.886.684.985.384.889.886.3 2.40

3小结

研究并建立了一种采用高效液相色谱仪测定节瓜及土壤中残留量的分析方法。该方法具有操作简便,快速,节约溶剂,对环境污染小。本方法在节瓜和土壤中的添加回收率为84.8%~119.7%,均满足残留测定要求。目前,尚未有文献报道吡虫啉在节瓜中的残留分析方法,本研究将为吡虫啉在节瓜上的安全性评价提供检测依据,为该农药在其他农作物中残留检测方法提供一定的参考价值。

图1吡虫啉标准曲线图

参考文献

[1]王明明,龚艳,陈浩,等.吡虫啉在番茄中的残留动态及

残留去除方法[J].食品科学,2010,19(4):140-143.

[2]白小军、康萍芝,沈瑞清,等.吡虫啉农药在枸杞中的残

留降解研究[J].现代农药,2006,10(3):25-28.

[3]李乃洁,牛森,王勇,等.蔬菜、水果中吡虫啉残留量的

HPLC 测定[J],农药,2004,43(10):37-38.

[4]赵莉、姜忠涛.吡虫啉在土壤、萝卜中的残留分析方法

[J].农药科学与管理,2003,24(8):14-16.

[5]曹爱华、徐光军,朱先志,等.烟草及土壤中吡虫啉的

残留分析方法研究[J].中国烟草科学,2001(4):45-

48.

[6]张红、张丽华,毛江胜,等.土壤中吡虫啉残留量HPLC 测

定方法的研究[J].山东农药科学,2004(6):56-57.

图20.5mg/L 吡虫啉标准品色谱图图3节瓜空白色谱图

图4节瓜添加色谱图图5土壤空白色谱图

图6土壤添加色谱图

土壤理化性质分析方法

测定土壤理化指标有很多标准文件,部分指标有国家标准,部分用农业行业标准,由于指标太多,故列出土壤测定的一些方法,通过方法可以搜索到行业标准或国家标准的具体内容,供参考: 土壤质地国际制;指测法或密度计法(粒度分布仪法)测定 土壤容重环刀法测定 土壤水分烘干法测定 土壤田间持水量环刀法测定 土壤pH土液比1:2.5,电位法测定 土壤交换酸氯化钾交换——中和滴定法测定 石灰需要量氯化钙交换——中和滴定法测定 土壤阳离子交换量EDTA-乙酸铵盐交换法测定 土壤水溶性盐分总量电导率法或重量法测定 碳酸根和重碳酸根电位滴定法或双指示剂中和法测定 氯离子硝酸银滴定法测定 硫酸根离子硫酸钡比浊法或EDTA间接滴定法测定 钙、镁离子原子吸收分光光度计法测定 钾、钠离子火焰光度法或原子吸收分光光度计法测定 土壤氧化还原电位电位法测定。 土壤有机质油浴加热重铬酸钾氧化容量法测定 土壤全氮凯氏蒸馏法测定 土壤水解性氮碱解扩散法测定 土壤铵态氮氯化钾浸提——靛酚蓝比色法(分光光度法)测定 土壤硝态氮氯化钙浸提——紫外分光光度计法或酚二磺酸比色法(分光光度法)测定 土壤有效磷碳酸氢钠或氟化铵-盐酸浸提——钼锑抗比色法(分光光度法)测定 土壤缓效钾硝酸提取——火焰光度计、原子吸收分光光度计法或ICP法测定 土壤速效钾乙酸铵浸提——火焰光度计、原子吸收分光光度计法或ICP法测定 土壤交换性钙镁乙酸铵交换——原子吸收分光光度计法或ICP法测定 土壤有效硫磷酸盐-乙酸或氯化钙浸提——硫酸钡比浊法测定 土壤有效硅柠檬酸或乙酸缓冲液浸提-硅钼蓝比色法(分光光度法)测定 土壤有效铜、锌、铁、锰DTPA浸提-原子吸收分光光度计法或ICP法测定 土壤有效硼沸水浸提——甲亚胺-H比色法(分光光度法)或姜黄素比色法(分光光度法)或ICP法测定 土壤有效钼草酸-草酸铵浸提——极谱法测定 全量铅、镉、铬干灰化法处理——原子吸收分光光度计法或ICP法测定 全量汞湿灰化处理——冷原子吸收(或荧光)光度计法 全量砷干灰化处理——共价氢化物原子荧光光度法或ICP法测定

(完整word版)重金属检测方法汇总

重金属检测方法汇总 重金属检测方法及应用 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

吡虫啉和联苯菊酯在蔬菜上的残留方法建立

吡虫啉和联苯菊酯在蔬菜上的残留方法建立 相关农药资料: 吡虫啉:吡虫啉是烟碱类超高效杀虫剂,具有广谱、高效、低毒、低残留,害虫不易产生抗性,对人、畜、植物和天敌安全等特点,并有触杀、胃毒和内吸等多重作用。害虫接触药剂后,中枢神经正常传导受阻,使其麻痹死亡。产品速效性好,药后1天即有较高的防效,残留期长达25天左右。药效和温度呈正相关,温度高,杀虫效果好。主要用于防治刺吸式口器害虫。氯化烟酰杀虫剂,主要用来防治刺吸式口器害虫,如蚜虫、叶蝉、飞虱、蓟马等,此外也可用于鞘翅目、双翅目和鳞翅目害虫。由于其既不作用于乙酰胆碱酯酶、钠通道,也不作用于氨基丁酸-氯离子通道,因此对防治抗性害虫十分有效。用于禾谷类作物、玉米、马铃薯、棉花、蔬菜、柑橘等。最近,也被开发为新的杀白蚊剂。广泛用于棉花、蔬菜、果树、水稻、小麦等作物,有效防治蚜虫、飞虱、叶蝉、象甲等害虫。 联苯菊酯:广谱杀虫活性的含氯类杀虫剂,通过触杀、胃毒和薰蒸等方式用于防治土壤和作物害虫,对人体也有一定的毒害” 1.用途防治棉铃虫,棉红蜘蛛,桃小食心虫,梨小食心虫,山楂叶螨、柑桔红蜘蛛,黄斑蝽,茶翅蝽,菜蚜,菜青虫,小菜蛾,茄子红蜘蛛,茶细蛾等20多种害虫,温室白粉虱、茶尺蠖、茶毛虫。 2.拟除虫菊酯类杀虫、杀螨剂。具有击倒作用强、广谱、高效、快速、长残效的特点,以触杀作用和胃毒作用为主,无内吸作用。可用于防治棉铃虫、红铃虫、茶尺蠖、茶毛虫、苹果或山楂红蜘蛛、桃小食心虫、菜蚜、菜青虫、菜小蛾、柑橘潜叶蛾等。如防治棉铃虫、红铃虫于第二、三代卵孵盛期,幼虫蛀入蕾、铃之前,或防治棉红蜘蛛,在成、若螨发生期,用10%乳油 3.4~6mL/100m2对水7.5~15KG或 4.5~6mL/100m2对水7.5犽犵喷雾。并可兼治棉蚜、造桥虫、卷叶虫、刺蛾、蓟马等。防治茶尺蠖、茶毛虫、茶细蛾,用10%乳油4000~10000倍液喷雾。

土壤中重金属形态分析方法

土壤中重金属形态分析方法 赵梦姣 (湖北理工学院环境科学与工程学院) 摘要:介绍了土壤重金属的形态及各种分析方法, 重点说明了土壤中重金属形态分布及影响因素;讨论了影响土壤环境中重金属形态转化的因素, 重金属形态与重金属在土壤中的迁移性、可给性、活性的关系, 重金属污染土壤修复与重金属形态分布的关系。形态分析在一定程度上反映自然与人为作用对土壤中重金属来源的贡献, 并反映重金属的生物毒性。 关键词: 土壤; 重金属; 形态分析;分析方法 自20 世纪70 年代以来重金属污染与防治的研究工作备受关注,目前重金属污染物已被众多国家列为环境优先污染物。重金属的总量往往很难表征其污染特性和危害,环境中重金属的迁移转化规律、毒性以及可能产生的环境危害更大程度上取决于其赋存形态[1],不同的形态产生不同的环境效应。土壤的重金属污染是当今面积最广、危害最大的环境问题之一,其所含的重金属可以通过食物链被植物、动物数十倍的富集[2], 但土壤中的重金属的毒性不仅与其总量有关, 更大程度上由其形态分布所决定。环境中重金属的迁移性、生物有效性及生物毒性与重金属污染物在土壤中的存在形态有关, 因此, 土壤中的重金属形态分析已成为现代分析化学特别是环境分析化学领域的一个热门研究方向。

1重金属的形态及形态分析方法 根据国际纯粹与应用化学联合会的定义,形态分析是指表征与测定的一个元素在环境中存在的各种不同化学形态与物理形态的过程[3]。形态分析的主要目的是确定具有生物毒性的重金属含量,当所测定的部分与重金属生物效应或毒性一致时,形态分析的目的就可实现。重金属形态是指重金属的价态、化合态、结合态和结构态4个方面,由于土壤化学结构复杂及各种影响因素复杂多变,对土壤中的重金属形态分析,与水环境中重金属的分析方法:如溶出伏安法、离子选择电极法不同,土壤中重金属大多采用连续提取的形态分析方法对样品进行浸提和萃取,然后用原子吸收光谱法测定提取液中的每种形态重金属的浓度,许多学者关于土壤中重金属形态提出了不同的方法。FORSTNER[4]则提出了7步连续提取法,将重金属形态分为交换态、碳酸盐结合态、无定型氧化锰结合态、有机态、无定型氧化铁结合态、晶型氧化铁结合态、残渣态; SHUMAN[5]将其分为交换态、水溶态、碳酸盐结合态、松结合有机态、氧化锰结合态、紧结合有机态、无定形氧化铁结合态和硅酸盐矿物态8种形态;为融合各种不同的分类和操作方法,CAMBRELL[6]认为土壤中重金属存在7种形态,即水溶态、易交换态、无机化合物沉淀物、大分子腐殖质结合态、氧化物沉淀吸收态、硫化物沉淀态和残渣态;而具有代表性的形态分析方法是由TIESSER等人提出的[7]。将土壤或者沉积物中的金属元素分为可交换态、碳酸盐结合态、铁-锰氧化物结合态、有机物结合态与残渣态。在TIESSER方法的基础上,欧共体标准物质局(European

《全国土壤污染状况详查土壤样品分析测试方法技术规定》(送审稿修改版)

全国土壤污染状况详查 土壤样品分析测试方法技术规定(送审稿修改版) 二〇一七年二月

目录 第一部分土壤样品无机项目分析测试方法 .......................................................................................... - 1 -1干物质和水分 (1) 1-1重量法......................................................................................................................................... - 1 -2总铅 . (3) 2-1 电感耦合等离子体质谱法(ICP-MS)................................................................................... - 3 -2-2 电感耦合等离子体原子发射光谱法(ICP-AES) ................................................................. - 8 -2-3 石墨炉原子吸收分光光度法.................................................................................................. - 14 -3总砷 .. (17) 3-1 原子荧光法.............................................................................................................................. - 17 -4总镉 .. (20) 4-1 石墨炉原子吸收分光光度法.................................................................................................. - 20 -4-2 电感耦合等离子体质谱法(ICP-MS)................................................................................. - 20 -5总汞 (20) 5-1 原子荧光法.............................................................................................................................. - 20 -6总铜 .. (23) 6-1 电感耦合等离子体原子发射光谱法(ICP-AES) ............................................................... - 23 -6-2 电感耦合等离子体质谱法(ICP-MS)................................................................................. - 23 -6-3 火焰原子吸收分光光度法...................................................................................................... - 23 -7总锌 .. (26) 7-1 电感耦合等离子体发射光谱法(ICP-AES) ....................................................................... - 26 -7-2 电感耦合等离子体质谱法(ICP-MS)................................................................................. - 26 -7-3 火焰原子吸收分光光度法...................................................................................................... - 26 -8总镍 .. (26) 8-1 电感耦合等离子体发射光谱法(ICP-AES) ....................................................................... - 26 -8-2 电感耦合等离子体质谱法(ICP-MS)................................................................................. - 26 -8-3 火焰原子吸收分光光度法...................................................................................................... - 26 -9总铬 .. (29) 9-1 电感耦合等离子体发射光谱法(ICP-AES) ....................................................................... - 29 -9-2 电感耦合等离子体质谱法(ICP-MS)................................................................................. - 29 -9-3 火焰原子吸收分光光度法...................................................................................................... - 29 -10总钴 (32) 10-1 电感耦合等离子体发射光谱法(ICP-AES) ..................................................................... - 32 -10-2 电感耦合等离子体质谱法(ICP-MS)............................................................................... - 32 -

植物和土壤化学分析方法

植物和土壤 常规项目的测定方法执笔人:冯跃华 2006.6.7

目录 1 植株氮、磷、钾测定(H2SO4—H2O2消煮法) (1) 1.1植株全氮测定(定氮仪法) (1) 1.2植株全氮测定(扩散法) (2) 1.3 植株全磷测定(钒钼黄比色法) (3) 1.4 植株全磷的测定(钼锑抗比色法) (4) 1.5 植株全钾的测定(火焰光度法) (5) 2 土壤水分测定(烘干法) (7) 3 土壤碱解氮的测定(包括硝态氮,扩散法) (7) 4 洗活性炭的方法 (9) 5 土壤速效磷的测定(钼锑抗比色法) (9) 6 土壤速效钾的测定(火焰光度法) (10) 7 土壤全氮的测定(定氮仪法) (11) 8 土壤全氮测定(扩散法) (12) 9 土壤全磷、全钾的测定(NaOH熔融) (14) 9.1 土壤全磷的测定(钼锑抗比色法) (14) 9.2 土壤全钾的测定(火焰光度法) (14) 10 土壤有机质的测定(重铬酸钾容量法外加热法) (16) 11 土壤pH值的测定 (17) 注:植物和土壤的全氮的测定,标准方法为定氮仪法,但扩散法适合没有定氮仪的情况,优点是快速、简捷。植株全磷测定一般用钼锑抗比色法。

1 植株氮、磷、钾测定(H2SO4—H2O2消煮法) 一.仪器: 三角瓶小弯颈漏斗100mL容量瓶 二.试剂: 1.浓硫酸 2.过氧化氢 三.操作步骤: 称取烘干、磨碎植物样品0.5xxxg左右,置于150mL小口三角瓶里,(或消煮管里)滴入少许水湿润样品,然后,加8mL浓硫酸轻轻摇匀,(最好放置过夜),瓶口放一弯颈小漏斗,在电炉(或消煮炉)上先小火消煮,待硫酸分解冒大量白烟后,再升高温度,当溶液呈均匀的棕黑色时取下,(三角瓶上没有什么杂物)稍冷后加10滴过氧化氢,摇匀,再加热至微沸,消煮约5分钟取下,稍冷后,重复加过氧化氢(每次减少2滴)再消煮,直到消煮溶液呈无色或清亮后,取下,冷却。用少量水冲洗弯颈漏斗,洗液流入三角瓶,将消煮液无损地洗入100mL容量瓶中,用水定容,摇匀。放置澄清后供氮、磷、钾测定。同时做空白试验。 四.注意事项: 1.加过氧化氢时,直接滴入瓶底溶液中,否则将影响N、P、K的比色测定。 2.过氧化氢不宜过早加入,每次用量不可过多,加入后的消煮温度不要太高,只要保持消煮液微 沸即可。 1.1 植株全氮测定(定氮仪法) 一.试剂: 1. 甲基红—溴甲酚绿混合指示剂:0.099g溴甲酚绿和0.066g甲基红放到玛瑙研钵中混合加入100mL乙醇(95%乙醇),研磨至指示剂全部溶解。(装滴瓶) 2. 2%硼酸溶液:20g硼酸溶于1L水中(P H4.5—5.5之间)。 3. 10 N氢氧化钠:400g氢氧化钠溶于1L水中。 4. 0.2N硫酸标准溶液的配制及标定:吸6mL浓硫酸置于1L容量瓶用水定溶。标签上写0.2N硫酸。 然后,标定,用三个150mL三角瓶分别称(经1600C烘干2小时)无水碳酸钠0.2xxxg左右,分别加30mL水溶解,分别加2滴甲基红—溴甲酚绿混合指示剂,(用尖端没有玻璃球的那一种酸式滴定管滴定)用0.2N硫酸溶液滴定至溶液由绿色变为紫红色,再煮沸2—3分钟逐尽CO2,冷却后继续滴定至溶液突变为葡萄酒红色为终点。同时做空白试验;空白:1个150mL三角瓶加30mL水,加2滴甲基红—溴甲酚绿混合指示剂,最后滴定算出来的浓度大概为0.2279N所以,标签上写0.2279N硫酸氮标液(母液)。 5. 0.01139N硫酸氮标液:吸取0.2279N硫酸氮标液50mL置于1L容量瓶中,用蒸馏水定容。(一 般用这个浓度的滴定) 6. 0.02279N硫酸氮标液:吸取0.2279N硫酸氮标液100mL置于1L容量瓶中,用蒸馏水定容。(这 个浓度的一般不需要配) 二.标准溶液的计算公式: m (V1-V2) × 0.05299

蔬菜中吡虫啉残留检测研究

蔬菜中吡虫啉残留检测研究 摘要:果蔬中的农药残留是目前影响食品安全的主要因素之一,特别是中国加入WTO以来,由于果蔬中农药残留超出标准而影响产品出口的事件时有发生,这严重地阻碍了我国对外贸易的发展;另外,农药及其残留也会对人体产生毒害作用,严重危害国民健康。吡虫啉(imidacloprid)又称咪蚜胺、蚜虱净,是国内近年发展较快的一种新型硝基亚甲基类杀虫剂,主要通过选择性地抑制昆虫烟酸乙酰胆碱酯酶受体,阻断神经系统传导,造成死亡,具有内吸、触杀和胃毒作用,可用于种子和土壤处理及直接喷雾,广泛用于水稻、小麦、蔬菜、果树、棉花、烟草等多种作物上,对飞虱、粉虱、蚜虫等刺吸式口器害虫及其抗药性种群具有优异的防治效果,具有速效、高效、持效期长、使用成本低等特点。吡虫啉对水稻、棉花、小麦等作物的前期病虫防治有极高的综合控制能力。但是由于大量使用,某些地区烟粉虱、银叶粉虱、灰飞虱、桃蚜、烟蚜等害虫的田间种群已经对吡虫啉产生了不同程度的耐药性或抗药性,特别是大棚和大田蔬菜、瓜类、果树上白粉虱和蚜虫及棉蚜等害虫对吡虫啉产生抗性的风险较大。因此使用吡虫啉防治这类害虫时,为了提高防治效果而加大使用剂量,从而容易造成其在农作物上的残留。因此对蔬菜中吡虫啉残留检测的研究是十分有必要的,可以减少农作物上农药的残留以及减轻对人体的危害。 关键词:吡虫啉农药残留液相色谱检测 正文: 材料与试剂:蔬菜样品若干 试剂:乙腈:色谱纯氢氧化钠:分析纯氯化钠:分析纯固相萃取柱(ENVI-18柱,3毫升,0.5克或相当者)有机滤膜:孔径0.45微米吡虫啉农药标准物质:纯度大于99% 25%乙腈:乙腈与水按1:3体积比混合农药标准溶液 标准储备溶液:称取10毫克左右(精确到0.10毫克)标准品于10毫升容量瓶中,加乙腈超声溶解,配成1 000微克/毫升左右的标准储备液,-18℃冰箱保存。混合标准溶液:使用时根据检测需要稀释成不同浓度的标准使用液,4℃冰箱保存。混合标准溶液避光4℃保存,可使用两个月。 净化过程所用溶液A(20mmol/L NaOH、NaCl饱和溶液):称取0.8克NaOH于100毫升烧杯中,加入少量水充分溶解后,再加入氯化钠使其饱和,然后倒入1 000毫升容量瓶中,再用饱和氯化钠水溶液定容至刻度。 净化过程所用溶液B(20mmol/L NaOH溶液):称取0.8克NaOH于100毫升烧杯中,加入少量水充分溶解后,倒入1 000毫升容量瓶中定容。 仪器和设备:高效液相色谱仪:配紫外检测器或二极管阵列检测器固体样品粉碎机:转速不低于4 000转/分钟组织捣碎机:转速不低于15 000转/分钟分析天平:感量0.1毫克和0.01克各一台离心机:转速不低于4 000转/分钟旋转蒸发仪梨形浓缩瓶:50毫升 SPE装置或相当者移液器:10毫升、1毫升超声波清洗器 研究方法:高效液相色谱分析法数据统计分析法 研究过程: 6.1 提取 按GB/T 8855抽取蔬菜样品取可食部分切碎,混匀,称取10克左右试样(精确到0.01克)于100毫升离心管中,加入20毫升乙腈,用高速组织捣碎机在15 000转/分钟,匀浆提取1分钟,加入5克氯化钠,再匀浆提取1分钟,将

土壤重金属形态分析的改进BCR方法

BCR连续提取法分析土壤中重金属的形态 ?1、重金属形态 ?2、重金属形态研究方法及发展历程 ?3、本实验的目的 ?4、实验原理 ?5、实验步骤 ?6、数据处理 1.重金属形态 ?重金属形态是指重金属的价态、化合态、结合态、和结构态四 个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。 ?重金属进入土壤后,通过溶解、沉淀、凝聚、络合吸附等各种 作用,形成不同的化学形态,并表现出不同的活性。 ?元素活动性、迁移路径、生物有效性及毒性等主要取决于其形 态,而不是总量。故形态分析是上述研究及污染防治等的关键 2、重金属形态研究方法及发展历程 ?自Chester 等(1967)和Tessier 等(1979)的开创性研究以来, 元素形态一直是地球和环境科学研究的一大热点。 ?在研究过程中,建立了矿物相分析、数理统计、物理分级和化学 物相分析等形态分析方法。

?由于自然体系的复杂性,目前对元素形态进行精确研究是很困 难,甚至是不可能的。 ?在诸多方法中,化学物相分析中的连续提取(或逐级提取) (Sequential extraction) 技术具操作简便、适用性强、蕴涵信息丰富等优点,得到了广泛应用。 逐级提取(SEE) 技术的发展历程 ?60~70年代(酝酿期) ?以Chester 和Hughes(1967) 为代表的一些海洋化学家尝试 用一种或几种化学试剂溶蚀海洋沉积物,将其分成可溶态和残留态两部分,进而达到研究微量元素存在形态的目的。 ?70 年代末(形成期)

?在前人研究的基础上,Tessier et al. (1979) 用不同溶蚀能力的化学试剂,对海洋沉积物进行连续溶蚀和分离操作,将其分成若干个“操作上”定义的地球化学相,建立了Tessier 流程。 ?80 年代(发展期) ?不同学者在对Tessier 流程改进的基础上,先后提出了20 多种逐级提取流程。其中,影响较大的逐级提取流程有Salomons 流程(1984) 、Forstner 流程(1985) 、Rauret et al流程(1989) 等。 ?90 年代(成熟期) ?为获得通用的标准流程及其参照物,由BCR 等主办的以“沉积物和土壤中的逐级提取”(1992) 、“环境风险性评价中淋滤/ 提取测试的协和化”(1994) 和“敏感生态系统保护中的环境分析化学”(1998) 等为主题的欧洲系列研讨会先后召开,并分别出版了研究专刊。 ?Ure et al. (1993) 在Forstner (1985) 等流程的基础上,提出了Ure 流程,后经Quevauviller et al. (1997 ,1998) 修改,成为BCR 标准流程,并产生了相应的参照物(CRM 601) 。 ?BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。 ?Rauret et al. (1999) 等对该流程作了改进,形成了改进的BCR

土壤分析样品的采集和处理方法

土壤分析样品的采集和 处理方法 标准化管理部编码-[99968T-6889628-J68568-1689N]

Ⅰ-土壤分析样品的采集和处理方法配方施肥是一种以最少的肥料投入得到农作物最高产量的农业新技术,这一技术的基础是测出土壤中已有的养分含量,然后根据种植作物的品种、目标产量决定该施什么肥、施多少肥。 土壤样品采集是决定分析结果是否准确的重要环节,因此请严格按下列方法采集土样。 对作物根系较浅的种植地只需取耕层20厘米深的土壤,对作物根系较深的种植地如小麦应适当增加深度,果园土壤样品在耕层40厘米深处采集,采样点的多少可根据试验区耕地面积大小和地形而定,地块面积较小的要采5个点以上,地块面积较大的应采20个点以上。取样点的分布最好采用S型采样法或十字交叉法。(见图一) 采来的样品数量太多可用四分法弃去一部分保留1斤土样即可(见图二)。其方法是:把采来的土样倒在干净的木板或塑料布上,用手将土块捏碎,用镊子夹去土样中的作物根系、昆虫、石块等杂物,放于室内阴凉通风处风干,注意不能在阳光下曝晒及火烤,以免发生氧化反应。把风干后的土样用木棍或玻璃瓶碾碎(不可用金属制品),然后用1—2毫米筛子筛一遍。把筛过的土样平铺成四方形,如数量仍然很多,可再用四分法处理,直至所需数量为止,一般用50克土样即可,完成土样处理后,请填写土壤登记表。 注:如一户有几个土样或几户各有一个土样可将土壤登记表分别填好,并在土样包装上做上与登记表同样内容的标记,以免搞错。 避免在粪堆底上和同一垄上以及田边,路边,沟边和特殊地形部位采样。 采样时在确定的采样点上用小土铲向下切取一片片的土样样品,每个样品点采取的土壤厚、薄、深、浅、宽、狭应大体一致,集中起来混合均匀。 有机肥分析样品的采集和处理方法:堆肥、厩肥、沤肥、草塘肥、沼气肥、牲畜粪尿以及人粪尿等都是有机肥,这些肥料大都是很不均匀的,采样时应注意多点取样,一般应在翻堆混匀后,选择10—20个采样点,大块和散碎的肥料比例相近,把采到的若干样品放在一块干净的塑料布上,送入室中风干,摊开晾干,再把样品弄碎、剪细、混匀,再用四分法缩分至500克左右,磨细并全部通过1毫米孔径筛子,装入样品瓶中。 如果有机肥样品中夹有较多石块,应捡出另外称重,并计算其占原有样品的百分数,如需测定有机肥料中的NH4和NO3,则需用新鲜样品,即不经风干立即进行测定。 粪尿和沼气肥是液体和固体混合肥,可先混匀在未分层前取出500毫升左右放入密闭容器中,用玻璃棒将固体充分捣碎,在分析称样前应反复振摇容器充分混匀。 四分法: Ⅱ-土壤养份测试方法

实验3 土壤理化性质测定与分析

实验3 土壤理化性质测定与分析 1 土壤样品的采集和制备 土壤样品的采集是否具有代表性,是决定分析结果能否正确反映土壤特性的关键。因此,采集的土壤样品必须具有代表性,以确保土壤质量分析结果的正确性。从田间采集来的土壤样品不可直接进行化学分析,需经过筛或风干过筛等处理后方可进行分析。因此,在风干过筛处理中保持最小的误差是同样的重要。本实验的目的在于通过土壤样品采集的实践,使学生更好地掌握采集具有代表性土壤样品的技能和合理处理样品的技能。 1.1土壤样品的采集 1.1.1耕层混合土壤样品的采集 (1)确定采样单元 根据有关资料和现场勘查后,将采样区划分为数个采样单元,每个采样单元的图类型,肥力状况和地形等因素要尽可能均匀一致。 (2)确定采样点数及采样点位置 采样点数的确定,取决于采样区域的大小、地块的复杂程度和所要求的精密度等因素,一般以5-20个为宜。采样点位置的确定要遵循随机布点的原则,常采用“S”型布点方式,该方式能较好地克服耕作、施肥等农业措施造成的误差。但在采样单元面积较小,地形变化较小,地力较均匀的情况下也可采用对角线(或梅花)形布点方式。为从总体上控制采样点的代表性,避免在堆过肥的地方和田埂,沟边以及特殊地形部位采样。 (3)各采样点土样的采集 遵循采样“等量”的原则,即每点所采土样的土体的宽度、厚度及深度均相同。使用采样器采样时应垂直于地面向下至规定的深度。用取土铲取样应先铲出一个耕层断面,再平行于断面下取土。 (4)混合土样的制备 将个点采集的土样集中在一起,尽可能捏碎,混均;如果采集的样品数量过多,可用四分法将多余的土样弃去,以取1kg为宜。其方法是将混均的土样平铺成四方形,划对角线将土样分成四份,将其中一对角线的两份弃去,如所剩样品仍很多,可重复上诉方法处理,知道所需数目为止。采集含水较多的土样时(如水稻土),四分法很难使用,可将各样点采集的烂泥状样品搅拌均匀后,再取出所需数量。将采好的土样装袋,土袋最好采用布制的,以保持通气。 (5)制作采样标签及采样记录 选用耐浸润的纸签(牛皮纸或硫酸纸),用铅笔在标签上注明采样地点,日期,采样深度,土壤名称,编号及采样人等,一式两份,土袋内外各放一份。同时做好采样记录。 1.1.2土壤剖面样品的采集 即按土壤发生层次的采样。首先在能代表研究对象的采样点挖掘1×1.5m左右的长方形土壤剖面坑,较窄的一面向阳,作为剖面观察面。挖出的土应放在土坑的两侧,而不要放在观察面的上方。土坑的深度根据具体情况确定,一般要求达到母质层或地下水位。根据剖面的土壤颜色、结构、质地、松紧度、湿度及植物根系分布等,划分土层。按研究所需了解的项目逐项进行仔细观察,描述记载,然后至上而下逐层采集样品,一般采集各层最典型的中部位置的土壤,以克服层次之间的过渡现象,保证样品代表性。每个土样质量1kg左右,将采集的样品放入样品袋,写明标签(同上)。 (1)土壤诊断样品采集 为找出造成某些植物发生局部死苗失绿,矮缩,花而不实等异常现象的原因,必须对土壤进行某些成分的分析测定。一般应在发生异常现象的范围内,采集典型土壤样品,多点混合,同时在附近采集正常土样作为对照。 (2)土壤盐分动态样品的采集 淋溶和蒸发是造成土壤剖面中盐分季节性变化的主要原因,因此,这类样品的采集按垂直深度分层采

吡虫啉中毒

吡虫啉中毒 文章目录*一、吡虫啉中毒的概述*二、吡虫啉中毒的原因*三、 吡虫啉中毒的主症*四、吡虫啉中毒的急救措施*五、吡虫啉中毒的护理知识*六、如何预防吡虫啉中毒 吡虫啉中毒的概述吡虫啉是烟碱类超高效杀虫剂,具有广谱、高效、低毒、低残留,害虫不易产生抗性,对人、畜、植物和天敌安全等特点,并有触杀、胃毒和内吸等多重作用。害虫接触药剂后,中枢神经正常传导受阻,使其麻痹死亡。产品速效性好,药后 1天即有较高的防效,残留期长达25天左右。药效和温度呈正相关,温度高,杀虫效果好。主要用于防治刺吸式口器害虫。 吡虫啉中毒的原因吡虫啉是烟碱类超高效杀虫剂,具有广谱、高效、低毒、低残留,害虫不易产生抗性,对人、畜、植物和天敌安全等特点,并有触杀、胃毒和内吸等多重作用。 吡虫啉中毒的主症局部刺激症状。接触部位皮肤充血、水肿、皮疹、瘙痒、水泡,甚至灼伤、溃疡。以有机氯、有机磷、氨基 甲酸酯、有机硫、除草醚、百草枯等农药作用最强。 神经系统表现。对神经系统代谢、功能,甚至结构的损伤, 引起明显神经症状。常见有中毒性脑病、脑水肿、周围神经病而

引起烦躁、意识障碍、抽搐、昏迷、肌肉震颤、感觉障碍或感觉异常等表现。以杀虫剂,如有机磷、有机氯、氨基甲酸酯等农药 中毒常见。 心脏毒性表现。对神经系统的毒性作用多是心脏功能损伤的病理生理基础,有些还对心肌有直接损伤作用。如有机氯、有机磷、百草枯、磷化锌等农药中毒,常致心电图异常(ST-T波改变、心律失常、传导阻滞)、心源性休克甚至猝死。 消化系统症状。多数农药口服可引起化学性胃肠炎,出现恶心、呕吐、腹痛、腹泻等症状,如砷制剂、百草枯、有机磷、环 氧丙烷等农药可引起腐蚀性胃肠炎,并有呕血、便血等表现。 吡虫啉中毒的急救措施不慎吸入,应将病人移至空气流通处。不慎溅入眼睛,用大量清水冲洗15分钟,并送医院治疗。如发生 误服中毒,应立即携此标签将病人送医院治疗。本品无特效解毒药,医生应对症治疗。 吡虫啉中毒的护理知识一般护理,注意休息。 如何预防吡虫啉中毒1、吡虫啉在甘蓝上使用的安全间隔期 为14天,每季最多用2次。 2、吡虫啉对鸟、蜜蜂和家蚕有毒,蜜源作物花期、鸟类保护区、桑园及蚕室附近禁止使用。 3、清洗喷药器械或弃置废料时,切忌污染水源。清洗容器及

土壤理化指标的测定方法W

土壤样品理化指标的测定 1.pH的测定(NY/T1377-2007 土壤pH的测定) 原理 土壤试液或悬浊液的pH值用pH玻璃电极为指标指示电极,以饱和甘汞电极为参比电极,组成测量电池,可测出试液的电动势,由此通过仪表可直接读取试液的pH值。 仪器 (1)pH计:SevenGo SG2 pH计。 (2)磁力搅拌器。 测定方法 (1)土壤浸出液的制备 新鲜样品应进行风干,平铺于阴凉通风处(本实验采用冷冻干燥法)。用四分法分取适量风干样品,剔除土壤以外的侵入体,如动植物残体、砖头、石块等,用圆木棍碾碎,使样品全部过2mm孔径的实验筛,过筛后充分混匀,装入玻璃广口瓶、塑料瓶或洁净的土样袋中,备用。储存期间,试样应尽量避免日光、高温、潮湿、酸碱气体等的影响。 称取10g±0.1g试样,加无二氧化碳蒸馏水25ml(或氯化钾溶液或氯化钙溶液)。将容器密封后,用振荡机或搅拌器,剧烈振荡或搅拌5min,然后静置1h~3h。 (2)pH计校标 开机预热10分钟,将浸泡24h以上的玻璃电极浸入pH6.87标准缓冲溶液中,以甘汞电极为参比电极,将pH计定位在6.87处,反复几次至不变为止。取出电极,用蒸馏水冲洗干净,用滤纸吸去水份,再插入pH4.01(或9.18)标准缓冲溶液中复核其pH值是否正确(误差在±0.2pH单位即可使用,否则要选择合适的玻璃电极)。 (3)测量 用蒸馏水冲洗电极,并用滤纸吸去水分,将玻璃电极和甘汞电极插入土壤试液或悬浊液中,读取pH值,反复3次,用平均值作为测量结果。 说明 (1)水土比对土壤pH值有影响,一般酸性土,其水土比为5:1~1:1,对测定结果影响不大;对碱性土,水土比增加,测得pH值增高,因此测定土壤pH值水土比应固定不变,一

美国农产品中吡虫啉的残留限量规定

序号 药品英文名 商品名称 最大残留限量(mg mg//kg kg)) 备注 1imidacloprid Acerola 12imidacloprid Almond, hulls 43imidacloprid Apple 0.54imidacloprid Apple, wet pomace 35imidacloprid Aspirated grain fractions 2406imidacloprid Atemoya 0.37imidacloprid Artichoke, globe 2.58imidacloprid Avocado 19imidacloprid Banana 0.510imidacloprid Barley, grain 0.0511imidacloprid Barley, hay 0.512imidacloprid Barley, straw 0.513imidacloprid Beet, sugar, roots 0.0514imidacloprid Beet, sugar, tops 0.515imidacloprid Beet, sugar, molasses 0.316imidacloprid Biriba 0.317imidacloprid Blueberry 3.518imidacloprid Borage, seed 0.0519imidacloprid Caneberry, subgroup 13-A 2.520imidacloprid Canistel 121imidacloprid Canola, seed 0.0522imidacloprid Cattle, fat 0.323imidacloprid Cattle, meat byproducts 0.324imidacloprid Cattle, meat 0.325imidacloprid Cherimoya 0.326imidacloprid Citrus, dried pulp 527imidacloprid Coffee, bean, green 0.828imidacloprid Corn, field, forage 0.129imidacloprid Corn, field, grain 0.0530imidacloprid Corn, field, stover 0.231imidacloprid Corn, pop, grain 0.0532imidacloprid Corn, pop, stover 0.233imidacloprid Corn, sweet, forage 0.134imidacloprid Corn, sweet, kernel plus cob with husks removed 0.0535imidacloprid Corn, sweet, stover 0.236imidacloprid Cotton, gin byproducts 437imidacloprid Cotton, undelinted seed 638imidacloprid Cotton, meal 839imidacloprid Crambe, seed 0.0540imidacloprid Cranberry 0.0541imidacloprid Currant 3.542imidacloprid Custard apple 0.343imidacloprid Egg 0.0244 imidacloprid Elderberry 3.5 美国农产品中吡虫啉的残留限量规定 Tolerances are established permitting the combined residues of the insecticide imidacloprid (1-[6-chloro-3-pyridinyl) methyl]-N -nitro-2-imidazolidinimine) and its metabolites containing the 6-chloropyridinyl moiety, all expressed as 1-[(6-chloro-3-pyridinyl)methyl]- N -nitro-2-imidazolidinimine,in or on the following food commodities

环境监测课程教学大纲..

环境监测课程教学大纲 课程名称:环境监测课程性质:XXX 总学时:64 学分:4 适用专业:环境工程开课单位:XXX 先修课程:无机化学、分析化学、有机化学、环境微生物学 一、课程性质、目的 环境监测是环境科学、环境工程、资源与环境、给水与排水工程等相关专业本科生的一门专业基础课,是环境科学与工程学科中具有综合性、实践性、时代性和创新性的一门重要的理论与方法课程。本课程是环境科学、环境工程和环境管理各领域的基础,是环境保护和环境科学研究不可缺少的,对环境保护的各个方面具有重大影响。 按监测对象学习,本课程主要讲述水和废水监测、大气和废气监测、固体废物监测、土壤污染监测、生物污染监测、噪声监测、环境放射性监测等内容。按测定项目学习,包括汞、镉、铬、铅、砷等重金属,氰化物、氟化物、硫化物、含氮化合物,水中溶解氧、生化需氧量、化学需氧量、酚类、油类,大气中SO2、NO X、TSP、PM10、CO、O3、烃类等气态污染物,光化学烟雾等二次污染物,颗粒物,多环芳烃类、二噁英类等重要有机污染物,以及酸雨项目监测等。按监测程序学习,本课程主要讲述各类环境监测的方案设计,优化布点、样品的采集、运输及保存,样品的预处理及测定,数据的处理及信息化,监测过程的质量保证等的内容。 按监测方法学习,主要讲述化学分析、仪器分析以及生物方法;主要为标准方法和正在推广的新的常规监测技术,还介绍一些行之有效的简易监测技术,及迅速发展的连续自动监测技术等内容。 本课程的教学目的是通过对上述内容的理论教学与实践教学,使学生掌握环境监测的基本概念、基本原理及相关法规,监测方法的科学原理和技术关键、各类监测方法的特点及适用范围等一系列理论与技术问题;掌握监测方案设计,优化布点、样品的采集、运输及保存,样品的预处理和分析测定、监测过程的质量保证、数据处理与分析评价的基本技能;了解环境监测新方法、新技术及其发展趋势。培养学生今后在监测数据收集、整理和评价等方面达到独立开展工作的能力,培养学生具有综合应用多种方法处理环境监测实践问题的能力,进一步培养与时俱进、发展新方法和新技术的创新思维和创新能力。为后期课程和将来的环境科学与工程研究、环境保护工作奠定良好的基础。 二、课程主要知识点及基本要求 第一章绪论 (一)目的与要求 1.了解环境监测的目的及分类。 2.掌握环境监测的一般过程或程序。 3.掌握优先污染物和优先监测的概念。 4.了解制订环境标准的原则及制订环境标准的作用、分类、分级情况。 5.掌握大气、水、土壤等最新的环境质量标准及其应用范围;了解各类污染物的控制或

相关文档
最新文档