木纤维-LDPE复合材料力学性能分析

木纤维-LDPE复合材料力学性能分析
木纤维-LDPE复合材料力学性能分析

编织复合材料的细观结构与力学性能

3D编织复合材料的细观结构与力学性能 摘要归纳、梳理三维编织复合材料细观结构表征方面较有代表性的单胞模型,分析、比较各结构模型的优缺点,从理论分析与试验测试两方面总结三维编织复合材料刚度和强度性能的研究成果与进展,探讨细观结构表征与力学性能预报中存在的主要问题,并展望今后的研究重点与发展方向。 关键词三维编织复合材料;细观结构;力学性能 Microstructure and Mechanical Properties of 3D Braided Composites ABSTRACT Typical unit cell models on microstructure of 3D braided composites were summarized. Advantages and disadvantages of various models were compared. Developments of research on mechanical properties of 3D braided composites were introduced from theoretical analysis and experimental test perspectives. Finally, problems in the present study were discussed and further development trend is prospected KEYWORDS 3D braided composites; Microstructure; Mechanical properties 1 引言 三维编织复合材料是20世纪80年代为满足航空航天部门对高性能材料的需求而研发出的先进结构材料,具有高度整体化的空间互锁网状结构,可有效避免传统层合复合材料的分层破坏,冲击韧性、损伤容限与抗疲劳特性优异,结构可设计性强,能够实现异形件的净尺寸整体成型,因此在结构材料领域倍受关注。 力学性能是三维编织复合材料结构设计的核心,直接关系应用安全性与可靠性,细观结构是影响力学性能的关键,正确描述细观结构是准确预测宏观力学性能的必要前提。细观结构表征与力学性能预报一直是三维编织复合材料的研究重点,具有重要的理论价值与实践意义。 2 三维编织复合材料的细观结构单胞模型 Ko[1]首次提出“纤维构造”术语,定义出图1所示的立方体单胞模型,单胞由四根不计细度的直纱线组成,纱线沿体对角线方向取向并相交于立方体中心,模型大致描述出了编织体内部的纱线分布情况。

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

复合材料高性能聚氨酯

高性能聚氨酯/玻纤复合材料 (GRPU) 刘锦春 青岛科技大学高分子科学与工程学院 Liujinchun2001@https://www.360docs.net/doc/c515889589.html,

1、聚氨酯/玻纤复合材料简介 近年来,聚氨酯树脂以其韧性好、固化快、无苯乙烯烟雾等优点使其复合材料脱颖而出。随着人们对聚氨酯成型技术的掌握和在控制其反应性以延长其适用期方面的进步,聚氨酯已进入长期由不饱和聚酯和乙烯基酯树脂主宰的复合材料领域。在过去,聚氨酯复合材料主要是用结构反应注射法(SRIM)成型的汽车内饰件和外部件,如皮卡车箱、车底板、行李架、内门板等(聚氨酯经过发泡)。然而在近几年中,聚氨酯复合材料发展了拉挤、缠绕、真空灌注和长纤维喷射等技术,主要用不发泡的聚氨酯复合材料来制造窗框、浴缸、电灯杆和卡车、越野车的大型部件等。聚氨酯拉挤聚氨酯拉挤一般具有低粘度、中度至高度反应性、良好的冲击强度和韧性以及短梁剪切性能。与其他材料相比,用聚氨酯拉挤可产生多种效益。它可以提高制品中玻璃纤维含量而使制品强度大大提高。例如,用玻璃纤维与聚氨酯树脂拉挤窗框,所得窗框的强度比PVC窗框高8倍,其导电性比铝低40倍,因而绝缘性能好得多。同时,因为聚氨酯拉挤窗框的脆性更小,它们不会开裂而经久耐用。 高性能聚氨酯/玻璃纤维复合材料是一种以高硬度聚氨酯弹性体为基体材料,玻璃行为为增强材料,采用连续拉挤工艺生产的一种具有高强度、高模量、轻质高分子复合材料。 聚氨酯拉挤技术的产品不仅比传统材料具有更高的强度、更好的隔热保温效果,而且更轻质环保。其应用领域十分宽广,从最初的华丽浴缸,到冲浪和滑雪板,再到今天的窗框、集装箱地板等创新应用,聚氨酯复合材料已融入了我们日常生活的方方面面。 据报道,在过去的几年中,中国对于复合材料的需求已呈现逐步增长的态势。复合材料是一种高科技材料,是将几种材料的特性整合成为一种具有卓越新性能的全方位解决方案。正是因为材料的独特性能,比如轻质、高强度和刚性、以及能够帮助实现更高的成本效率和生态责任,所以聚氨酯复合材料已备受各行业的关注。尤其是在建筑和运输行业,创新的技术与应用,更是备受瞩目。 2、聚氨酯/玻纤复合材料性能特点 经过数年开发,国外聚氨酯拉挤成型已实现商业化。在聚氨酯拉挤过程中,可以使用更多的增强纤维,使制品强度大大增高。同时,由于聚氨酯本身优异的

山大复合材料结构与性能复习题参考答案.doc

1、简述构成复合材料的元素及其作用 复合材料由两种以上组分以及他们之间的界面组成。即构成复合材料的元素包括基体相、增强相、界面相。 基体相作用:具有支撑和保护增强相的作用。在复合材料受外加载荷时,基体相一剪切变形的方式起向增强相分配和传递载荷的作用,提高塑性变 形能力。 增强和作用:能够强化基体和的材料称为增强体,增强体在复合材料中是分散相, 在复合材料承受外加载荷时增强相主要起到承载载荷的作用。 界面相作用:界面相是使基体相和增强相彼此相连的过渡层。界面相具有一定厚度,在化学成分和力学性质上与基体相和增强相有明显区别。在复 合材料受外加载荷时能够起到传递载荷的作用。 2、简述复合材料的基本特点 (1)复合材料的性能具有可设计性 材料性能的可设计性是指通过改变材料的组分、结构、工艺方法和工艺参数来调节材料的性能。显然,复合材料中包含了诸多影响最终性能、可调节的因素,赋予了复合材料的性能可设计性以极大的自由度。 ⑵ 材料与构件制造的一致性 制造复合材料与制造构件往往是同步的,即复合材料与复合材料构架同时成型,在采用某种方法把增强体掺入基体成型复合材料的同时?,通常也就形成了复合材料的构件。 (3)叠加效应 叠加效应指的是依靠增强体与基体性能的登加,使复合材料获得一?种新的、独特而又优于个单元组分的性能,以实现预期的性能指标。 (4)复合材料的不足 复合材料的增强体和基体可供选择地范围有限;制备工艺复杂,性能存在波动、离散性;复合材料制品成本较高。

3、说明增强体在结构复合材料中的作用能够强化基体的材料称为增强体。增强体在复合材料中是分散相。复合材料中的增强体,按几何形状可分为颗 粒状、纤维状、薄片状和由纤维编制的三维立体结构。喑属性可分为有机增强体 和无机增强体。复合材料中最主要的增强体是纤维状的。对于结构复合材料,纤 维的主要作用是承载,纤维承受载荷的比例远大于基体;对于多功能复合材料, 纤维的主要作用是吸波、隐身、防热、耐磨、耐腐蚀和抗震等其中一种或多种, 同时为材料提供基本的结构性能;对于结构陶瓷复合材料,纤维的主要作用是增 加韧性。 4、说明纤维增强复合材料为何有最小纤维含量和最大纤维含量 在复合材料中,纤维体积含量是一个很重要的参数。纤维强度高,基体韧性好,若加入少量纤维,不仅起不到强化作用反而弱化,因为纤维在基体内相当于裂纹。所以存在最小纤维含量,即临界纤维含量。若纤维含量小于临界纤维量,则在受外载荷作用时,纤维首先断裂,同时基体会承受载荷,产生较大变形,是否断裂取决于基体强度。纤维量增加,强度下降。当纤维量大于临界纤维量时,纤维主要承受载荷。纤维量增加强度增加。总之,含量过低,不能充分发挥复合材料中增强材料的作用;含量过高,由于纤维和基体间不能形成一定厚度的界面过渡层, 无法承担基体对纤维的力传递,也不利于复合材料抗拉强度的提高。 5、如何设才计复合材料 材料设计是指根据对?材料性能的要求而进行的材料获得方法与工程途径的规划。复合材料设计是通过改变原材料体系、比例、配置和复合工艺类型及参数,来改变复合材料的性能,特别是是器有各向异性,从而适应在不同位置、不同方位和不同环境条件下的使用要求。复合材料的可设计性赋予了结构设计者更大的自由度,从而有可能设计出能够充分发掘与应用材料潜力的优化结构。复合材料制品的设计与研制步骤可以归纳如下: 1)通过论证明确对于材料的使用性能要求,确定设计目标 2)选择材料体系(增强体、基体) 3)确定组分比例、几何形态及增强体的配置 4)确定制备工艺方法及工艺参数

热塑性复合材料在飞机上的应用

热塑性复合材料在飞机上的应用 张磊杨卫平张丽 (中航工业一飞院,西安) The applications of Thermoplastic matrix Composite on aircraft 摘要:阐述了热固性复合材料的缺点,分析了热塑性复合材料的优势,并介绍了其在国内、外军用飞机和民用飞机上的应用情况,指出了国内外的差距,最后对国内纤维增强热塑性复合材料的发展提出了建议。 Abstract: In this study we analyzed the disadvantage of thermosetting matrix composites, the advantage of thermoplastic matrix composites and introduced the applications of thermoplastic matrix composites on aircraft. In addition we pointed out the gap and summarized the research orientation of thermoplastic matrix composites. 关键词:热塑性、热固性、聚醚醚酮、聚苯硫醚、抗冲击性 Keywords: Thermoplastic、Thermosetting、PEEK、PPS、impact resistance 复合材料按树脂类型可分为热固性复合材料和热塑性复合材料。目前国内外飞机上,大量使用的复合材料为热固性复合材料,包括机翼、机身等主要承力构件。但是热固性复合材料通常采用热压罐生产工艺,成型时间长,而且在材料运输、存储、工艺准备、实施等方面要求都比较严格,因此生产成本比较高。另外热固性复合材料对冲击比较敏感,设计和使用时要重点考虑冲击对结构性能的影响。而热塑性复合材料在这些方面都有一定优势,所以近年来其逐步受到重视[1]。 1 热塑性复合材料的优点 与热固性复合材料相比,热塑性复合材料主要有以下优点[2~5]: (1)韧性、损伤容限性能、抗冲击,抗裂纹扩展等性能较好。由于热塑性树脂分子链的运动能力比热固性树脂强得多,因此热塑性树脂的韧性普遍要高很多,有利于改善复合材料的抗冲击损伤能力。以碳纤维/聚醚醚酮(PEEK)树脂复合材料为例,其压缩后冲击强度(CAI)值高达342 MPa,与第一代环氧复合材料170 MPa,增韧环氧复合材料250 MPa的平均水平相比,优势明显; (2)成型周期短,生产效率高,节约成本。热固性复合材料主要的成型方法是预浸料/热压罐工艺,热压罐固化消耗大量的能源和时间,增加制造成本,而热塑性复合材料的成型过程仅仅发生加热变软和冷却变硬的物理变化,只需升温、加压成型、冷却即可完成制备过程,可采用热压成型工艺,故成型周期短、生产效率高、成本低。另外,热塑性复合材料在材料运输、存储、工艺准备、实施等比热固性复合材料要求低,因此生产成本更低。两种材料生产制造对比见下表1; 表1 热固性和热塑性复合材料对比 属性热固性复合材料热塑性复合材料 材料运输材料低温运输,并需要温度监控材料普通运输 材料存储1、低温存储,-18℃以下存储; 2、材料力学性能寿命,一般12个月; 3、工艺性能寿命,一般240小时; 1、室温存储,一般库房即可; 2、材料力学性能寿命无要求; 3、工艺实施无特殊要求;

热塑性复合材料的特点.

纤维增强热塑性材料FRTP简述 张月 20090546 材料科学与工程学院090201 摘要: 热塑性复合材料是以玻璃纤维,碳纤维,芳烃纤维及其他材料增强各种热塑性树脂的总称,国外称其为FRTP。先进的纤维增强热塑性复合材料纤维增强热塑性树脂复合材料,具韧性耐蚀性和抗疲劳性高,成型工艺简单周期短,材料利用率高(无废料),预浸料存放环境与时间无限制等优异性能而得到快速发展。近20年来,随着刚性、耐热性及耐介质性能好的芳香族热塑性树脂基体的出现,以及具有高强度、高模量、耐高温、耐腐蚀等优异性能碳纤维、芳伦纤维、碳氟纤维(PTFE)等高性能纤维的发展,使先进热塑性复合材料克服了一般FRTP使用温度低,模量小,强度差等缺点,使其在航空航天等高科技领域获得越来越多的应用。 关键字:浸渍、成型工艺 Fiber Reinforced Thermoplastic Material FRTP Briefly ZhangYue 20090546 Material science and engineering college 090201 Abstract: Thermoplastic composite material is glass fiber, carbon fiber, aromatic fiber and other materials increase the floorboard of all sorts of thermoplastic resin, foreign called the FRTP. Advanced fiber reinforced thermoplastic composite fiber reinforced thermoplastic resin composites, with toughness corrosion resistance and fatigue resistance is high, the molding process simple cycle short, material utilization high (no waste), prepreg deposit environment and time unlimited superior performance and got rapid development. Over the past 20 years, with rigidity, heat resistance and

复合材料的性能和应用

摘要:近年来,各种复合材料制备技术日益更新,从陶瓷基复合材料、金属基复合材料到聚合物基复合材料,各种制备技术都得到了很大改善,使得复合材料的性能和应用得到了显著提高。本文综述陶瓷基复合材料、金属基复合材料、聚合物基复合材料等几种重要的研究方法以及应用。 关键词:先进,复合材料,制造技术。 正文:一·陶瓷基复合材料 工程陶瓷的开发是目前国内外甚为重视的新型材料研究领域。纯陶瓷材料因其脆性,不能满足苛刻条件下的使用要求。因此,目前广泛采取增韧技术来提高陶瓷的使用性能。纤维和晶须增韧陶瓷是一类有效的方法。用纤维来增韧陶瓷的技术是十年代以后开始的,最初是用碳纤维增强陶瓷,八十年代以来又开发了用陶瓷纤维和晶须增韧陶瓷,增韧效果不断取得进展,增韧技术也不断有所创新。连续纤维增强陶瓷基复合材料是最有前途的高温结构材料之一,以其优异的高韧性、高强度得到世界各国的高度重视。 连续纤维补强陶瓷基复合料(Continuous Fiber Reinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用.20世纪70年代初,科学家在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。 由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性[5-6],因此,在重复使用的热防护领域有着重要的应用和广泛的市场。连续纤维增韧陶瓷基复合材料具有类似金属的断裂行为,对裂纹不敏感,不会发生灾难性破坏。其耐高温和低密度特性,使其成为发展先进航空发动机、火箭发动机和空天飞行器防热结构的关键材料。 二·金属基复合材料 金属基复合材料具有比强度高,比刚度高,耐热,耐磨,导热,导电,尺寸稳定等优点,是一种很有发展前途的新材料,金属基复合材料广泛应用于制造航空抗天零部件,也用于制造各种民用产品。 按基体分,金属基复合材料分为:铝基、镁基、钛基、锌基、铁基、铜基等金属基复合材料;按增强材料分,可分为:纤维增强金属基复合材料;其纤维有C、SiC、Si3N4、B4C、Al2O3等纤维;粒子增强金属基复合材料,增强粒子有:Al2O3、TiC、SiC、Si3N4、BN、SiC、MgO等。 纤维增强金属基复合材料的制造方法: (1)叠层加压法:工艺过程是:将金属(合金)箔片或纤维增强金属片按要求剪裁,并一层一层的进行叠层,然后加热加压进行成型和连接,一般是在真空或气体中进行。适于这种方法的材料有铝、钛、铜、高温合金,其增强纤维随需要而定。为了改善连接性能,有事在两片之间加入中间金属或在待连接表面涂覆或沉积一层中间金属。 (2)辊轧成型连接法:其主要的基材是铝、钛箔片,增强纤维主要是B、C、SiC、Si3N4等,有时在基材表面要涂覆一层低熔点的中间金属,增强纤维表面要预先浸沾铝或经物理气相沉积(PVI)、化学气相沉积(CVI)处理。 (3)钎焊法:在增强纤维与基材之间加入箔状、粉末状或膏状的钎料,经真空钎焊或保护钎焊而成。钎焊法可以制造管材、型材、叶片等。 (4)热等静压法:如图2所示,其工艺过程是:将纤维与基材进行叠层并装入一模具中,

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

高性能复合材料发展现状与发展方向

8 高性能复合材料发展现状与发展方向 8.1 国内复合材料发展现状与发展方向 复合材料学界较普遍认为我国复合材料发展中亟待研究解决下列问题: (1)在发展复合材料新品种的同时,注意发展复合材料构件的制造技术,特别是先进制造技术; (2)在研究复合材料构件无损检测方法的同时,加紧研究制定无损评价标准。 其中有五个问题是研究重点: ①增强纤维的研制、生产与供应; ②复合材料低成本生产技术; ③新工艺、新设备的研制与发展; ④复合材料生产环境及回收利用; ⑤国际大环境与市场经济条件下我国复合材料发展的对策。 8.1.1 航天功能复合材料的现状与展望 (1)引言 《美国国防部关键技术计划》指出:“下一代复合材料结构的研究将侧重于材料的多功能性能方面”。 20世纪90年代初、中期,美国用于这方面的研究经费为(1.7~1.8)亿美元/年。 功能复合材料的成功应用,使先进战略导弹弹头的有效载荷与结构重量之比大幅度提高(达到4:1),并实现了小型化、被动滚控和强突防。同时具有全天候能力和百米级命中精度。 (2)航天高技术对功能复合材料的要求 1)军事对抗要求 航天高技术对功能复合材料的军事对抗要求包括: ①生存性(全天候、突防、隐身、探测—透波); ②小型化、轻质化(结构—功能一体化、多功能一体化); ③高精度(稳定外形)。 2)环境要求 航天高技术对功能复合材料的环境要求(即生存性要求)包括: ①防热; ②抗热应力; ③抗侵蚀; ④耐空间原子氧; ⑤耐高低温交变; ⑥耐空间辐射 ⑦阻尼减震。 (3)航天功能复合材料的研究方向与主要研究内容 航天功能复合材料的研究方向包括:防热功能复合材料、透波和多功能复合材料、功能复合材料的加工技术和功能复合材料测试评价技术。 ①防热功能复合材料主要研究内容 防热功能复合材料的研究内容主要包括:先进碳/碳复合材料技术、先进碳/酚醛防热复合材料技术、低成本、碳/碳复合材料、新型防热复合材料探索和防热复合材料修补技术; 探索研究防热复合材料现场诊断与损伤预警。 ②透波、多功能复合材料主要研究内容

复合材料力学性能表征(教学资料)

复合材料力学性能表征(characterization of mechanical properties of composites) 力学性能包括拉伸、压缩、弯曲、剪切、冲击、硬度、疲劳等,这些数据的取得必须严格遵照标准。试验的标准环境条件为:温度23℃±2℃,相对湿度45%~55%,试样数量每项试验不少于5个。 此检测方法适用于树脂基复合材料,金属基复合材料力学性能可参考此方法进行。 拉伸拉伸试验是对尺寸符合标准的试样,在规定的试验速度下沿纵轴方向施加拉伸载荷,直至其破坏。通过拉伸试验可获得如下材料的性能指标: 式中P为最大载荷,N;b,h分别为试样的宽度和厚度,mm。 式中△L为试样破坏时标距L0内的伸长量,mm;L0为拉伸试样的测量标距,mm。 拉伸弹性模量Et 式中△P为载荷一形变曲线上初始直线段的载荷增量,N;△L为与△P相对应的标距L0内的变形增量,mm。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测以下项目: σL:∥纤维方向的拉伸强度; σT:⊥纤维方向的拉伸强度; EL:∥纤维方向的拉伸模量; ET:⊥纤维方向的拉伸模量。 应力-应变曲线记录拉伸过程中应力-应变变化规律的曲线,用于求取材料的力学参数和分析材料拉伸破坏的机制。 压缩对标准试样的两端施加均匀的、连续的轴向静压加载荷,直至试样破坏,以获得有关压缩性能的参数,若压缩试验中试样破坏或达最大载荷时的压缩应力为P(N),试样横截面积为F(mm2),则压缩强度σc为:

由压缩试验中应力-应变曲线上初始直线段的斜率,即应力与应变之比,可求出压缩弹性模量(MPa)。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测 σL:∥纤维方向的压缩强度; σT:⊥纤维方向的压缩强度; EL:∥纤维方向的压缩模量; ET:上纤维方向的压缩模量。 弯曲复合材料在弯曲试验中受力状态比较复杂,拉、压、剪、挤压等力同时对试样作用,因而对成型工艺配方,试验条件等因素的敏感性较大。用弯曲试验作为筛选试验是简单易行的方法。 复合材料的弯曲试验一般采用三点加载简支梁法,即将标准试样放在两支点上,在中间施加载荷,使试样变形直至破坏。材料的弯曲强度σ f为: 式中P为破坏载荷,N(或挠度为1.5倍试样厚度时的载荷);l为跨度,mm;b,h分别为试样的宽度和厚度,mm。 弯曲弹性模量Ef是指比例极限内应力与应变的比值,可按下式计算: 式中△P为载荷,N(或挠度曲线上使直线段产生弯曲的载荷增量);△f为与△P对应的试样跨距中点处的挠度增量。 剪切复合材料的特点之一是层间剪切强度低,并且层问剪切形式复杂,因此剪切试验对于复合材料的质量控制特别重要。层问剪切强度测试方法有直接剪切法和短梁弯曲法等。 (1)直接剪切法。试样的形式和尺寸如图,对试样的A、C面以一定的加载速度施加剪切,直至试样破坏。试样破坏时单位面积上所承受的载荷值为层间剪切强度τs。 式中Pb为破坏载荷,N;b,h分别为受剪面的宽度和高度,mm。

复合材料力学性能实验复习题new要点

复合材料力学性能实验复习题 1.力学实验方法的内涵? 是以近代力学理论为基础,以先进的科学方法为手段,测量应变、应力等力学量,从而正确真实地评价材料、零部件、结构等的技术手段与方法; 是用来解决“物尽其用”问题的科学方法; 2.力学实验的主要任务,结合纤维增强复合材料加以阐述。 面向生产,为生产服务;面对新技术新方法的引入,研究新的测试手段;面向力学,为力学的理论建设服务。 3.对于单向层合板而言,需要几组实验来确定其弹性模量和泊松比?如何确定实验方案? 共需五组实验,拉伸0/90两组,压缩0/90两组,剪切试验一组。 4.单向拉伸实验中如何布置应变片? 5.单向压缩实验中如何布置应变片? 6.三点弯曲实验中如何布置应变片? 7.剪切实验中如何布置应变片? 8.若应变片的粘贴方向与实样应变方向不一致,该如何处理? 9.若加载方向与材料方向不一致,该如何处理?(这个老师给了) 10.纤维体积含量的测试方法? 密度法、溶解法 11.评价膜基结合强度的实验方法? 划痕法、压痕法、刮剥法、拉伸法、黏结剂法、涂层直接加载法、激光剥离法、弯曲法。 12.简述试样机械加工的规范? 试样的取位区(距板材边缘30mm以上,最小不得小于20mm) 试样的质量(气泡、分层、树脂富集、皱褶、翘曲、错误铺层) 试样的切割(保证纤维方向和铺层方向与试验要求相符) 试样的加工(采用硬质合金刀具或砂轮片加工,防止试样产生分层、刻痕和局部挤压等机械损伤) 试样的冷却(采用水冷,禁止油冷) 13.纤维增强复合材料在拉伸试验中的几种可能破坏模式及其原因? 所有纤维在同一位置破坏,材料吸收断裂能量很小,材料断裂韧性差; 纤维在基体中拔出,吸收断裂能量很大,材料韧性增加并伴随界面开裂; 介于以上两者之间。 14.加强片的要求? 材料硬度低,便于夹具的咬合;材料的强度高,保证载荷能传递到试样上,且在试样发生破坏前本身不发生破坏。

复合材料的结构及作用

复合材料的结构及作用 一、复合材料的结构及作用 是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合包装材料一般由基层、功能层和热封层组成。 a.基层也是材料的外层,从商品对包装性能的要求出发,外层应具有良好的光学性能、良好的印刷适性、耐磨、耐热、一定的强度和刚度,这样使包装外观具有极佳的表现力,增加了对消费者的吸引力; b.功能层也是材料的中间层,从商品对包装性能的要求出发,应具有很高的阻隔性以及特殊性能,如防潮性、阻气性、阻氧性、保香性、耐化学性、防紫外线、防静电、防锈等,使内装物得到保护,延长其货架寿命,这是包装功能性的体现; c.热封层也是材料的内层,从商品对包装性能的要求出发,内层与内装物直接接触,起适应性、耐渗透性要好,特别的包装食品的复合材料,内层还应符合食品安全的要求,卫生、无毒、无味,要对其进行封合,因此还要有良好的热封性和粘合性。 复合包装一般要满足以下性能: a.强度性能,包括抗张(拉伸)强度,范围一般在40-100MPa,撕裂强度,范围一般在 0.3-3N,破裂强度范围一般在30-50MPa,热封强度范围一般在20-80N/20mm,另外根据不同使用场合,还要求刚性、耐磨性、断裂伸长率; b.阻隔性能,包括透气性能(透空气、O2、CO2、N2)、防潮性能、透湿性能、透光性能(尤其对特定波长的光线)、保香性能; c.耐候与稳定性能,包括抗油性能、抗化学介质、耐温性能、耐候性能、抗降解性能; d.加工性能,包括自动化包装适性、印刷适性、防静电性能、热收缩与尺寸稳定性; e.安全卫生性能,包括材料成分是否安全,细菌微生物的种类和含量多少,其它一些影响安全卫生的成分; f.其它性能,包括光学性能、透明度、白度、光泽度、废弃物处理的难易、展示性等。 被包物不同,对复合包装材料性能的要求也不同,应从被包物对包装功能的要求出发,选择和设计复合包装材料,使用最少的材料,达到保护内装物的目的,节约成本和资源。二、举例说明 聚乳酸/纳米碳管防静电复合材料。此材料是以纳米碳管为导电料通过球磨和密炼2种方法添加到聚乳酸基体中制备的防静电复合材料。具体工艺流程如下:纳米碳管的纯化处理(p-CNT)——纳米碳管功能化(f-CNT)——球磨法或密炼法混合——热压——成型。 聚乳酸可以看做复合材料的基层,是复合材料的基材框架。PLA是一种新型的生物可降解材料,有较好的生物相容性,属于环境友好型材料,符合绿色环保的要求,并且具有良好的透气性及拉伸强度,但抗冲击性能差,对热不稳定。

玻璃钢复合材料的性能对比

复合材料聚合物的性能对比 聚合物复合材料的性能解释 1. 1 拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标 GB/T1447 进行测试;对于缠绕成型的,用国标 GB/T1458 进行测试;对于定向纤维增强的,用国标 GB/T33541 进行测试;对于拉挤成型的,用国标GB/T13096-1 进行测试。使用最多的是 GB/T1447 。 国标 GB/T1447 ,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带 R 型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力--------------------------- 应变曲线的直线段的斜率则为弹性模量,试样横向应变 与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用 MPa (兆帕)表示, 1MPa 相当于 1N/mm2 的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1 玻璃钢,拉伸强度为(200-250 )MPa ,弹性模量为(10-16 )GPa;4:1 玻璃钢,拉伸强度为(250-350 )MPa ,弹性模量为(15-22 )GPa ;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa ,弹性模量大于 24GPa ; SMC 材料,拉伸强度为( 40-80 ) MPa ,弹性模量为( 5-8 )GPa ;DMC 材料,拉伸强度为( 20-60 ) MPa ,弹性模量为( 4-6 )GPa。 1.2 弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。 弯曲性能,一般采用国标 GB/T1449 进行测试;对于拉挤材料,用国标 GB/T13096.2 进行测试;对于单向纤维增强的,用国标 GB/T3356 进行测试。测试弯曲性能的试样一般是矩形截面积的长条,简称为矩形梁。采用当中加载的三点弯曲法。梁的横截面的上表面承压缩应力,梁下表面承受拉伸应力,横截面积上还要承受剪切应力,中性层剪应力最大,因此梁所承受弯曲时,其应力状态是很复杂的,破坏形式也是多种的。原材料品种、性能及成型工艺参数对弯曲性能很敏感,试验方法和试样尺寸同样也很敏感,为了达到材料弯曲破坏,国标对试样的跨(跨度或支距)高(试样厚度)比( l/h )有一定要求,一般要求 l/h >16,对于单向纤维增强的材料,要求l/h >32。 由于弯曲性能的复杂性及对各因素的敏感性,对于上述不同材料的弯曲性能,或大于 1.1 节中拉伸性能,或小于 1.1 节中的拉伸性能。在正常成型工艺情况下,一般弯曲强度略大于拉伸强度,弯曲弹性模量略小于拉伸弹性模量。 1. 3 压缩性能

新型复合材料的发展与应用

新型复合材料的发展与应用复合材料是应现代科学技术发展而涌现出的一类具有极大生命力的新材料,它们均由两种或两种以上物理和化学性质不同的物质组合起来而得到的一种多相固材料。复合材料区别于单一材料的显著特征是材料性能的可设计性,即经过选择性设计和加工,通过各组分性能间的相互补充,可获得新的优良性能。 生活中有许许多多的复合材料,传统的复合材料有钢筋混凝土,玻璃钢鱼竿、一体成型的鞋子、用于开关绝缘的合成树脂等。新型复合材料是具有更高性能的材料,具有比强度高、比模量高、密度低等,它包括用碳、芳纶、瓷等纤维和晶体等高性能增强体与耐热性好的热固性和热塑性树脂基构成的高性能聚合物复合材料。 人类在远古时代就从实践中认识到,可以根据用途需要,组合两种或多种材料,利用性能优势互补,制成原始的复合材料。所以,复合材料既是一种新型材料,也是一种古老的材料。复合材料的发展历史,可以从用途、构成、功能,以及设计思想和发展研究等,大体上分为古代复合材料和现代复合材料两个阶段。 古代复合材料在东郊半坡村仰韶文化遗址,发现早在公元前2000年以前,古代人已经用草茎增强土坯作住房墙体材料。 在金属基复合材料方面,中国也有高超的技艺。最具代表性的如越王剑,是金属包层复合材料制品,不仅光亮锋利,而且韧性和耐蚀性优异,埋藏在潮湿环境中几千年,出土后依然寒光夺目,锋利无比。 5000年以前,中东地区用芦苇增强沥青造船。古埃及墓葬出土,发现有用名贵紫檀木在普通木材上装饰贴面的棺撑家具。古埃及修建金字塔,用石灰、火山灰等作粘合剂,混和砂石等作砌料,这是最早最原始的颗粒增强复合材料。但是,上述辉煌的历史遗产,只是人类在与自然界的斗争实践中不断改进而取得的,同时都是取材于天然材料,对复合材料还是处于不自觉的感性认识阶段。。 到了19世纪,两次工业革命的进行,天然聚合物的性能已经不能满足工业发展对材料性能的需要。工业革命的进行、经济实力的迅速发展,带动科学技术巨大发展,不同于天然材料的现代复合材料应运而生。而真正现代意义上的复合材料最早出现在1847年。许许多多的科学家为复合材料的发展做出了重大贡献。 1847年瑞典化学家Berzelius,这位现代化学的奠基人之一,首次在实验室发明了饱和聚酯。 1894年Vorlander在实验室着手对乙二醇马来酸的研究工作,成为记录在案最早的一位研究不饱和聚酯树脂的化学家。 1920年先锋人物Wallace Carothers开始对乙二醇与不饱和脂肪酸合成的聚酯的研究工作。 1922年首个聚酯树脂被研发成功。 1930年末研究人员Bradley,Kropa和Johnson三人共同研究不饱和聚酯的固化情况,在报告中提高,固化后,它们可以分为可熔性和不可溶性(热固性)。 1935年欧文斯科宁(Owens Corning)首次引入玻璃纤维 1941年不饱和聚酯首次投入美国的压铸商业市场 1942年美国橡胶公司开发出玻璃纤维增强聚酯树脂作为基体的复合材料。 1946年船艇制造商开始意识到纤维增强复合材料为整个工业带来了何种变革,在这年中首个复合材料船身的游艇在美国建成,还首次引入了冷固化系统。 1950年早期闭模工艺开发完成。

高性能热塑性复合材料的高温力学性能

高性能热塑性复合材料的高温力学性能 陈家正,张晓兵,张 琳 (哈尔滨玻璃钢研究院,哈尔滨150036) 摘 要 用碳纤维T 700增强杂萘联苯聚醚酮(PPEK ) 杂萘联苯聚醚砜(PPES ),采用层压工艺制作复合材料试样,对试样 进行高温力学性能测试与分析,研究了高性能热塑性复合材料在高温条件下的力学性能变化规律及其影响因素。关键词 热塑性;复合材料;高温力学性能 Mechanical Performance of H igh -performance Thermoplastics under the E levated Temperature CHE N Jia -zheng ,ZH ANG X iao -bing ,ZH ANGLin (Harbin FRP Institute ,Harbin 150036 ) ABSTRACT Samples is made from carbon fiber T 700rein forced PPEK and PPES in laminating process.The mechanical perfor 2mance of samples is tested in high temperature and analyzed.The varying rules and effective factors of mechanical performance un 2der high temperature are researched.KEY WORDS Therm oplastic ;C omposites ;High temperature ;Mechanical performance 1 前 言 由于热塑性树脂基复合材料具有高强度、高模量、耐高温、韧性较高、预浸料存放周期长、成型方法多、工艺简单、生产周期短、可多次加工性及优异的耐损伤性,耐化学试剂性以及较低的日常维护费等优点,在汽车工业、航空航天、交通运输、体育器材、化工防腐、国防等领域得到了广泛的应用,已经越来越受到人们的重视。 杂萘联苯聚醚酮,杂萘联苯聚醚砜是新型高性能热塑性树脂,本文用连续碳纤维T700增强杂萘联苯聚醚酮、杂萘联苯聚醚砜,研究CF/PPEK 、CF/PPES 复合材料的高温力学性能。 2 实验原材料及设备 2.1 实验用原材料 T ORAY T70012K 碳纤维:日本;PPEK (杂萘联苯聚醚酮)、PPES (杂萘联苯聚醚砜)、二甲基乙酰胺:工业品;N -甲基吡咯烷酮:工业品;乙酸乙酯:工业 品。2.2 实验主要设备 (1)缠绕机:DSC -1型缠绕机;(2)烘箱;(3)红外灯; (4)Instron 5500R 试验机。 3 试件制备 采用层压工艺制成CF/PPEK 、CF/PPES 复合材料试件。先采用湿法缠绕制成单向纤维预浸片,再采用层压工艺将预浸片压制成单向板。3.1 单向纤维增强预浸片的制备 图1 单向纤维增强预浸片制备示意图 第2期 纤维复合材料N o 1243  2007年6月 FIBER COMPOSITES Jun 1,2007

国内外复合材料研究现状

国内外高性能复合材料发展概况 2004-06-24 https://www.360docs.net/doc/c515889589.html,来源: 作者:佚名点击数:2406次 玻璃市场将缓慢复苏 | 2015年中国有望进入光伏平价消费时代 | 玻璃:需求渐缓,价格逐稳 由于高性能复合材料包含于整个复合材料之中,且高性能是相对而言的,因此叙述国内外发展概况宜论述整个复合材料为好。复合材料根据基体种类可分为树脂基复合材料、金属基复合材料、陶瓷基复合材料、水泥基复合材料等。 一、树脂基复合材料树脂基复合材料是最先开发和产业化推广的,因此应用面最广、产业化程度最高。根据基体的受热行为可分为热塑性复合材料和热固性复合材料。 1、热固性树脂基复合材料热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。 树脂基复合材料自1932年在美国诞生之后,至今已有近70年的发展历史。1940~1945年期间美国首次用玻璃纤维增强聚酯树脂、以手糊工艺制造军用雷达罩和飞机油箱,为树脂基复合材料在军事工业中的应用开辟了途。1944年美国空军第一次用树脂基复合材料夹层结构制造飞机机身、机翼;1946年纤维缠绕成型在美国获得专利;1950年真空袋和压力袋成型工艺研究成功并试制成功直升飞机的螺旋桨;1949年玻璃纤维预混料研制成功,利用传统的对模法压制出表面光洁的树脂基复合材料零件;20世纪60年代美国用纤维缠绕工艺研制成功"北极星A"导弹发动机壳体。为了提高手糊成型工艺的生产率,在此期间喷射成型工艺得到了发展和应用,使生产效率提高了2-4倍。1961年德国研制成功片状模塑料(SMC),使模压成型工艺达到新水平(中压、中温、大台面制品);1963年树脂基复合材料板材开始工业化生产,美、法、日等国先后建起了高产量、大宽幅连续生产线,并研制成功透明复合材料及其夹层结构板材;1965年美国和日本用SMC压制汽车部件、浴盆、船上构件等;拉挤成型工艺始于20世纪50年代,60年代中期实现了连续化生产,除棒材外还生产细管、方形、工字形、槽形等型材,到了70年代,拉挤技术有了重大突破,目前美国生产拉挤成型机组最先进,其制品断面达76×20cm2,并设计有环向缠绕机构;进入70年代,树脂反应注射成型(RRIM)研究成功,改善了手糊工艺,使产品两面光洁,已用于生产卫生洁具、汽车零件等。70年代初热塑性复合材料得到发展,其生产工艺主要是注射成型和挤出成型,只用于生产短纤维增强塑料。1972年美国PPG公司研制成功玻璃纤维毡增强热塑性片状模塑料(GMT),1975年投入生产,其最大特点是成型周期短,废料可回收利用。80年代法国研究成功湿法生产热塑性片状模塑料(GMT)并成功地用于汽车制造工业。离心浇铸成型工艺于20世纪60年代始于瑞士,80年代得到发展,英国用此法生产10m。长复合材料电线杆,而用离心法生产大口径压力管道用于城市给水工程,技术经济效果十分显著。到目前为止,树脂基复合材料的生产工艺已有近20种之多,而且新的生产工艺还在不断的出现。

相关文档
最新文档