盾构机电气控制系统

盾构机电气控制系统
盾构机电气控制系统

盾构机电气控制系统

【内容提要】介绍了海瑞克盾构机开发工作中电气部分、供配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分的设计。

【关键词】电气控制系统

1 概述

盾构机是集掘进,出渣,衬砌(管片安装)于一体的大型现代化隧道施工机械, 它将传统的隧道和地下工程施工变成工厂化作业。随着我国经济的快速发展,对盾构机的需求越来越大。我集团为了开拓成都地铁市场,从德国海瑞克采购了两台土压平衡盾构机,现已在成都地铁项目部投入使用,本文就其中的电气系统部分的设计做一简要概述。

2 盾构机电气系统设计

盾构机电气系统主要分为三部分:供配电系统、可编程控制系统、计算机控制及数据采集分析系统。

2.1 供配电系统

主要包括10kV 高压电缆、高压电缆卷筒、高压开关柜、变压器、低压开关柜、低压断路器、软启动器、变频器等。供配电系统的主要功能是为盾构机提供动力和电气保护, 控制电机运转。

2.1.1 供配电系统设计

2.1.1.1 负荷统计(表1)

2.1.1.2 负荷计算

一般地, 电力负荷的计算可以采用三种方法:

a. 需要系数法;

b. 二项式法;

c. 利用系数法。

其中利用系数法的计算结果比较接近实际负荷。利用系数法的计算公式是:

P j =k

max

∑P

p

(1)

Q j =k

max

∑Q

p

(2)

(3)

表1 盾构掘进机用电负荷统计

表1 盾构掘进机用电负荷统计

其中, Kmax 为最大系数, 是指最大负荷班内的半小时最大平均有效功率(Pj)与总平均负荷(∑P p)之比, 可以根据有效台数和平均利用率查表求得; P p=k L·P e, Q p= P p·tgφ,k L为在最大负荷班内

的利用系数,P e为设备组容量之和。

在设计计算时,考虑到盾构机工作的一些特点,对上述计算方法进行简化。

盾构机工作时有以下特点:

a. 连续工作时间长,经常连续工作数小时乃至昼夜;

b. 主要用电设备(如液压站马达)基本上同时在运转;

c. 日光灯等设备容量大于额定功率(1.2 倍)的设备容量;

d. 系统中采用了功率因数自动补偿设备, 可使功率因数保持较高水平(0.9)。

根据以上特点对负荷计算可作以下简化:

a. 设备容量等于设备铭牌功率

b. 利用系数kL=1

c. Qp= Pp·tgφ=0.484·Pp, 其中φ=arcos0.9=25

经上述简化后, 变压器低压侧计算负荷为各设备铭牌功率之和:

Pj1=1845.14kW

Qj1=893.05kVar

Sj1=2049.89kVA

2.1.1.3 变压器选择

根据隧道工作环境选择下式变压器,具有可靠性高、散热好、维护方便等优点。变压器容量确定: 根据计算, 变压器低压侧计算负荷为:

=1845.14kW

P

j1

Qj1=893.05kVar

Sj1=2049.89kVA

变压器高压侧计算负荷:

Pj2= Pj1+△PB

Qj2= Qj1+△QB

根据经验, ΔPB=2%Pj, ΔQB=10%Qj, 那么:

Pj2= Pj1+△PB=1845.14+36.90=1882.04kW

Qj2= Qj1+△QB=893.05+89.305=982.355kVar

Sj2=2123kVA

所以, 变压器容量可选为: Sj=2000kVA

2.1.1.4 高压电缆选择

根据工作需要高压电缆应选择具有一定抗拉强度、可缠绕、耐磨损、绝缘性能好的柔性电缆。

电缆截面确定:

a. 按载流量选择电缆截面:

查表, 可选择70mm2 的电缆

按电压损失校验电缆截面:

b. 用电流矩校验:

u%=∑(ua%pl) = 0.006×115.5×4.0=2.77(电缆长度按4km 考虑,功率因数0.9)

经校验电压损失小于5%, 选择70mm2 的电缆可以满足要求。

根据以上要求, 故选择10kV 橡套软电缆, 规格型号为: UGP-3×70+1×25+1×2.5。

2.2 可编程控制器(PLC)系统设计

盾构机电气控制系统采用PLC 控制,PLC 对主机需要监测的各种开关量信号和模拟量信号进行实时扫描检测,在PLC 接受到控制信号时,经过一定的逻辑连锁检查和时序控制后,按程序设置对一些控制对象做些处理,PLC 向开关量输出口发出高/低电平信号,经中间继电器控制接触器来启/停电机,或开启/关闭电磁阀,或输出模拟量信号控制比例放大器连续调节比例电磁阀等等,在盾构机内所有控制信号全部通过PLC 进行处理。

盾构机电气控制系统采用主从方式, 上下位机结构。上位机由PC 机(洞外办公室)和墙面式工控机(主控室)组成的基于TCP/IP 协议的计算机局域网, 下位机是以西门子S7-400 为主站的, ET200M 为从站的基于Profibus-DP 协议的现场总线的可编程控制器系统。其系统组成如图1 所示。

图1 控制系统结构示意图

可编程控制器(PLC)采用现场总线技术, 在主控制室设置PLC 主站,再根据设备的分布情况, 在电气设备相对集中的盾体和低压配电柜处设置PLC 分站,按照就近接线的原则, 将分站附近的设备

就近接入分站, 这第1 期唐健盾构机电气控制系统设计概要35样就可以减少大量接线, 节约大量电缆, 主站与分站之间通过ET200M 组成Profibus-DP 网。PLC 主站CPU模块采用西门子S7-412, 分站采用ET200M 分布式I/O,采用这种方案可以STEP7 编程语言直接对主从站各点控制编程。

分布式I/O 是可编程控制器的一项新技术, 它特别适合像盾构机这样控制点多且分散, 沿线状分布的场合。采用现场总线方案的最大优点是: 检修维护方便,扩充灵活, 降低造价。这也是本设计对德国海瑞克盾构机电气方面最大的改进。(德国海瑞克盾构机PLC 控制采用的是常规的集中控制方式, PLC 集中安装在主控制室, 所有的控制线和信号线都经过控制室, 电缆多, 走线困难, 使故障查找和维护检修都不方便)。

2.3 计算机控制及数据采集分析系统

计算机控制系统主要用于参数设置和数据采集分析。它由盾构机控制室的墙面式工控机和洞外办公室的PC 机组成, 采用主从工作方式,通过TCP/IP 协议联网。

墙面式工控机为西门子PC670 人机界面, 采用彩色液晶触摸屏, 安装在盾构控制室的控制面板上, 由现场操作人员使用, 用于人机对话、显示数据、设置和修改系统控制参数等。

上位机控制软件采用WINCC 组态软件, 设置9 个组态界面, 分别通过功能键切换。

F1-----------泡沫系统监视、掘进参数设置界面;

F2-----------推进油缸、铰接油缸、注浆监视界面;

F3-----------基本设备、切削轮、掘进、螺旋输送机、泡沫系统启动条件;

F4-----------温度,螺旋输送机,土仓压力显示界面;

F5-----------盾尾密封控制参数设置界面;

F6-----------故障、报警监视界面;

洞外的PC 机根据需要可安装在机电室和经理室,这些计算机均安装有WINCC(Windows NT)软件, 用于对隧道内的盾构机运行情况进行远程监视, 故障诊断,数据采集及分析, 打印报表和其他管理

工作。

3 结束语

目前,海瑞克盾构机的电气控制系统日趋完善,性能更加可靠,可操作性强,能够更好的实现人机对话。

【参考文献】

1.电气工程师手册《电气工程师手册》第二版编辑委员会编机械工业出版社第二版

2.新电工手册主编李正吾副主编赵文瑜安徽科学技术出版社第一版

3.西门子产品样本

盾构机的工作原理 1

盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用: 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN?m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 1.盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、

盾构机的组成

盾构机得组成及各组成部分在施工中得作用 盾构机得最大直径为6、34m,总长65m,其中盾体长8、5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,她们分别就是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统与辅助设备。 2。1盾体 盾体主要包括前盾、中盾与尾盾三部分,这三部分都就是管状简体,其外径就是6.25m。 前盾与与之焊在一起得承压隔板用来支撑刀盘驱动,同时使泥土仓与后面得工作空间相隔离,推力油缸得压力可通过承压隔板作用到开挖面上,以起到支撑与稳定开挖面得作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度得土压力、 前盾得后边就是中盾,中盾与前盾通过法兰以螺栓连接,中盾内侧得周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好得管片上,通过控制油缸杆向后伸出可以提供给盾构机向前得掘进力,这30个千斤顶按上下左右被分成A、B、c、D四组,掘进过程中,在操作室中可单独控制每一组油缸得压力,这样盾构机就可以实现左转、右转、抬头、低头或直行,从而可以使掘进中盾构机得轴线尽量拟合隧道设计轴线、 中盾得后边就是尾盾,尾盾通过14个被动跟随得铰接油缸与中盾相连。这种铰接连接可以使盾构机易于转向。 2。2刀盘 刀盘就是一个带有多个进料槽得切削盘体,位于盾构机得最前部,用于切削土体,刀盘得开口率约为28%,刀盘直径6。28m,也就是盾构机上直径最大得部分,一个带四根支撑条幅得法兰板用来连接刀盘与刀盘驱动部分,刀盘上可根据被切削土质得软硬而选

盾构机刀盘驱动控制系统分析和使用

盾构机刀盘驱动控制系统分析和使用 [摘要] 刀盘驱动系统是盾构机的重要组成部分,本文分析了国内盾构机中刀盘常用的几种典型的驱动方式,结合广佛地铁十二标中罗宾斯盾构机的刀盘驱动系统进行重点分析。并使用GX Developer和GT Designer2进行联合仿真,分析其控制过程,供施工人员进行学习检修作参考。 [关键词] 盾构机;刀盘驱动;PL 前言 刀盘是盾构设备的重要组成部分,是进行掘进作业的主要工作装置。虽然盾构机刀盘工作转速并不高,但是由于广佛地铁十二标地质构造复杂、刀盘作业直径较大。要求刀盘的驱动系统需具备: 大功率、大转矩输出、抗冲击、转速双向连续可调。在满足使用要求的前提下减小装机功率,具备节能降耗等工作特点。盾构机中主要使用三菱电机自动化生产的Q2大型PLC进行分布式控制,各个部分在控制系统中分工明确,整个控制系统具有一定的复杂性。因此,刀盘的驱动系统以及控制系统必须具有高可靠性和良好的操作性能。通过使用GX Developer 和GT Designer2进行联合仿真可以很好地克服整套大型设备难以开展调试、学习、检查等工作的缺点。 1刀盘驱动系统分类 刀盘驱动系统是盾构机的主要系统之一, 分析盾构机刀盘驱动系统液压驱动方式和电驱动方式, 并对两种驱动方式进行了优缺点比较,结果如表1-1所示。 表1-1 驱动方式优缺点对比表 驱动形式特点 电机驱动能源使用效率高,噪音小,价格上比液压驱动具有优势,但是在前盾中占用空间比较大。 液压驱动起动力矩大,容易同步控制,效率低,噪音高。前盾内空间宽敞,后续台车配套设备所占空间比较大。 虽然液压控制在控制精度以及起动转矩方面有一定的优势,但是随着异步电机变频控制技术的发展和完善,在刀盘驱动中使用电机驱动技术更加符合生产和设备使用和维护实际情况。刀盘采用电机驱动将会越来越普遍。 2刀盘电驱动分析 电驱动方式分为单速电机驱动方式、双速电机驱动方式和变频电机驱动方式。单速电机驱动方式不能调节速度,近年来在投入和功能的比较上,越来越缺

盾构机辅助系统原理

盾构机辅助系统原理 一.盾构机辅助系统组成 盾构机是一综合性的大型地下隧道开挖机械。集机械、电子电器、液压、传感技术等于一体,自动化程度较高,除主要的液压系统和电气系统外,还需要各种不同的系统来完成不同的功能,其上就有十几个辅助系统,这些系统有: 1. 刀盘减速器润滑冷却系统; 2. 盾尾密封油脂系统; 3. 主轴承密封油脂系统; 4. 油脂润滑密封系统; 5. 供水及冷却系统; 6. 同步注浆系统; 7. 泡沫发生系统; 8. 添加聚合物系统; 9. 添加膨润土系统; 10. 压缩空气系统; 11. 土仓加压系统; 12. 人仓加压系统。 二.刀盘减速器润滑冷却系统 该系统以主轴承密封外壳为储油箱,配有4KW的齿轮油泵、益流阀、过滤器、水冷却器、流量分配阀,形成一循环系统。系统中装有油温传感器、压力表、流量传感器、低油位警报开关及检查密封状况的泄漏检查箱。油泵从减速器中抽出的油经过滤、冷却,由分配阀

分为等量的四路油两路送往主轴承的OAX5、OAX1口润滑大滚子轴承,另两路送往OR4、OR1口润滑小滚子轴承。如果前面的一、二道密封损坏,就会有浆液流入泄漏检查箱,如果第三道密封损坏,就会有齿轮油流入泄漏检查箱。油位过低、油温过高或流量较小都会使刀盘无法旋转。 三.盾尾密封油脂系统 盾尾密封油脂系统向盾尾上布置的8根盾尾油脂注入管注入油

脂到密封装置,以失油密封形式阻止隧洞内的水、土及压注材料从盾尾进入盾构内。系统由气动油脂泵、集油器、8路支管及8个气动闸 阀和8个压力传感 器组成。 从空气压缩 机送来的压缩空 气由气动油脂泵 的P口进入,然后 分两路,一路经气 源调节装置[过滤 器、减压阀(带压 力表)、油雾器]、 手动换向阀到达 油脂压力盘油缸, 以达到向油脂泵 供油的目的。另一 路经气控阀、气源 调节装置达到油 脂泵,靠油脂泵的 自动往复运动将 油脂泵出。泵上装 有低油脂警报开 关、压力表和计数 式流量传感器。 泵出的油脂送到集油器分8路,四路进入一、二道钢刷密封之间的前四个注入孔,另四路进入二、三道钢刷密封之间的后四个注入孔。每一路都可以气控阀单独控制,也可以同时控制。 四.主轴承密封油脂系统 主轴承设置有三道唇形外密封和两道唇形内密封,外密封前两道采用永久性失脂润滑来阻止土仓内的渣土和泥浆渗入,后一道密封是

盾构机控制系统绿色改造

盾构机控制系统绿色改造 发表时间:2020-01-08T16:41:47.990Z 来源:《科技新时代》2019年11期作者:徐华良秦倩云马俊江[导读] 项目通过WAGO 750IO系统和三菱A800变频器的应用,成功对老旧型号盾构机增加泡沫系统,满足了地铁隧道掘进需求,提高了掘进效率和质量,加速了改造周期,减少了材料成本、增加了企业效益。徐华良秦倩云马俊江 秦皇岛天工重工有限公司 摘要项目通过WAGO 750IO系统和三菱A800变频器的应用,成功对老旧型号盾构机增加泡沫系统,满足了地铁隧道掘进需求,提高了掘进效率和质量,加速了改造周期,减少了材料成本、增加了企业效益。本文详细介绍了运用绿色制造理念,对老旧盾构机的绿色改造过程。 关键词盾构机绿色制造总线控制 1.前言 绿色制造也称为环境意识制造(Environmentally Conscious Manufacturing)、面向环境的制造(Manufacturing For Environment)等,是一个综合考虑环境影响和资源效益的现代化制造模式。其目标是使产品从设计、制造、包装、运输、使用到报废处理的整个产品全寿命周期中,对环境的影响(负作用)最小,资源利用率最高,并使企业经济效益和社会效益协调并优化。 改革开放以来,随着我国经济飞速发展,城镇化进程日益扩大,城市人口增加迅猛,交通压力逐年加大,地铁成为各大城市解决公共交通的优选建设目标。近年来,智慧城市、海绵城市的规划已成为国家战略,地铁、电力管线、给排水隧道投资需求日益增多,我国盾构机产业也从无到有、蓬勃发展起来,如何响应国家青山绿水的基本国策,保护环境,应用绿色制造理念,对大量老旧盾构机进行绿色改造、再利用,成为各企业面临的课题。 2.系统改造需求分析 2.1 原控制系统分析 该盾构机刀盘、盾壳、螺旋机、拼装机、推进、铰接、后配套各台车等整体结构保持较好,机械、液压、电气进行了部分零部件的检修和更换,整机采用FDS总线控制,中心选用施耐德P340高性能CPU,配备4路工业以太网现场总线,使得整个控制系统人机交互、驱动、逻辑、算法从分布式安装到集中控制有机结合,安全、稳定、可靠。 2.2 改造需求和实现 整机需要增加泡沫系统一套,作为主机辅助系统之一,需要采集原主机系统的许多开关量和模拟量信号,并将泡沫参数反馈回主机系统,还要进行人机显示和操控。 最简单实用的办法是泡沫控制系统独立成套,采用PLC、触摸屏和变频及低压系统的方式实现,并增加IO点数和原主机控制系统交互。如此一来,泡沫系统虽然独立成套,能够实现预设功能,但是独立于原主机控制系统,破坏了整个盾构机控制系统的完整性、系统性、统一性,而且操控和检修不便,造成资源浪费和成本提升。我们分析了原控制系统的硬件、网络、软件配置,依据绿色制造理念,在原系统中增加一个工业以太网现场总线的IO站点,实现泡沫系统的集中控制、现场分布式安装,完美契合整个盾构控制系统的一致性,可靠解决了泡沫子系统和主机系统的数据交换,并使用原系统的上位工控机实现人机交互,大大减少了企业生产成本,符合国家绿色制造政策。系统控制原理和网络结构如图1所示。 图1 控制网络结构图 3.控制系统的硬件设计 3.1 IO站点选型 德国WAGO公司的远程IO系列产品,网络模式多、IO规格齐全、抗干扰性强,行业内应用广泛。本次改造选用原机采用的750系列模块化产品,延续了整机控制系统的一致性,搭配灵活可靠、占用空间小、系统稳定可靠。具体配置如下:以太网模块 750-352 1台 开关量输入模块 750-1415 2台 开关量输出模块 750-1515 1台 模拟量输入模块 750-455 5台 模拟量输出模块 750-555 4台 3.2 变频器选型选型 本机增加泡沫系统,原液泵1台,混合液泵4台,调速范围宽,拟采用三菱A800系列变频器,该系列变频器调速精度高、操控简易、成本低,而且体积小,易于安装和集成。 2.2KW变频器 FR-840-00083 4台

风力发电机工作原理图解析

风力发电,是能源业又一突破,其中风力发电机功不可没。通过风力发电机工作原理图,我们可以清晰了解各种奥妙。其实,风力发电机工作原理图并不是那么难懂。下面,我们一起来对风力发电机工作原理图进行详细的剖析和解读吧! 风力发电机为一由转动盘、固定盘、风轮叶片、固定轮、立竿、集电环盘、舵杆、尾舵和逆变器组成的系统。转动盘和固定盘构成该系统的发电机,逆变器包括50赫正弦波振荡器、整形电路、低压输出电路和倒相推挽电路。 风力发电机工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32。7-36。9米/秒。 风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时*齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元。

盾构机的组成

盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.34m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577k W,最大掘进扭矩5 300kN m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、c、D四组,掘进过程中,在操作室中可单独控制每一组油缸的压力,这样盾构机就可以实现左转、右转、抬头、低头或直行,从而可以使掘进中盾构机的轴线尽量拟合隧道设计轴线。 中盾的后边是尾盾,尾盾通过14个被动跟随的铰接油缸和中盾相连。这种铰接连接可以使盾构机易于转向。 刀盘 刀盘是一个带有多个进料槽的切削盘体,位于盾构机的最前部,用于切削土体,刀盘的开口率约为28%,刀盘直径6.28m,也是盾构机上直径最大的部分,一个带四根支撑条幅的法兰板用来连接刀盘和刀盘驱动部分,刀盘上可根据被切削土质的软硬而

1盾构竞赛模拟考试试题A卷(中铁一局)

模拟考试试题(A卷) 姓名:总分: 一、判断题:(共10题,每题1分) 1.压力越高液压泵的容积效率也越高。() 2.差动联接的单出杆活塞液压缸,可使活塞实现快速运动。() 3.通过节流阀的流量与节流阀的通流面积成正比,与阀两端的压力差大小无关。() 4.拼装机抓举头的抓紧动作需要一直长按抓紧按钮。() 5.从各相首端引出的导线叫相线,俗称火线。() 6.严禁将运行中的电流互感器二次侧开路。() 7.三相电流不对称时,无法由一相电流推知其他两相电流。() 8.管片安装机抓牢管片后,通过调整大油缸、旋转马达、抓取头翻转等将其准确定位到最终位置。( ) 9.激光全站仪是同时测量角度(水平和垂直)和距离的测量仪器。( ) 10.刀盘脱困时,允许使用松开推进油缸的方式进行刀盘脱困。() 二、单项选择题:(共20题,每题1分) 1.导向系统是用来()盾构姿态,提供盾构相对于隧道设计轴线的详细偏差信息,便于用户及时纠正盾构的姿态。 A.监视 B. 引导 C.指示 D. 指挥 2.水平角是由激光全站仪照射到激光靶的()决定的。 A.入射角 B.上倾角 C.下倾角 D.折射角3.同步注浆在地层匀均和盾构姿态较好时,多个注浆孔应()注入。

A.不对称 B.顺序 C.均衡 D.单边 4.滚刀内金属浮动密封环需要配合以()润滑。 A.油脂 B.油浴 C.飞溅 D.压力 5.一般情况下,以II、Ⅲ级围岩为主的隧道较适合采用()施工。 A.双护盾TBM B.土压平衡盾构 C.顶管 D.泥水平衡盾构 6.盾构刀盘上滚刀数量的取决于以下哪种因素之一()。 A.隧道长度; B.岩石性质; C.刀盘扭矩; D.切刀尺寸; 7.盾构隧道防水应以()防水为重点。 A. 接缝 B.自防水为主,以接缝 C.自防水 D.接缝为主,以自防水 8.发泡剂产生的泡沫中()左右是空气。 A.3% B.50% C.90% D.100% 9.当铰接油缸处于()时,铰接油缸处于浮动位,此时盾尾能根据前盾和管片的位置自动调整姿态。 A.释放位B.拖拉位C.保持位D.收缩位 10.中铁系列盾构机,油箱上设置了()个液位传感器。 A.1 B.2 C.3 D.4 11.当泥水盾构机处于安装管片衬砌环时,泥浆循环的模式为()A旁通模式 B.反循环模式 C.隔离模式 D.长时间停机模式12.盾构掘进中的滚动偏差()时,盾构报警,提示操纵者必须切换刀盘旋转方向,进行反转纠偏 A.≥1.5o B.≤1.5o C.≥2o D.≤2o

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

土压平衡盾构机刀盘转速自动控制技术

土压平衡盾构机刀盘转速自动控制技术 摘要:本文介绍了我公司生产的土压平衡型盾构机刀盘的特点,从机械结构,电气控制等方面对刀盘驱动系统进行分析,并比较了刀盘转速自动控制与人工控制的优劣性最后设计了刀盘转速自动 控制程序,为盾构机变频驱动技术的研究提供参考。 关键词:变频驱动,plc,转速自动控制 abstract:the paper introduces the production of my company earth pressure balance shield machine the characteristics of cutter head.from the mechanical structure, electrical control aspects of cutterhead driving system is analyzed,and compare the cutter head rotation speed automatic and manual the final design the program of cutter head speed automatic control.for epb machine variable frequency drive technology research to provide the reference.. key words:variable frequency driving, plc, automatic speed control 中图分类号:f407.6 文献标识码:a 文章编号: 0引言随着我国地铁项目的日益发展,土压平衡型盾构机越来越多的被应用在城市地铁隧道的建设中,相比于传统的施工方法,盾构施工法具有不影响交通,安全性高,施工效率高,在软硬地层亦有较强的适应性,地表沉降易于控制,施工噪音小等优点,无疑是目前地铁隧道施工的首选方法,而盾构机掘进过程中刀盘转速的控制

国内外主要盾构机制造商一览

国内外主要盾构机制造商一览 2012年1月16日 12:31:33楼主股市直播室 操盘宝大赛盛装启航一码通24小时万三开户翻倍牛股涨停基因股本文属《建设机械技术与管理》独家向中国工程机械品牌网供稿,如需转载请注明来源和作者,违者必究! 国内: 上海隧道工程股份有限公司 是由上海城建集团控股的专门从事软土隧道施工的企业。隧道股份(600820,股吧)自1958年开始研制生产隧道施工装备以来,具有40余年的地下施工装备制造和大型成套设备安装的辉煌业绩和经验。与国际几大著名隧道装备企业有着广泛的合作和相互技术支持。2004年隧道股份研制成功中国第一台具有自主知识产权和国际先进水平的土压平衡式盾构机,并与国外联合制造出刀盘直径达15.43米的超大直径盾 构机。迄今为止,该公司通过合作制造和自主研制已累计生产了170多台隧道掘进机,承建了盾构法隧道550公里以上。 中铁隧道装备制造有限公司 原属于从事工程施工的中铁隧道集团有限公司,在使用掘进机进行隧道施工中积累了丰富经验,后独立成专业的以掘进机生产为主的装备制造公司。2009年底,中国中铁(601390,股吧)股份公司对内部盾构加工制造资源进行整合重组,以中铁隧道集团有限公司为依托,在郑州国家级经济技术开发区注册成立 了由中国中铁控股,中铁隧道集团、中铁科工集团参股的中铁隧道装备制造有限公司,成为中国中铁旗下 集研发制造、组装调试、营销租赁、售后服务为一体的隧道装备专业化制造公司。以盾构产业化为主线, 产品涉及盾构机及硬岩掘进机隧道模具及后配套产品、长大隧道施工运输设备等一系列隧道施工专用设备。 中国铁建重工集团有限公司公司 前身是中铁轨道系统集团有限公司,是中国铁建(601186,股吧)股份公司于2007年在长沙组建的集铁路轨道系统、城市轨道交通系列产品和重型施工装备研发、制造、施工、检测为一体的大型企业集团,集团下属的隧道装备公司具有年产刀盘直径12m以下土压平衡盾构机,泥水平衡盾构及硬岩掘进机等全端 面隧道掘进装备。 北方重工集团有限公司 由沈阳重型机械集团有限责任公司和沈阳矿山机械(集团)有限责任公司合并重组基础上组建的国有独资公司,自2005年开始介入盾构机制造领域其下属的盾构机分公司综合了维尔特和NFM公司的掘进机技术特点,可制造泥水平衡盾构机、土压平衡盾构机、复合式盾构机、敞开式硬岩掘进机、护盾式硬岩 掘进机、顶管机等隧道工程装备。 北京华隧通掘进装备有限公司 由秦皇岛天业通联(002459,股吧)重工股份有限公司于2008年出资设立,与日本日立造船株式会社、北京交通大学隧道中心和石家庄铁道大学机械工程分院合作,以日立造船的掘进机制造技术为依托, 从事隧道掘进装备及相关配套的科研、设计、产销、服务于一体的专业公司。该公司制造的目前国内地铁 最大的直径10.22m土压平衡盾构机已交付使用,用于北京14号线地铁试验段隧道施工。 中交天和机械设备制造有限公司 由中国交通建设股份有限公司的下属公司中交天津航道局有限公司和中和物产株式会社合资成立,2010年4月2日注册,公司位于江苏省常熟经济开发区高新技术产业园。 该公司专业从事盾构机、全断面硬岩掘进机的设计与制造,以及相关产品的维修、租赁、咨询和技术服务,可制造直径达16米的盾构机。 成都南车隧道装备有限公司

盾构机自动控制技术现状分析及展望

盾构机自动控制技术现状分析及展望 为了满足大众出行的基本需求,缓解地面交通拥挤状况,我国正在大力开发和兴建地下隧道、巷道工程。盾构机是地下工程中最常使用的一种机械设备,其主要使用在隧洞的开挖掘进环节,并且发揮着不可替代的作用。为了有效地避免地下施工作业的危机,盾构机目前趋向于自动化、智能化控制,可以说目前的盾构机是集信息、机电、自动控制与液压等技术为一体的新型智能化机械设备,不仅可以对土体进行挖掘、输送,还可以对施工进行导向指引和纠正偏差。近几年,我国正在大力推动盾构机自动控制技术的发展,但是实际施工中自动控制的盾构机还是离不开人员的操作,因此,需要进一步加强完善和优化。本文主要通过浅述盾构机自动控制技术的现状,从而根据现状分析情况来展望盾构机自动技术的未来发展。 标签:盾构机;自动控制技术;现状;展望 盾构机是用于隧道地下工程的重要机械设备,其对隧道地下挖掘工作有着极大的促进作用,因此,应该充分发挥盾构机的最大效益。由于地下施工环境相对恶劣,地下工程施工不仅难度大,并且危险系数高。为了保障地下工程施工人员的安全,应该大力投入自动控制技术盾构机的使用,通过先进技术和先进设备来有效地避免安全隐患,最大限度地提升挖掘作业的效率。 1、盾构机自动控制技术现状分析 1.1位姿控制 通过控制液压缸的平衡来实现对盾构机的位姿控制,20世纪80年代,盾构机的位姿控制不仅建立了特定的控制模型,还积极引入了卡尔曼滤波理论的应用,此后,中外专家和研究学者投入到对盾构机位姿控制的深入研究当中。李慧平等专家在传统盾构机控制系统的基础之上,对模糊控制器的设计方案导入了“先分后合”的理念,这样可以有效地提高控制器的调节性能。然后,盾构机位姿控制系统还引入了LabVIEW技术的应用,并且在模糊控制器的基础上研究出千斤顶纠偏控制量,从而有效地推动盾构机进入自动化的发展潮流中。 1.2管片的自动拼装 传统的手动管片拼装存在着许多缺陷,因此,应该大力推动自动管片拼装的发展,不仅可以减少施工工序,还可以提高施工的精确性和效率度。20世纪80年达,日本是最开始研究自动管片拼装的国家,此后,各国纷纷进入自动管片拼装技术研究。国际隧道协会专门为隧道管片的拼装建立了相关设计机制,目前,发达国家已经全面进入了管片自动拼装的时代,通过机器人动态模型来协助管片全自动拼装的过程。 1.3盾构机掘进系统的自动控制

盾构机各系统原理浅析

盾构机各系统原理浅析 本文针对分析海瑞克EPB土压平衡盾构机的各个系统及其工作原理,及整个盾构施工介绍。 海瑞克盾构机由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。 1盾构机的工作原理 1.1盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 1.2掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持

从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人 泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 1.3管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400 kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 2.1盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸

浅谈盾构机电气系统组成及故障分析处理

浅谈盾构机电气系统组成及故障分析处理 发表时间:2016-07-27T13:40:54.730Z 来源:《基层建设》2016年10期作者:张放 [导读] 对TM502WMM盾构机电气控制系统进行概述,并分别对其配电系统、可编程控制系统、通讯控制系统和常见故障处理等进行介绍。 中国石油天然气管道局第四工程分公司河北廊坊 065000 摘要:对TM502WMM盾构机电气控制系统进行概述,并分别对其配电系统、可编程控制系统、通讯控制系统和常见故障处理等进行介绍,以加深对其整个电气控制系统原理的理解。 关键词:泥水平衡盾构机、电气系统、供配电、PLC、故障排查。 摘要:Overview of TM502WMM shield machine electrical control system,and its power distribution system,programmable control systems,communications,control systems and common faults are introduced,in order to deepen their understanding of the principle of the entire electrical control system. 关键词:slurry shield machine,electrical systems,power supply and distribution,PLC,communication control,troubleshooting. 1、盾构机系统构成 盾构机电气系统组成主要包括:高压供电系统、低压配电、PLC自动控制系统、计算机数据采集系统、机械液压系统控制、驱动系统、冷却水水循环系统、泥水循环系统等。 2、盾构机供配电系统组成 盾构机的初级电压为10kV,二级电压为AC 400V×50Hz,AC 220V×50Hz、AC110V×50Hz;控制电压使用DC 24V、AC 110V;TM502WMM主变压器采用油浸式、水冷并配有液位、温度、气体传感装置。 4、PLC系统的组成 盾构机是一个机、电、液一体化的自动化隧道挖掘施工机械,是自动化、流程化的大型联动机。由于其控制环节多,工序复杂,并且相互关联,相互影响,为了保障盾构机工作的高度可靠性、安全性和易维护性,其控制系统采用了PLC可编程控制系统。 4.1、PLC概念和工作原理 PLC(Programmable logic Controller),是以计算机技术为基础的具备专门为在工业环境下应用而设计的数字运算操作的电子装置。PLC内部等效电路可分为:输入部分、内部控制电路和输出部分。 4.2、TM502WMMPLC特点 TM502WMM盾构机控制系统构成采用三菱公司的Q系列,Q系列PLC的基本组成包括电源模块、CPU模块、基板、I/O模块等。通过各种功能模块可提高PLC的性能,扩大PLC的应用范围。系统功能强、可靠性高、抗震性能好、编程容易、修改方便、扩充维修容易等一系列优点。 5、盾构机通讯控制系统组成 盾构机通讯控制系统分部如图所示,主要控制站点分为主控站,泥水控制主站和1#中继站。 主站主要功能是通过以太网模块与个人计算机和手触屏等人机设备进行通讯;通过CC-Link模块与操作盘和各个从站连接控制;通过H 网模块与泥水处理站组成MELSECNET/H网络,对盾构机内传感器、变频器、电磁阀、状态量开关等信号进行处理实现对盾构机的控制。各个从站如上图分布在盾构机的关键部位,对盾构机的信号处理和自动控制起着关键作用。 6、盾构机故障在线实时查询和故障诊断 一般情况下,通过人机界面故障报警可解决绝大部分电气、液压故障,但遇到联锁关系复杂故障人机界面的报警不能直接反应其故障的本质,需要借助于编程软件才能快速查找和确定故障。使用编程器可以快速查询故障信息的部位和相关信息状态,分析内部联锁关系,修改和优化程序(如临时短接某个条件、强制位置)等,利用编程器可以实现在线修改。 7、盾构机电气系统维护保养 盾构机常使用的电气元件包括接近开关、压力传感器、温度传感器、液位传感器等,常使用在环境比较恶劣的场所,需要注意对其的保养。当盾构机出现故障时,判断和处理故障的一般流程为先简后繁,由内而外;先检查电源,再检查外部线路;多熟悉图纸不能盲目。参考文献: [1]小松TM502WMM盾构机使用说明书 [2]江文,许慧中主编.《供配电技术》.北京:机械工业出版社,2005.1 [3]陈刚.电力变压器典型故障及其演变.东北电力技术,2002,(9):5-8. [4]梁玉国,李秋华可编程控制器 [M].北京:科学出版社,2009。 [5]王文义可编程控制器原理及应用 [M].北京:科学出版社,2010。 作者简介: 张放(1983-),男,2006年河北建筑工程学院毕业,大专,助理工程师,从事电气系统调试和维护

盾构机笔试题库

中铁装备盾构相关试题题库 (一)填空题 1.中铁装备盾构机电气控制系统的5个分布式IO站点分别位于盾构的、、、、、、等部位。 (TC5 TC3 TC2 TC1 DTL DTR ) 2. ET200M地址拨动开关拨动以进制数编码。( 二进制) 3. 中铁装备盾构机皮带机减速机电气刹车模块的电压等级是。(380V) 4. 中铁装备盾构机皮带机的控制盒渣车满将限制的运行。 (螺机旋转) 5.当前我们普遍采用的380VAC三相四线制供电,两相之间的电压是V,我们称作 电压,其相线与零线之间的电压是V。(380、线电压、220) 6.内循环水是个闭式系统,可以防止影响系统的运行。(结水垢) 7.系统中产生感性无功功率的元件主要是,补偿无功功率应在供电回路中并联。(电感、电容) 8.油箱油温传感器的电信号通常是。(4-20mA电流) 9. S7-400 PLC系统的主PLCCPU上部BF1灯亮红色是指。(BUS总线1故障) 10. S7-400 PLC系统的主PLCCPU下部的三位开关处的MRES是指对PLC进行操作。(清除程序) 11. 中铁装备盾构机的电气控制系统现场总线采用总线,PLC与上位机的通讯采用。(profibus、以太网) 12,PLC常用的编程语言是、、。(梯形图、功能块图、语句表等) 13.设备出现异常时操作台将发出蜂鸣提示音并在上位机的界面显示故障信息,操作司机按下按钮后蜂鸣提示音消除,在以后报警信息将消失,但是在中可以查到出现过的故障信息,方便检修人员进行检修。(报警页面、复位、故障消除、报警历史) 14.中铁装备盾构机操作台泵的单按钮启停控制中,绿灯快速闪烁表示系统处于状态,绿灯慢速闪烁表示泵处于,绿灯常亮表示正常运行。(故障启动过程中) 15.盾构机驱动电机常采用的调速方法是。主要是通过改变来改变电机的转速。(变频调速、供电频率) 16.中铁装备液驱盾构机变压器是式变压器,电驱盾构常采用变压器。(油浸式、干式) 17、主控制主要有、、、仿形刀、膨润土等部分的控制。(推进系统主驱动系统盾尾油脂密封) 18.中铁装备盾构机泡沫注入分、、三种模式。(手动、半自动及自动)

盾构机操作及参数控制

盾构机操作及参数控制 目前,住总集团大多采用德国海瑞克盾构机、日本小松及日立盾构机,现就其小松盾构机操作情况及参数控制作如下总结: 1 开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查测量导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示技术负责人并记录有关盾构掘进所需要的相关参数,如掘进模式,土仓保持压力,线路数据,注浆压力等; 16)请示设备机修负责人并记录有关盾构掘进的设备参数; 17)若需要则根据技术负责人和设备机修负责人的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式;

4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理; 5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 根据测量系统面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; 选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在 2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 慢慢开启螺旋输送机的后门; 启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据 ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则; 2) 如果开挖地层有一定的自稳性而采用半敞开式掘进,则注意调节螺旋输送机的转速,使土仓内保持一定的渣土量,一般约保持 2/3左右的渣土。

相关文档
最新文档