指数函数与对数函数

指数函数与对数函数
指数函数与对数函数

指数函数与对数函数

一、指数函数 【要点梳理】

1.根式

(1)根式的概念

如果一个数的n 次方等于a (n >1且n ∈N *),那么这个数叫做a 的n 次方根.也就是,若x n =a ,则x 叫做__________,其中n >1且n ∈N *.式子 n

a 叫做__________,这里

n 叫做__________,a 叫做______________. (2)根式的性质

①当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时,a 的n 次方根用符号________表示.

②当n 为偶数时,正数的n 次方根有两个,它们互为相反数,这时,正数a 的正的n 次方根用符号________表示,负的n 次方根用符号__________表示.正负两个n 次方根可以合写为________(a >0). ③(

n

a )n =______.

④当n 为奇数时,

n

a n =______;

当n 为偶数时,n

a n =|a |=__________. ⑤负数没有偶次方根. 2.有理数指数幂 (1)幂的有关概念

①正整数指数幂:a n =a ·a ·…·a n

(n ∈N *). ②零指数幂:a 0=______(a ≠0).

③负整数指数幂:a -

p =________(a ≠0,p ∈N *).

④正分数指数幂:a m

n

=______(a >0,m 、n ∈N *,且n >1).

⑤负分数指数幂:a -m

n =________=________ (a >0,m 、n ∈N *,且n >1).

⑥0的正分数指数幂等于______,0的负分数指数幂______________. (2)有理数指数幂的性质

①a r a s =________(a >0,r 、s ∈Q ); ②(a r )s =________(a >0,r 、s ∈Q ); ③(ab )r =________(a >0,b >0,r ∈Q ).

3.指数函数的图象与性质

[1.根式与分数指数幂的实质是相同的,通常利用分数指数幂的意义把根式的运算转化为幂的运算,从而可以简化计算过程.

2.指数函数的单调性是底数a 的大小决定的,因此解题时通常对底数a 按:01进行分类讨论.

1.用分数指数幂表示下列各式. (1)3

x 2=________;

(2)4

(a +b )3((a +b )>0)=________; (3)m 3

m =________.

2.化简162

[(2)]

--(-1)0的值为________.

3.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________________.

4.若函数f (x )=a x -1 (a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________.

5.已知f (x )=2x +2-

x ,若f (a )=3,则f (2a )等于

( )

A.5

B.7

C.9

D.11

题型一 指数式与根式的计算问题 例1 计算下列各式的值.

(1)3

8

2-27(-)+()1

20.002--10(5-2)-1+(2-3)0;

(2)

1

5+2

-(3-1)0-9-45;

4

3

3

4

2()a b a b

-(a >0,b >0).

探究提高 根式运算或根式与指数式混合运算时,将根式化为指数式计算较为方便,对于计算的结果,

不强求统一用什么形式来表示,如果有特殊要求,要根据要求写出结果.但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.

计算下列各式的值:

(1)13

1.5

-×???

?-760+80.25×42+(32×3)

6;

(2)

4133

223

3

84a a b a b

-+÷? ??

??1-2

3b a ×3

a (a >0,

b >0). 题型二 指数函数的图象及应用

例2 (1)函数y =xa x

|x |

(0

( )

(2)若函数y =a x +b -1 (a >0且a ≠1)的图象经过第二、三、四象限,则a 、b 的取值范围是________________.

(3)方程2x =2-x 的解的个数是________.

探究提高 (1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,

通过平移、对称变换得到其图象.

(2)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.

(1)函数y =e x +e -

x

e x -e

-x 的图象大致为

( )

(2)k 为何值时,方程|3x -1|=k 无解?有一解?有两解? 题型三 指数函数的性质及应用

例3 设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值. 探究提高 指数函数问题一般要与其它函数复合.本题利用换元法将原函数化为一元二次函数.结合二次函数的单调性和指数函数的单调性判断出原函数的单调性,从而获解.

由于指数函数的单调性取决于底数的大小,所以要注意对底数的分类讨论,避免漏解.

已知定义在R 上的函数f (x )=2x -1

2

|x |.

(1)若f (x )=3

2

,求x 的值;

(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.

3.方程思想及转化思想在求

参数中的应用

试题:(14分)已知定义域为R 的函数f (x )=-2x +b

2x +1+a 是奇函数.

(1)求a ,b 的值;

(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. 审题视角 (1)f (x )是定义在R 上的奇函数,要求参数值,可考虑利用奇函数的性质,构建方程:f (0)=0,f (1)=-f (-1).

(2)可考虑将t 2-2t,2t 2-k 直接代入解析式化简,转化成关于t 的一元二次不等式.也可考虑先判断f (x )的单调性,由单调性直接转化为关于t 的一元二次不等式. 规范解答

解 (1)因为f (x )是R 上的奇函数, 所以f (0)=0,即-1+b 2+a =0,解得b =1,

从而有f (x )=-2x +1

2x +1+a

.

[4分]

又由f (1)=-f (-1)知-2+1

4+a =--12+11+a ,

解得a =2.

[7分]

(2)方法一 由(1)知f (x )=-2x +1

2x +1+2

又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +1

22t 2-k +1+2<0,

即(

)(

)(

)(

)

22

2

2

21

221

22

2212221t k t

t

t

t t

k

-+--+-+-+++-+<0. [9分]

整理得2322

t t k

-->1,因底数2>1,故3t 2-2t -k >0. [12分]

上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0, 解得k <-1

3

.

[14分]

方法二 由(1)知f (x )=-2x +12x +1+2

=-12+1

2x +1,

由上式易知f (x )在R 上为减函数,又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ). 因为f (x )是R 上的减函数, 由上式推得t 2-2t >-2t 2+k .

[12分]

即对一切t ∈R 有3t 2-2t -k >0, 从而Δ=4+12k <0,解得k <-1

3

.

[14分]

批阅笔记 (1)根据f (x )的奇偶性,构建方程求参数体现了方程的思想;在构建方程时,利用了特殊值的方法,在这里要注意的是:有时利用两个特殊值确定的参数,并不能保证对所有的x 都成立.所以还要注意检验.

(2)数学解题的核心是转化,本题的关键是将f (t 2-2t )+f (2t 2-k )<0等价转化为:t 2-2t >-2t 2+k 恒成立.这个转化考生易出错.其次,不等式t 2-2t >-2t 2+k 恒成立,即对一切t ∈R 有3t 2-2t -k >0,也可以这样做:k <3t 2-2t ,t ∈R ,只要k 比3t 2-2t 的最

小值小即可,而3t 2-2t 的最小值为-13,所以k <-1

3

.

方法与技巧

1.单调性是指数函数的重要性质,特别是函数图象的无限伸展性,x 轴是函数图象的渐近线.当01时,x →-∞,y →0;当a >1时,a 的值越大,图象越靠近y 轴,递增的速度越快;当0

2.画指数函数y =a x (a >0,a ≠1)的图象,应抓住三个关键点:(1,a )、 (0,1)、????-1,1

a . 3.在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程(组)来求值,或用换元法转化为方程来求解. 失误与防范

1.指数函数y =a x (a >0,a ≠1)的图象和性质跟a 的取值有关,要特别注意区分a >1与0

2.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0 (≤0)的指数方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.

二、对数函数 【要点梳理】

1.对数的概念

(1)对数的定义

如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作__________,其中______叫做对数的底数,______叫做真数. (2)几种常见对数

2.(1)对数的运算法则

如果a >0且a ≠1,M >0,N >0,那么

①log a (MN )=____________;②log a M

N =__________;

③log a M n =__________ (n ∈R );④log a m M n =__________. (2)对数的性质 ①log a N

a

=______;②log a a N =______(a >0且a ≠1).

(3)对数的重要公式

①换底公式:____________ (a ,b 均大于零且不等于1); ②log a b =1

log b a ,推广log a b ·log b c ·log c d =________.

3.对数函数的图象与性质

指数函数y =a x 与对数函数__________互为反函数,它们的图象关于直线________对称.

[难点正本 疑点清源] 1.关于对数的底数和真数

从对数的实质看:如果a b =N (a >0且a ≠1),那么b 叫做以a 为底

N 的对数,即b =log a N .它是知道底数和幂求指数的过程.底数a 从定义中已知其大于0且不等于1;N 在对数式中叫真数,在指数式中,它就是幂,所以它自然应该是大于0的. 2.对数函数的定义域及单调性

在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按01进行分类讨论. 3.关于对数值的大小比较

(1)化同底后利用函数的单调性; (2)作差或作商法; (3)利用中间量(0或1); (4)化同真数后利用图象比较.

1.写出下列各式的值:

(1)log 26-log 23=________;(2)lg 5+lg 20=________; (3)log 53+log 51

3=______;(4)log 35-log 315=________.

2.(2011·江苏)函数f (x )=log 5(2x +1)的单调增区间是__________.

3.已知函数f (x )=log a (x +b ) (a >0且a ≠1)的图象过两点(-1,0)和(0,1),则a =________,b =________.

4.函数y =log a (x +3)-1 (a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上(其中mn >0),则1m +2

n

的最小值为________.

5.(2011·安徽)若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( ) A.????1a ,b B.(10a,1-b )

C.???

?10

a ,

b +1

D.(a 2,2b )

题型一 对数式的化简与求值 例1 计算下列各式.

(1)lg 25+lg 2·lg 50+(lg 2)2;

(2)(lg 3)2-lg 9+1·(lg 27+lg 8-lg 1 000)lg 0.3·lg 1.2;

(3)(log 32+log 92)·(log 43+log 83).

探究提高 (1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底和指数与对数互化.

(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.

(1)化简lg 3

7

+lg 70-lg 3-lg 23-lg 9+1;

(2)已知f (3x )=4x log 23+233,求f (2)+f (4)+f (8)+…+f (28)的值. 题型二 对数函数的图象与性质

例2 作出函数y =log 2|x +1|的图象,由图象指出函数的单调区间,并说明它的图象可由函数y =log 2x 的图象经过怎样的变换而得到.

探究提高 作一些复杂函数的图象,首先应分析它可以从哪一个基本函数的图象变换过来.一般是先作出基本函数的图象,通过平移、对称、翻折等方法,得出所求函数的图象.

(2010·课标全国)已知函数f (x )=????

?

|lg x |, 0

x +6, x >10,若a ,b ,c 互不

相等,且f (a )=f (b )=f (c ),则abc 的取值范围是 ( ) A.(1,10) B.(5,6) C.(10,12) D.(20,24) 题型三 对数函数的综合应用

例3 已知函数f (x )=log a (8-2x ) (a >0且a ≠1). (1)若f (2)=2,求a 的值;

(2)当a >1时,求函数y =f (x )+f (-x )的最大值.

探究提高 本题的求解体现了方程思想和函数思想的应用,主要涉及对数式的求值,对数函数的图象和性质的综合运用以及与其他知识的结合(如不等式、指数函数等).

已知函数f (x )=log a (x +1) (a >1),若函数y =g (x )图象上任意一点P 关于

原点对称的点Q 的轨迹恰好是函数f (x )的图象. (1)写出函数g (x )的解析式;

(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围.

4.数形结合思想在对数函数

中的应用

试题:(12分)已知函数f (x )=log a (a x -1) (a >0且a ≠1). 求证:(1)函数f (x )的图象总在y 轴的一侧; (2)函数f (x )图象上任意两点连线的斜率都大于0.

审题视角 (1)要证明f (x )的图象总在y 轴的一侧,说明f (x )的自变量只能在(0,+∞)或(-∞,0)内取值.(2)可以在f (x )上任取两点A (x 1,y 1),B (x 2,y 2),证明k =y 2-y 1

x 2-x 1>0即可.

规范解答

证明 (1)由a x -1>0,得a x >1,

[1分]

∴当a >1时,x >0,即函数f (x )的定义域为(0,+∞), 此时函数f (x )的图象在y 轴的右侧;

[3分]

当0

[6分]

(2)设A (x 1,y 1)、B (x 2,y 2)是函数f (x )图象上的任意两点,且x 1

x 1-x 2

.

[7分] y 1-y 2=log a (a x 1

-1)-log a (a x 2

-1)=log a 12

1

1

x x a a --,

[8分]

当a >1时,由(1)知0

∴0

-1

-1.∴0<12

1

1

x x a a --<1,∴y 1-y 2<0.

又x 1-x 2<0,∴k >0. [9分]

当0a x 2>1, ∴a x 1-1>a x 2-1>0.

[10分]

∴12

11

x x a a -->1,∴y 1-y 2<0.又x 1-x 2<0,∴k >0.

∴函数f (x )图象上任意两点连线的斜率都大于0.

[12分]

批阅笔记 说到数形结合思想,我们更多的会想到以“形”助“数”来解决问题.事实

上,本题是以“数”来说明“形”的问题,同样体现着数形结合的思想.本题的易错点是:①找不到证明问题的切入口.如第(1)问,很多考生不知道求其定义域.②不能正确进行分类讨论.若对数或指数的底数中含有参数,一般要进行分类讨论.

方法与技巧

1.指数式a b=N与对数式log a N=b的关系以及这两种形式的互化是对数运算法则的关

键.

2.指数运算的实质是指数式的积、商、幂的运算,对于指数式的和、差应充分运用恒等

变形和乘法公式;对数运算的实质是把积、商、幂的对数转化为对数的和、差、积.

3.注意对数恒等式、对数换底公式及等式log am b n=n

m·log a b,log a b=

1

log b a在解题中的灵

活应用.

失误与防范

1.在运算性质log a M n=n log a M时,要特别注意条件,在无M>0的条件下应为log a M n =n log a|M|(n∈N*,且n为偶数).

2.指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,应从

概念、图象和性质三个方面理解它们之间的联系与区别.

3.明确函数图象的位置和形状要通过研究函数的性质,要记忆函数的性质可借助于函数

的图象.因此要掌握指数函数和对数函数的性质首先要熟记指数函数和对数函数的图象.

§2.7 对数与对数函数

(时间:60分钟) A 组 专项基础训练题组

一、选择题

1.(2011·天津)已知a =log 23.6,b =log 43.2,c =log 43.6,则 ( ) A.a >b >c B.a >c >b C.b >a >c

D.c >a >b

2.(2010·天津)设函数f (x )=?

????

log 2x ,x >0,

log (-x ),x <0,

若f (a )>f (-a ),则实数a 的取值范围是

( )

A.(-1,0)∪(0,1)

B.(-∞,-1)∪(1,+∞)

C.(-1,0)∪(1,+∞)

D.(-∞,-1)∪(0,1)

3.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有 ( ) A.f (13)

B.f (12)

C.f (12)

3)

D.f (2)

二、填空题

4.(lg 2)2+lg 2·lg 5+lg 5=________.

5.若函数f (x )=log a (x 2-ax +3) (a >0且a ≠1)满足对任意的x 1、x 2,当x 1

2时,f (x 1)

-f (x 2)>0,则实数a 的取值范围为__________.

6.函数f (x )=12

log (x 2-2x -3)的单调递增区间是__________.

三、解答题

7.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;

(2)判断f (x )的奇偶性并予以证明; (3)若a >1时,求使f (x )>0的x 的解集.

12

8.已知函数f (x )=12

log (a 2-3a +3)x .

(1)判断函数的奇偶性;

(2)若y =f (x )在(-∞,+∞)上为减函数,求a 的取值范围.

B 组 专项能力提升题组

一、选择题

1.已知函数f (x )=a x +log a x (a >0,a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为

( )

A.12

B.14

C.2

D.4

2.已知函数f (x )=||lg x ,若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是 ( ) A.(1,+∞) B.[)1,+∞ C.(2,+∞)

D.[)2,+∞

3.设函数f (x )=log 2x 的反函数为y =g (x ),若g ????1a -1=1

4,则a 等于( )

A.-2

B.-1

2

C.12

D.2

二、填空题

4.设函数的集合P ={f (x )=log 2(x +a )+b |a =-12,0,1

2,1;b =-1,0,1},平面上点的集

合Q ={(x ,y )|x =-12,0,1

2,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f (x )

的图象恰好经过Q 中两个点的函数的个数是________. 5.若log 2a 1+a 2

1+a

<0,则a 的取值范围是____________.

6.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 013)=8,则f (x 21)+f (x 22)+…+f (x 2

2 013)

=________.

7.(2011·山东)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2

8.已知函数f (x )=lg(a x -b x )(a >1>b >0). (1)求y =f (x )的定义域;

(2)在函数y =f (x )的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴; (3)当a ,b 满足什么条件时,f (x )在(1,+∞)上恒取正值.

答案

要点梳理

1.(1)x =log a N a N (2)

2.(1)①log a a a a ③n log a M ④n

m log a M (2)①N ②N

(3)①log b N =log a N

log a b

②log a d

3.(1)(0,+∞) (2)R (3)(1,0) 1 0 (4)y >0 y <0 (5)y <0 y >0 (6)增函数 (7)减函数

4.y =log a x y =x 基础自测

1.(1)1 (2)2 (3)0 (4)-1

2.????-1

2,+∞ 3.2 2 4.8 5.D 题型分类·深度剖析

例1 解 (1)原式=(lg 2)2+(1+lg 5)lg 2+lg 52=(lg 2+lg 5+1)lg 2+2lg 5 =(1+1)lg 2+2lg 5=2(lg 2+lg 5)=2. (2)原式=

(lg 3)2-2lg 3+1·????32

lg 3+3lg 2-32(lg 3-1)·(lg 3+2lg 2-1)

=(1-lg 3)·3

2(lg 3+2lg 2-1)

(lg 3-1)·(lg 3+2lg 2-1)=-3

2.

(3)原式=????lg 2lg 3+lg 2lg 9·????

lg 3lg 4+lg 3lg 8 =????lg 2lg 3+lg 22lg 3·????lg 32lg 2+lg 33lg 2 =3lg 22lg 3·5lg 36lg 2=54

.

变式训练1 解 (1)原式=lg 37

×703-lg 23-2lg 3+1=lg 10-(lg 3-1)2

=1-|lg 3-1|=lg 3. (2)令3x =t ,∴x =log 3t ,

∴f (t )=4log 23·log 3t +233=4log 2t +233, ∴f (2)+f (4)+f (8)+…+f (28)

=4(log 22+log 24+log 28+…+log 228)+8×233 =4·log 2(2·22·23·…·28)+8×233

=4·log 2236+1 864=4×36+1 864=2 008.

例2 解 作出函数y =log 2x 的图象,将其关于y 轴对称得 到函数y =log 2|x |的图象,再将图象向左平移1个单位长度 就得到函数y =log 2|x +1|的图象(如图所示).

由图知,函数y =log 2|x +1|的递减区间为(-∞,-1),递 增区间为(-1,+∞). 变式训练2 C

例3 解 (1)f (2)=log a 4,

依题意f (2)=2,则log a 4=2,∴a =2. (2)由题意知8-2x >0,解得x <3,

由8-2-

x >0知,x >-3,∴函数y =f (x )+f (-x )的定义域为(-3,3).

又y =f (x )+f (-x )=log a (8-2x )+log a (8-2-

x )=log a [65-8(2x +2-

x )],

∵658>2x +2-x ≥2,当且仅当x =0时取等号,∴0<65-8(2x +2-

x )≤49, ∴当a >1时,函数y =f (x )+f (-x )在x =0处取得最大值log a 49.

变式训练3 解 (1)设P (x ,y )为g (x )图象上任意一点,则Q (-x ,-y )是点P 关于原点的对称点,

∵Q (-x ,-y )在f (x )的图象上, ∴-y =log a (-x +1), 即y =g (x )=-log a (1-x ). (2)f (x )+g (x )≥m ,即log a x +1

1-x

≥m .

设F (x )=log a 1+x

1-x ,x ∈[0,1),由题意知,只要F (x )min ≥m 即可.

∵F (x )在[0,1)上是增函数, ∴F (x )min =F (0)=0. 故m ≤0即为所求.

课时规范训练 A 组

1.B

2.C

3.C

4.1

5.(1,23)

6.(-∞,-1)

7.解 (1)f (x )=log a (x +1)-log a (1-x ),

则?

????

x +1>0,1-x >0,解得-1

(3)因为当a >1时,f (x )在定义域{x |-10?x +11-x >1.解得0

所以使f (x )>0的x 的解集是{x |0

8.解 (1)函数f (x )=12

log (a 2-3a +3)x 的定义域为R .

又f (-x )=12

log (a 2-3a +3)-

x

=-12

log (a 2-3a +3)x =-f (x ),

所以函数f (x )是奇函数.

(2)函数f (x )=12

log (a 2-3a +3)x 在(-∞,+∞)上为减函数,则y =(a 2-3a +3)x 在(-

∞,+∞)上为增函数,

由指数函数的单调性,有a 2-3a +3>1, 解得a <1或a >2.

所以a 的取值范围是(-∞,1)∪(2,+∞). B 组

1.C

2.C

3.C

4.6

5.????

12,1 6.16 7.2 8.解 (1)由a x -b x >0,

得(a b )x >1,且a >1>b >0,得a

b >1, 所以x >0,即f (x )的定义域为(0,+∞).

(2)任取x 1>x 2>0,a >1>b >0,则ax 1>ax 2>0,bx 1ax 2-bx 2>0,

即lg(a x1-b x1)>lg(a x2-b x2).

故f(x1)>f(x2).

所以f(x)在(0,+∞)上为增函数.

假设函数y=f(x)的图象上存在不同的两点A(x1,y1)、B(x2,y2),使直线平行于x轴,则x1≠x2,y1=y2,这与f(x)是增函数矛盾.

故函数y=f(x)的图象上不存在不同的两点使过两点的直线平行于x轴.

(3)因为f(x)是增函数,

所以当x∈(1,+∞)时,f(x)>f(1).

这样只需f(1)=lg(a-b)≥0,

即当a≥b+1时,

f(x)在(1,+∞)上恒取正值.

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

指数函数和对数函数

第七讲: 指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e - 是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f -1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[- , 求a 的值. (二) 专题测试与练习: 一. 选择题 1. 设0x >且) (0,b a, ,1b a x x ∞+∈<<, 则a 、b 的大小关系是 ( ) A. 1a b << B. 1b a << C. a b 1<< D. b a 1<< 2. 如果1a 0<<, 那么下列不等式中正确的是 ( ) A. 21 31 )a 1()a 1(->- B. )a 1(log ) a 1(+- C. 2 3)a 1()a 1(+>- D. 1)a 1()a 1(>-+ 3. 已知x 1是方程3x lg x =+的一个根, 2x 是方程310x x =+的一个根, 那么21x x +的值 是 ( ) A. 6 B. 3 C. 2 D. 1 4. ,0z log log log y log log log x log log log 324243432===则z y x ++的值为 ( ) A. 50 B. 58 C. 89 D. 111 5. 当1a >时, 在同一坐标系中, 函数x a y -=与=y x log a 的图象是图中的 ( ) 6. 若函数)x (f 与=)x (g x ) 2 1 (的图象关于直线x y =对称, 则)x 4(f 2 -的单调递增区间是( ) A. ]2 ,2(- B. ) ,0[∞+ C. )2 ,0[ D. ]0 ,(-∞ 二. 填空题 7. 已知522x x =+-, 则=+-x x 88 . 8. 若函数=y 2x log 2+的反函数定义域为),3(∞+ , 则此函数的定义域为 . 9. 已知=y )ax 3(log a -在]2 ,0[上是x 的减函数, 则a 的取值范围是 . 10.函数=)x (f )1a ,0a (a x ≠>在]2 ,1[上的最大值比最小值大2 a , 则a 的值为 . 三. 解答题 11. 设 1x 0 <<, 试比较|)x 1(log a -|与|)x 1(log a +|的大小.

指数函数对数函数幂函数增长速度的比较教学设计

【教学设计中学数学】 区县雁塔区 学校西安市航天中学 姓名贾红云 联系方式 邮编710100 《指数函数、幂函数、对数函数增长的比较》教学设计 一、设计理念 《普通高中数学课程标准》明确指出:“学生的数学学习活动,不应该只限于接受、记忆、模仿和练习,高中数学课程还应该倡导自主探索、动手实践、合作交流、阅读自学等信息数学的方式;课程内容的呈现,应注意反映数学发展的规律以及学生的认知规律,体现从具体到抽象,特殊到一般的原则;教学应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉等”。本节课是北师大版高中数学必修Ⅰ第三章第6节内容,本节专门研究指数函数、幂函数、对数函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节课的学习,可以引导学生积极地开展观察、思考和探究活动,利用几何画板这种信息技术工具,可以让学生从动态的角度直观观察指数函数、幂函数、对数函数增长情况的差异,使学生有机会接触一些过去难以接触到的数学知识和数学思想,并为学生提供了学数学、用数学的机会,体现了发展数学应用意识、提高实践能力的新课程理念。 二、教学目标 1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性; 2.能借助信息技术,利用函数图像和表格,对几种常见增长类型的函数增长的情况进行比较,体会它们增长的差异; 3.体验指数函数、幂函数、对数函数与现实世界的密切联系及其在刻画实际问题中的作用,体会数学的价值. 三、教学重难点

教学重点:认识指数函数、幂函数、对数函数增长的差异,体会直线上升、指数爆炸、对数增长的含 义。 教学难点:比较指数函数、幂函数、对数函数增长的差异 四、教学准备 ⒈提醒学生带计算器; ⒉制作教学用幻灯片; ⒊安装软件:几何画板 ,准备多媒体演示设备 五、教学过程 ㈠基本环节 ⒈创设情景,引起悬念 杰米和韦伯的故事 一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你 10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?” 合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;第四天,杰米支出8分钱,收入10万元…..到了第二十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多点。杰米想:要是合同定两个月、三个月多好! 你愿意自己是杰米还是韦伯? 【设计意图】创设情景,构造问题悬念,激发兴趣,明确学习目标 ⒉复习旧知,提出问题 图1-1 图1-2 图1-3 ⑴ 如图1-1,当a 时,指数函数x y a =是单调 函数,并且对于0x >,当底数a 越大时,其 函数值的增长就越 ; ⑵ 如图1-2当a 时,对数函数log a y x =是单调 函数,并且对1x >时,当底数a 越 时 其函数值的增长就越快; ⑶ 如图1-3当0x >,0n >时,幂函数n y x =是增函数,并且对于1x >,当n 越 时,其函数值

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

高考指数函数与对数函数专题复习

例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0) 0(f >=?=-? =, (2) =-?∈++=--)x (f )R x (2 4 x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax ) x (u 2-=, 对称轴a 21x = . (1) 当1a >时, 1a 0 )2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可 能是【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

指数函数对数函数计算题30-1

指数函数对数函数计算题30-1 1、计算:lg 5·lg 8000+06.0lg 6 1lg )2 (lg 23++. 2、解方程:lg 2(x +10)-lg(x +10)3=4. 3、解方程:23log 1log 66-=x . 4、解方程:9-x -2×31-x =27. 5、解方程:x )8 1(=128. 6、解方程:5x+1=12 3-x . 7、计算:10log 5log )5(lg )2(lg 2233+ +·.10 log 18 8、计算:(1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92). 9、求函数121log 8.0--= x x y 的定义域. 10、已知log 1227=a,求log 616.

11、已知f(x)=1322+-x x a ,g(x)=522 -+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x). 12、已知函数f(x)=321121x x ?? ? ??+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0. 13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数. 14、求log 927的值. 15、设3a =4b =36,求a 2+b 1的值. 16、解对数方程:log 2(x -1)+log 2x=1 17、解指数方程:4x +4-x -2x+2-2-x+2+6=0 18、解指数方程:24x+1-17×4x +8=0 19、解指数方程:22)223()223( =-++-x x ±2 20、解指数方程:014332 14111=+?------x x 21、解指数方程:042342222=-?--+-+x x x x

指数函数和对数函数公式(全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a x ,y log a x 在 a 1及 0 a 1两种不同情况。 1、指数函数: y x 且a 叫指数函数。 定义:函数 aa 0 1 定义域为 R ,底数是常数,指数是自变量。 为什么要求函数 y a x 中的 a 必须 a 0且a 1 。 因为若 a 0时, y 4 x ,当 x 1 时,函数值不存在。 4 a 0 , y 0x ,当 x 0 ,函数值不存在。 a 时, y 1 x x 虽有意义,函数值恒为 1,但 1 对一切 y 1x 的反函数不存在, 因 为 要 求 函 数 y a x 中 的 a 0且 a 1 。 x 1、对三个指数函数 y 2 x , y 1 ,y 10x 的图象的 2 认识。 图象特征与函数性质: 图象特征 函数性质 ( 1)图象都位于 x 轴上方; ( 1) x 取任何实数值时,都有 a x 0 ; 2 0 1 ); ( 2)无论 a 取任何正数, x 0 时, y 1 ; ( )图象都经过点( , ( 3) y 2x , y 10 x 在第一象限内的纵坐 ( 3)当 a x 0,则 a x 1 1 时, 0,则 a x 1 标都大于 1,在第二象限内的纵坐标都小于 1, x 1 y 2 x x 0,则 a x 1 当 0 的图象正好相反; a 1时, 0,则 a x 1 x ( 4) y 2x , y 10 x 的图象自左到右逐渐 ( 4)当 a 1 时, y a x 是增函数,

指数函数和对数函数复习有详细知识点和习题详解

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: 43 421Λa n n a a a a 个???= )(*∈N n ()0 10a a =≠ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2) ()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100Θ 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8 - (2)() 2 10- (3)()44 3π- (4) ()() b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++=

指数函数和对数函数 知识点总结

指数函数和对数函数 知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,?? ?<≥-==) 0() 0(||a a a a a a n n 2.正数的分数指数幂,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质),,0(R s r a ∈> (1)r a ·s r r a a += ;(2)rs s r a a =)( ;(3) s r r a a ab =)( (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明: ○1 注意底数的限制0>a ,且a x N a =?log ;③注意对数的书 写格式. N a log 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . 2、对数的运算性质:如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ;③n a M log n =M a log )(R n ∈. 注意:换底公式a b b c c a log log log =(0>a ,且1≠a ;0>c ,且 1≠c ;0>b ) . 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. 3、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,

相关文档
最新文档