高考物理必考模型解题(初阶模型)

高考物理必考模型解题(初阶模型)
高考物理必考模型解题(初阶模型)

高中物理模型解题

题型归类

一、刹车类问题

匀减速到速度为零即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间。如果问题涉及到最后阶段(到速度为零)的运动,可把这个阶段看成反向、初速度为零、加速度不变的匀加速直线运动。

【题1】汽车刹车后,停止转动的轮胎在地面上发生滑动,可以明显地看出滑动的痕迹,即常说的刹车线。由刹车线长短可以得知汽车刹车前的速度的大小,因此刹车线的长度是分析交通事故的一个重要依据。若汽车轮胎跟地面的动摩擦因数是0.7,刹车线长是 14m,汽车在紧急刹车前的速度是否超过事故路段的最高限速50km/h?

【题2】一辆汽车以72km/h速率行驶,现因故紧急刹车并最终终止运动,已知汽车刹车过程加速度的大小为5m/s2,则从开始刹车经过5秒汽车通过的位移是多大

【题3】汽车以20m/s的速度做匀速直线运动. 某时刻关闭发动机而做匀减速运动,加速度大小为5m/s2,则它关闭发动机后通过37.5m所需的时间为:

A、2s;

B、3s;

C、4s;

D、5s .

二、类竖直上抛运动问题

物体先做匀加速运动,到速度为零后,反向做匀加速运动,加速过程的加速度与减速运动过程的加速度相同。此类问题要注意到过程的对称性,解题时可以分为上升过程和下落过程,也可以取整个过程求解。

【题1】一滑块以20m/s滑上一足够长的光滑斜面,已知滑块加速度的大小为5m/s2,则经过5秒滑块通过的位移是多大?

【题2】物体沿光滑斜面匀减速上滑,加速度大小为4m/s2,6s后又返回原点。那么下述结论正确的是() A物体开始沿斜面上滑时的速度为12m/s B物体开始沿斜面上滑时的速度为10m/s

C物体沿斜面上滑的最大位移是18m D物体沿斜面上滑的最大位移是15m

【题3】一物体以恒定的加速度做匀变速直线运动,已知加速度大小恒为5m/s2,初速度大小为20m/s,且加速度方向与初速度方向相反,则该物体通过位移为37.5m所需的时间可能为:

A、2s;

B、3s;

C、4s;

D、5s .

三、追及相遇问题

两物体在同一直线上同向运动时,由于二者速度关系的变化,会导致二者之间的距离的变化,出现追及

即抓住:“两物体同时出现在空间上的同一点。分析方法有:物理分析法、极值法、图像法。常见追及模型有两个:速度大者(减速)追速度小者(匀速)、速度小者(初速度为零的匀加速直线运动)追速度大者(匀速)、

1、速度大者(减速)追速度小者(匀速):(有三种情况)

(1)速度相等时,若追者位移等于被追者位移与两者间距之和,则恰好追上。

【题1】汽车正以10m/s的速度在平直公路上前进,发现正前方有一辆自行车以4m/s的速度同方向做匀速直线运动,汽车应在距离自行车多远时关闭油门,做加速度为6m/s2的匀减速运动,汽车才不至于撞上自行车?

(2)速度相等时,若追者位移小于被追者位移与两者间距之和,则追不上。(此种情况下,两者间距有最小值)

【题2】一车处于静止状态,车后距车S0=25m处有一个人,当车以1m/s2的加速度开始起动时,人以6m/s的速度匀速追车。问:能否追上?若追不上,人车之间最小距离是多少?

(3)速度相等时,若追者位移大于被追者位移与两者间距之和,则有两次相遇。(此种情况下,两者间距有极大值)

【题3】甲乙两车在一平直的道路上同向运动,图中三角形OPQ和三角形OQT的面积

分别为S1和S2(S2>S1).初始时,甲车在乙车前方S0处()

A.若S0=S1+S2,两车不相遇

B.若S0

C.若S0=S1两车相遇1次

D.若S0=S2两车相遇1次

2、速度小者(初速度为零的匀加速直线运动)追速度大者(匀速)。(此种情况下,

两者间距有最大值)

【题4】质点乙由B点向东以10m/s的速度做匀速运动,同时质点甲从距乙12m远处西侧A点以4m/s2的加速度做初速度为零的匀加速直线运动.求:

⑴两者间距何时最大?最大间距是多少?

⑵甲追上乙需要多长时间?此时甲通过的位移是多大?

【小结】追及问题中,由于涉及两个质点的运动,所以运动过程示意图和速度图像要配合使用。运动过程示意图的优点是能很容易表示0时刻的间距,缺点是难以表示两个质点从不同时刻开始运动的信息;速度图像

【练习1】如图所示,A 、B 两物体相距s=7m,物体A 以v A =4m/s 的速度向右匀速运动,而物体B 此时的速度v

B =10m/s,只在摩擦力作用下向右做匀减速运动,加速度a=-2 m/s 2,那么物体A 追上物体B 所用的时间为( ) A.7 s

B.8 s

C.9 s

D.10 s

【练习2】t=0时,甲、乙两汽车从相距70km 的两地开始相向行驶,它们的v t 图象如图所示。忽略汽车掉头所需时间。下列对汽车运动状况的描述正确的是( )

A.在第1小时末,乙车改变运动方向

B.在第2小时末,甲、乙两车相距10km

C.在前4小时内,乙车运动加速度的大小总比甲车的小

D.在第4小时末,甲、乙两车相遇

【练习3】一小轿车在一路口掉头行驶,速度为v=5m/s,这时轿车司机发现后面有一货车高速驶来,其速度为v'=20m/s,两者间的距离为L=30m 。如果此时货车以a'=0.25m/s 2的加速度减速,为避免相撞,轿车至少应以多大的加速度行驶?

【练习4】A 、B 两列火车,在同一轨道上同向行驶,A 车在前,其速度v A =10m/s,B 车在后,速度v B =30m/s,因大雾能见度很低,B 车在距A 车x 0=75m 时才发现前方有A 车,这时B 车立即刹车,但B 车要经过180m 才能停下来。 (1)B 车刹车时A 仍按原速率行驶,两车是否会相撞?

(2)若B 车在刹车的同时发出信号,A 车司机经过Δt=4s 收到信号后加速前进,则A 车的加速度至少多大才能避免相撞?

四、共点力的平衡 1、静态平衡问题:

对研究对象进行受力分析,根据牛顿第一定律列方程求解即可。主要分析方法有:力的合成法、力按效果分解、力按正交分解、密闭三角形。

【题1】一个半球的碗放在桌上,碗的内表面光滑,一根细线跨在碗口,线的两端分别系有质量为m1,m2的小球,当它们处于平衡状态时,质量为m1的小球与O 点的连线与水平线的夹角为37°。求两小球的质量比值。

【题2】如图,重物的质量为m ,轻细线AO 和BO 的A 、B 端是固定的。平衡时AO 是水平的,BO 与水平面的夹角为θ。AO 的拉力F 1和BO 的拉力F 2的大小是( ) A. θcos 1mg F = B. θcot 1mg F = C. θsin 2mg F = D. θ

sin 2mg

F =

【题3】如图所示,质量为m 的两个球A 、B 固定在杆的两端,将其放入光滑的半圆形碗

中,杆的长度等于碗的半径,当杆与碗的竖直半径垂直时,两球刚好能平衡,则杆对小球的作用力为( )

A.33mg

B.233mg

C.3

2mg D.2mg 2、动态平衡问题:

此类问题都有一个关键词,“使物体缓慢移动……”,因此物体在移动过程中,任意时刻、任意位置都是平衡的,即合外力为零。分析方法有两类:解析法和图解法,其中图解法又有矢量三角形分析法、动态圆分析法、相似三角形分析法。 (1)解析法:

找出所要研究的量(即某个力)随着某个量(通常为某个角)的变化而变化的函数解析式。通过函数的单调性,研究该量的变化规律。

【题1】如图所示,水平直杆上套AB 两个质量为m 的小环,通过长度相等的OA 、OB 两轻质细绳悬挂质量为M 的物体,A 、B 相对杆静止,现将小环A 向左移动少许,环A 、B 依然与杆保持相对静止,则: (1)OA 绳中的张力如何变化? (2)小环A 受到的摩擦力如何变化? (3)小环A 受到的支持力如何变化?

摩擦均不计,如果绳一端由Q点缓慢地向左移到P点,整个系统重新平衡后,物体A的高度和两滑轮间绳与水平方向的夹角θ变化的情况是?

(2)图解法(有三种情况):

①矢量三角形分析法:

物体在三个不平行的共点力作用下平衡,这三个力必组成一首尾相接的三角形。用这个三角形来分析力的变化和大小关系的方法叫矢量三角形法,它有着比平行四边形更简便的优点,特别在处理变动中的三力问题时能直观的反映出力的变化过程。

【题2】如图所示,绳OA、OB等长,A点固定不动,将B 点沿圆弧向C点运动的过程中

绳OB中的张力将()

A、由大变小;

B、由小变大

C、先变小后变大

D、先变大后变小

②动态圆分析法:

当处于平衡状态的物体所受的三个力中,某一个力的大小与方向不变,另一个力的大小不变时,可画动态圆分析。

【题3】质量为m的小球系在轻绳的下端,现在小球上施加一个F=mg/2的拉力,使小球偏离原

位置并保持静止则悬线偏离竖直方向的最大角度θ为。

③相似三角形分析法:

物体在三个共点力的作用下平衡,已知条件中涉及的是边长问题,则由力组成的矢量三角形和由边长组成的几何三角形相似,利用相似比可以迅速的解力的问题。

【题4】如图所示,绳与杆均轻质,承受弹力的最大值一定,A端用铰链固定,滑轮在A

点正上方(滑轮大小及摩擦均可不计),B端吊一重物。现施拉力F将B缓慢上拉(均未

断),在AB杆达到竖直前()

A.绳子越来越容易断, B.绳子越来越不容易断,

C.AB杆越来越容易断, D.AB杆越来越不容易断。

【补充】活杆和死杆活结与死结:

物体的平衡问题中,常常遇到“活杆杆和死杆活结与死结”的问题,我们要明确几个问题:①活杆上的弹力必须沿着杆子的方向,死杆上的弹力可以按需供给;②活结两边的绳子上的张力一定相同,死结两边的绳子上的张力可以不同;③活杆配死结,死杆配活结。

【注意】解析法是解决动态平衡问题的一般方法,图解法只能解决一些特殊的问题。

五、牛顿第二定律的瞬时性

F=ma中,加速度与力是瞬时对应关系。常见模型有两个。

变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。

2、轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。 【解决此类问题的基本方法】:

(1)分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律); (2)分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳或弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失); (3)求物体在状态变化后所受的合外力,利用牛顿第二定律 ,求出瞬时加速度。

【题1】如图所示,小球 A 、B 的质量分别 为m 和 2m ,用轻弹簧相连,然后用细线悬挂而静止。求:

(1)在剪断弹簧的瞬间,A 和 B 的加速度各为多少? (2)在剪断绳子的瞬间,A 和 B 的加速度各为多少?

【题2】如图,物体B 、C 分别连接在轻弹簧两端,将其静置于吊篮A 中的水平底板上,已知A 、B 、C 的质量都是m ,重力加速度为g ,那么将悬挂吊篮的细线烧断的瞬间,A 、B 、C 的加速度分别为多少?

【题3】如图所示,一质量为m 的物体系于L1 、L2上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态。

(1)在图(1)中,将L2线剪断,求剪断瞬时物体的加速度? (2)在图(1)中,将L1线剪断,求剪断瞬时物体的加速度? (3)在图(2)中,将L1线剪断,求剪断瞬时物体的加速度? (4)在图(2)中,将L2线剪断,求剪断瞬时物体的加速度? 图1

B A 8题图

【题6】如图5所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为多少?

【题7】如图所示,竖直光滑杆上套有一个小球和两个弹簧,两弹簧的一端各与小球相连,另一端用销钉M、N固定于杆上,小球处于静止状态,设拨去销钉M瞬间,小球加速度a的大小为12m/s2,若不拨去销钉M而拨去销钉N瞬间,小球的加速度可能是()

A.22m/s2,竖直向上

B.22m/s2,竖直向下

C.2m/s2,竖直向上

D.2m/s2,竖直向下

六、动力学两类基本问题

解决动力学问题的关键是想方设法求出加速度。

1、已知受力求运动情况

【题1】将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体( )

A.刚抛出时的速度最大

B.在最高点的加速度为零

C.上升时间大于下落时间

D.上升时的加速度等于下落时的加速度

【题2】质量为m=2kg的小物块放在倾角为θ=370的斜面上,现受到一个与斜面平行大小为F=30N的力作用,由静止开始向上运动。物体与斜面间的摩擦因数为μ=0.1,求物体在前2s内发生的位移是多少?

【题3】某人在地面上用弹簧秤称得体重为490N.他将弹簧秤移至电梯内称其体重,t0至t3时间段内,弹簧秤的示数如图3-3-4所示,电梯运行的v-t图可能是(取电梯向上运动的方向为正)( )

2、已知运动情况求受力

【题1】总重为8t的载重汽车,由静止起动开上一山坡,山坡的倾斜率为0.02(即每前进100m上升2m),在行驶100m后,汽车的速度增大到18km/h,如果摩擦阻力是车重的0.03倍,问汽车在上坡时的平均牵引力有多大?

M

N

【题2】升降机由静止开始上升,开始2s 内匀加速上升8m, 以后3s 内做匀速运动,最后2s 内做匀减速运动,速度减小到零.升降机内有一质量为250kg 的重物,求整个上升过程中重物对升降机的底板的压力,并作出

升降机运动的v -t 图象和重物对升降机底板压力的F -t 图象.(g 取10m/s 2

)

【题3】如图甲所示。用一水平外力F 拉着一个静止在倾角

为θ的光滑斜面上的物体。逐渐增大F,物体做变加速运动,其加速度a 随外力F 变化的图象如图乙所示,若重力加速度

g 取10 m/s 2

,根据图乙中所提供的信息不能计算出( )

A.斜面的倾角

B.加速度为2 m/s 2时物体所受的合外力

C.物体静止在斜面上所施加的最小外力

D.加速度为4 m/s 2时物体的速度

【小结】无论是哪种动力学问题,最关键的是求出加速度,然后由力学规律求出某个与力有关的物理量,或者由运动学规律求出某个与运动有关的物理量。

【练习1】如图所示绘出了轮胎与地面间的动摩擦因数分别为μ1和μ2时,紧急刹车时的刹车痕(即刹车距离s)与刹车前车速v 的关系曲线,则μ1和μ2的大小关系为( )

A.μ1<μ2

B.μ1=μ2

C.μ1>μ2

D.条件不足,不能比较

【练习2】如图,倾斜索道与水平方向夹角为θ(tgθ=3/4),当载人车厢匀加速向上运动时,人对厢底的压力为体重的1.25倍,这时人与车厢相对静止,那么车厢对人的摩擦力是体重的:

A 、

41倍 B 、45

倍 C 、

31倍 D 、3

4倍 【练习3】为了研究鱼所受水的阻力与其形状的关系,小明同学用石蜡做成两条质量均为m 、形状不同的“A

鱼”和“B 鱼”,如图所示。在高出水面H 处分别静止释放“A 鱼”和“B 鱼”,“A 鱼”竖直下潜h A 后速度减为零,“B 鱼”竖直下潜h B 后速度减为零。“鱼”在水中运动时,除受重力外,还受浮力和水的阻力。已知“鱼”在水中所受浮力是其重力的倍,重力加速度为g,“鱼”运动的位移值远大于“鱼”的长度。假设“鱼”运动时所受水的阻力恒定,空气阻力不计。求:

(1)“A 鱼”入水瞬间的速度v A1; (2)“A 鱼”在水中运动时所受阻力f A ;

(3)“A 鱼”与“B 鱼”在水中运动时所受阻力之比f A ∶f B 。

【练习4】在倾斜角为θ的长斜面上,一带有风帆的滑块从静止开始沿斜面

下滑,滑块(连同风帆)的质量为m,滑块与斜面间的动摩擦因数为μ,风帆

受到的沿斜面向上的空气阻力与滑块下滑的速度大小成正比,即F f=kv。滑

块从静止开始沿斜面下滑的v t图象如图所示,图中的倾斜直线是t=0时刻

速度图线的切线。

(1)由图象求滑块下滑的最大加速度和最大速度的大小。

(2)若m=2 kg,θ=37°,g=10 m/s2,求出μ和k的值。

七、斜面模型中的动力学问题

在物理力学实验中,经常要平衡摩擦力,而平衡摩擦力的问题就是动力学问题。主要注意以下三点:1、分清是光滑斜面还是粗糙斜面,2、注意动摩擦因数μ与斜面倾角的正切tanθ的关系,3、注意正交分解。

【题1】放在固定斜面上的物块沿斜面匀速下滑,若在物体上再施加一竖直向下的恒力F,则( )

A.物块将仍匀速下滑

B.物块将加速下滑

C.物块将减速下滑

D.无法确定

【题2】上题图中,放在固定斜面上的物块以加速度a沿斜面匀加速下滑,若在物体上再施加一竖直向下的恒力F,则( )

A.物块可能匀速下滑

B.物块仍以加速度a匀加速下滑

C.物块将以大于a的加速度匀加速下滑

D.物块将以小于a的加速度匀加速下滑

【题3】在“探究物体的加速度与小车质量的关系”实验中,平衡过小车与长木板间的摩擦力后,如果改变小车的质量,是否要重新平衡摩擦力?为什么?

八、受力情况与运动状态一致的问题

物体的受力情况必须符合它的运动状态,故对物体受力分析时,必须同步分析物体的运动状态,若是物体处于平衡状态,则F合=0;若物体有加速度a,则F合=ma,即合力必须指向加速度的方向。

【题1】如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断中,正确的是( )

A. 小车静止时,F=mgsinθ, 方向沿杆向上

B. 小车静止时,F=mgcosθ方向垂直杆向上

C. 小车向右以加速度a运动时,一定有F=ma/sinθ

D. 小车向左以加速度a运动时,2

2)

F+

=,方向斜向左上方

ma

(mg

(

)

【题2】若将上题中斜杆换成细绳,小车以加速度a向右运动,求解绳子拉力的大小及方向。

【题3】若杆与小车通过铰链连接,杆对球的作用力大小和方向又将如何。

【题4】一斜面上有一小车,上有绳子,绳子另一端挂一小球,请问在以下四种

情况下,小车的加速度,以及悬线对小球拉力的大小?(其中2为竖直方向,1、

3与竖直方向成θ角,4与竖直方向成2θ)。

【题5】一箱苹果在倾角为θ的斜面上匀速下滑,已知箱子与斜面间的动摩擦因数为μ,在下滑过程中处于箱子中间的质量为m的苹果受到其他苹果对它的作用力大小和方向为( )

A.mgsin θ沿斜面向下 C.mg 竖直向上

B.mgcos θ垂直斜面向上 D.mg 沿斜面向上

九、运动物体的分离问题

⑴ 原来是挤压在一起的两个物体,当两者间的相互挤压力(弹力)减小到零时,物体即将发生分离;所以,两物体分离的临界情况是①挤压力减为零,但此时两者的②加速度还是相同的,之后就不同从而导致相对运动而出现分离;因此,解决问题时应充分利用①、②这两个特点。

⑵物体分离问题的物理现象变化的特征物理量是两物体间的相互挤压力(弹力)。

⑶如何论证两物体间是否有挤压力:假设接触在一起运动的前后两物体间没有挤压力,分别运算表示出前后两者的加速度。若a 后>a 前,则必然是后者推着前者运动,两者有挤压力;若a 后≤a 前,则前者即将甩开后者(分离),两者没有挤压力。 【题1】如图,光滑水平面上放置紧靠在一起的A 、B 两个物体,m A =3kg ,m B =6kg ,推力F A 作用于A 上,拉力F B 用于B 上,F A 、F B 大小均随时间而变化,其规律分别为F A =(9 - 2 t)N ,F B =(2

+ 2 t)N ,求:⑴A 、B 间挤压力F N 的表达式;⑵从t =0开始,经多长时间A 、B

相互脱离?

【题2】如图,一根劲度系数为k 、质量不计的轻弹簧,上端固定、下端系一质量为m 的物体,有一水平板将

物体托住,并使弹簧处于自然长度。现手持水平板使它由静止开始以加速度a (a

【题3】如图,在倾角为θ的光滑斜面上端系一劲度系数为k 的轻弹簧,弹簧下端连有一质量为m 的小球,球被一垂直于斜面的挡板挡住,此时弹簧没有形变。若手持挡板以加速度a (a

十、传送带问题

1、水平传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。

A B F A F B

θ

传送带对行李的滑动摩擦力使行李开始做匀加速运动。随后它们保持相对静止,行李随传送带一起前进。 设传送带匀速前进的速度为0.25m/s ,把质量为5kg 的木箱静止放到传送带上,由于滑动摩擦力的作用,木箱以6m/s2的加速度前进,那么这个木箱放在传送带上后,传送带上将留下一段多长的摩擦痕迹?

2、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只要物体与传送带之间的滑动摩擦系数μ≥tan θ,那么物体就能被向上传送。此时物体可能经历两个过程——匀加速运动和匀速运动。 【题2】如图2—4所示,传送带与地面成夹角θ=37°,以10m/s 的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A →B 的长度L=50m ,则物体从A 到B 需要的时间为多少?

3、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的顶端,物体被向下传送。此时物体肯定要经历第一个加速阶段,然后可能会经历第二个阶段——匀加速运动或匀速运动,这取决于μ与tan θ的关系(有两种情况)。 (1)当μ﹤tan θ时,小物体可能经历两个加速度不同的匀加速运动;

【题3】如图2—1所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少?

(2)当μ≥tan θ时,小物体可能做匀加速运动,后与传送带保持相对静止,做匀速直线运动。 【题4】如图2—2所示,传送带与地面成夹角θ=30°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.6,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少?

十一、牛顿第二定律在系统中的应用问题

1、当物体系中的物体保持相对静止,以相同的加速度运动时,根据牛顿第二定律可得:F 合外=(m 1+m 2+m 3+……m n )a ,

【题

1】如图所示,质量为M 的斜面A 置于粗糙水平地面上,动摩擦因数为μ,

物体B 与斜面间无摩擦。在水平向左的推力F 作用下,A 与B 一起做匀加速直线运动,两者无相对滑动。已知斜面的倾角为θ,物体B 的质量为m ,则它们的加速度a 及推力F 的大小为( )

A. )sin ()(,sin θμθ++==g m M F g a

B. θθcos )(,cos g m M F g a +==

C. )tan ()(,tan θμθ++==g m M F g a

D. g m M F g a )(,cot +==μθ

【题2】如图所示,质量相同的木块A 、B ,用轻质弹簧连接处于静止状态,现用水平恒力推木块A ,则弹簧在第一次压缩到最短的过程中( )

A .A 、

B 速度相同时,加速度a A = a B B .A 、B 速度相同时,加速度a A >a B

C .A 、B 加速度相同时,速度υA <υB

D .A 、B 加速度相同时,速度υA >υB

【题3】如图所示,在光滑的水平面上平放着外壳质量为m1的弹簧秤,不计质量的轻弹簧与质量为m2的小滑块相连。现用水平恒力F 拉弹簧,则稳定时弹簧秤的示数为 A .F B .

2

11m m F

m +

C .

212m m F

m + D .2

112)(m m F m m +-

【题4】如图所示,木块A 质量为1 kg ,木块B 的质量为2 kg ,叠放在水平地面上,AB 间最大静摩擦力为1N ,B 与地面间摩擦系数为0.1,今用水平力F 作用于B ,则保持AB 相对静止的条件是F 不超过 A 、3N B 、4N C 、5N D 、6N

【题5】物体A 、B 叠放在粗糙的水平桌面上,水平外力F 作用在B 上,使A 、B 一起沿水平桌面向右做加速直线运动。设A 、B 间的摩擦力为f 1,B 与水平桌面间的摩擦力为f 2,若水平外力F 逐渐增大,但A 、B 仍保持相对静止,则摩擦力f 1和f 2的大小变化情况是( ) A.f 1不变,f 2变大

B.f 1变大,f 2不变

B

θ

A

F F

A B

C.f 1和f 2都变大

D.f 1和f 2都不变

【题6】如图所示,在光滑的水平面上叠放着两木块A 、B ,质量分别是m 1和m 2,A 、B 间的动摩擦因数为μ,若要是把B 从A 下面拉出来,则拉力的大小至少满足( ) A .)(21m m g F +?μ B .)(21m m g F -?μ C .1gm F μ? D .2gm F μ?

2、当物体系中其它物体都保持平衡状态,只有一个物体有加速度时,系统所受的合外力只给该物体加速。即F 合外=m 1a ,

【题1】如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定一个质量为m 的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为:( ) A.g B.

m m M - g C.0 D. m

m

M +g 【题2】如图,一只质量为m 的小猴抓住用绳吊在天花板上的一根质量为M 的竖直杆。当

悬绳突然断裂时,小猴急速沿杆竖直上爬,以保持它离地面的高度不变。则杆下降的加速度为( )

A. g

B.

g M m C.g M M m + D.g M

m M - 【题3】一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质

量为M ,环的质量为m ,如图所示,已知环沿杆以加速度a (a

【题4】质量为M ,倾角为θ的斜劈放在粗糙的水平面上,质量为m 的滑块放在斜面顶端,当滑块沿斜面下滑的加速度为a 时,斜劈静止在地面上。 求:(1)地面对斜劈的支持力和摩擦力?

(2)地面与斜劈之间的动摩擦因数的最小值是多少?

2-8 M

m

F

B

A

3、当物体系中所有物体都保持平衡状态时,系统所受的合外力为零。

【题1】两刚性球a和b的质量分别为m a和m b,直径分别为d a和d b(d a>d b).将a、b球依次放入一竖直放置、内径为d(d a<d<d a+d b)的平底圆筒内,如图3所示.设a、b两球静止时对圆筒侧面的压力大小分别为F N1和F N2,筒底所受的压力大小为F.已知重力加速度大小为g. 若所有接触都是光滑的,则( )

A.F=(m

a+m b)g,F N1=F N2 B.F=(m a+m b)g,F N1≠F N2

C.m a g<F<(m a+m b)g,F N1=F N2

D.m a g<F<(m a+m b)g,F N1≠F N2

【题2】质量为M,倾角为θ的斜劈放在粗糙的水平面上,质量为m的滑块放在斜面顶端,与斜

面间的动摩擦因数为μ1,现用水平力F推滑块,滑块与斜劈始终保持相对静止,而且斜劈始终

静止在地面上。

求:(1)地面对斜劈的支持力和摩擦力?

(2)地面与斜劈之间的动摩擦因数μ2满足什么关系。

十二、运动的合成与分解

1、关联速度问题

牵连运动问题中的速度分解,有时往往成为解某些综合题的关键。处理这类问题应从实际情况出发,牢牢抓住——实际运动就是合运动。作出合速度沿绳或杆方向上的分速度,即为牵连速度。

【题1】如图1-1所示,在水面上方高20m处,人用绳子通过定滑轮将水中的小船系住,并以3 m/s的速度将绳子收短,开始时绳与水面夹角30°,试求:

(1)刚开始时小船的速度;

(2)5秒末小船速度的大小。

【题2】质量为M和m的两个小球由一细线连接(M>m),将M置于半径为R的光滑球形容器上口边缘,从静止释放(如图所示),求:

(1)当M滑至容器底部时两球的速度大小(两球在运动过程中细线始终处于绷

紧状态);

(2)下滑过程中绳的拉力对M做的功。

2、小船过河问题

处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。 (1)过河时间最短问题:

在河宽、船速一定时,在一般情况下,渡河时间θ

υυsin 1

船d

d

t =

=

,显然,当?=90θ时,即船

头的指向与河岸垂直,渡河时间最小为

v

d

,合运动沿v 的方向进行。 【题1】在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) A .

21

222

υ

υυ-d B .0 C .

2

1

υυd D .

1

2

υυd

【题2】民族运动会上有一个骑射项目,运动员骑在奔驰的马背上,弯弓放箭射击侧向的固定目标.若运动员骑马奔驰的速度为v 1,运动员静止时射出的弓箭的速度为v 2,直线跑道离固定目标的最近距离为d ,要想在最短的时间内射中目标,则运动员放箭处离目标的距离应该为( ) A .

2

22

21dv v v - B .

2

2

212

d v v v + C .

12dv v D .2

1

dv v (2)过河位移最小问题:

①若水船υυ>,则应使船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游

的角度为船

υυθ=cos 。(亦可理解为:v 船的一个分量抵消水流的冲击,另一个分量使船

过河)

②若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,(用动态圆分析)设船头v 船与河岸成θ角。合速度v 与河岸成α角。可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,

v

v

θ

v v 水

θ v α

A B

E v 船

根据水

船v v =θ

c o s 船头与河岸的夹角应为水

船v v arccos

=θ,船沿河漂下的最短距离为:

θθs i n )c o s (m i n 船船水v d v v x ?

-=此时渡河的最短位移:船

水v dv d

s ==θcos

【题3】河宽d =60m ,水流速度v1=6m /s ,小船在静水中的速度v2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?

3、平抛、类平抛问题 (1)平抛、类平抛问题

将运动分解为初速度方向的匀速直线运动和垂直于初速度方向的匀加速直线运动。

【题1】在同一水平直线上的两位置分别沿同方向抛出两小球A 和B ,两球相遇于空中的P 点,它们的运动

轨迹如右图所示。不计空气阻力,下列说法中正确的是 ( )

A .在P 点,A 球的速度大于

B 球的速度 B .在P 点,A 球的速度小于B 球的速度

C .抛出时,先抛出A 球后抛出B 球

D .抛出时,先抛出B 球后抛出A 球

【题2】将一带电小球在距水平地面H 高处以一定的初速度水平抛出,从抛出点到落地点的位移L =25m 。若在地面上加一个竖直方向的匀强电场,小球抛出后恰做直线运动。若将电场的场强减为一半,小球落到水平

地面上跟没有电场时的落地点相距s=8.28m ,如图11所示,求:(取g=10m/s 2

(1) 小球抛出点距地面的高度H ; (2) 小球抛出时的初速度的大小。

【题3】有三个质量相等,分别带正电、负电和不带电的小球A 、B 、C ,从同一位置以相同速度v 0先后射入竖直方向的匀强电场中,它们落在正极板的位置如图3-3-4所示,则下列说法中准确的是( ) A.小球A 带正电,小球B 不带电,小球c 带负电 B.三个小球在电场中的运动时间相等 C.三个小球到达正极板的动能E KA

【题4】如图1-4-5所示,光滑斜面长为a ,宽为b ,倾角为θ,一物块沿斜面左上方顶点P 水平射入,而从右下方顶点Q 离开斜面。则以下说法中正确的是( ) A 物块在斜面上做匀变速曲线运动; B 物块在斜面上做匀变速直线运动;

C 物块从顶点P 水平射入时速度为θ

sin 2g b

a

D .物块从顶点P 水平射入时速度为b

g a 2sin θ

(2)平抛+斜面问题

这类问题的关键是处理斜面的倾角和平抛运动的位移矢量三角形、速度矢量三角形的关系。结合平抛运动推论tan θ=2tan φ(其中θ为t 时刻速度与水平方向的夹角,φ为该时刻位移与水平方向的夹角)即可方便解决问题。

①平抛点在斜面的顶端(此时斜面的倾角可化入平抛运动的位移矢量三角形)

【题1】从倾角为θ的足够长的斜面顶端A 点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v 1,球落到斜面上前一瞬间的速度方向与斜面的夹角为α1,第二次初速度v 2,球落在斜面上前一瞬间的速度方向与斜面间的夹角

为α2,若v

v 21>,试比较αα12和的大小。

②平抛点在斜面的对面(此时斜面的倾角可化入平抛运动的速度矢量三角形)

【题2】以初速度v 0水平抛出一小球,恰好垂直击中倾角为θ的斜面。试求:小球从抛出到击中斜面的时间t 。

十三、竖直平面内的圆周运动

竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还

要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。 1.轻绳类模型。

运动质点在一轻绳的作用下绕中心点作变速圆周运动。由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力全部由质点的重力来提供,这时有

,式中的

是小球通过最高点的最小速度,叫临界速度;(2)质点能通过最高点的条件

是;(3)当质点的速度小于这一值时,质点运动不到最高点就作抛体运动离开圆弧轨道

了。

【题1】如图所示,位于竖直平面内的光滑有轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,

圆形轨道的半径为R 。一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg (g 为重力加速度)。求物块初始位置相对于圆形轨道底部的高度h 的取值范围。

【题2】如图,一个质量为0.6kg 的小球以某一初速度从P 点水平抛出,恰好从光滑圆弧ABC 的A 点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失)。已知圆弧的半径R=0.3m , θ=60 0,小球

到达A 点时的速度 v=4 m/s 。(取g =10 m/s 2)求: (1)小球做平抛运动的初速度v 0 ; (2)P 点与A 点的水平距离和竖直高度; (3)小球到达圆弧最高点C 时对轨道的压力。

2.轻杆类模型。

运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即mg F

N =;(2)

当gr v =

时,0=N F ;(3)当gr v >,质点的重力不足以提供向心力,杆对质点有指

向圆心的拉力;且拉力随速度的增大而增大;(4)当gr v <

<0时,质点的重力大于其所

需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,mg F N <<0。

【题1】如图所示光滑管形圆轨道半径为R (管径远小于R )固定,小球a 、b 大小相同,质量相同,均为m ,其直径略小于管径,能在管中无摩擦运动.两球先后以相同速度v 通过轨道最低点,且当小球a 在最低点时,小球b 在最高点,以下说法正确的是( )

A .速度v 至少为gR 5,才能使两球在管内做圆周运动

B .当gR v 5=时,小球b 在轨道最高点对轨道无压力

C .当小球b 在最高点对轨道无压力时,小球a 比小球b 所需向心力大5mg

D .只要gR v 5≥,小球a 对轨道最低点压力比小球b 对轨道最高点压力都大6mg

【补充】竖直平面内的圆周运动一般可以划分为这两类,竖直(光滑)圆弧内侧的圆周运动,水流星的运动,过山车运动等,可化为竖直平面内轻绳类圆周运动;汽车过凸形拱桥,小球在竖直平面内的(光滑)圆环内运动,小球套在竖直圆环上的运动等,可化为竖直平面内轻杆类圆周运动。 十四、天体运动问题

天体问题可归纳为以下四种模型: 1、重力与万有引力关系模型

(1)考虑地球(或某星球)自转影响,

地表或地表附近的随地球转的物体所受重力实质是万有引力的一个分力。由于地球的自转,因而地球表面的物体随地球自转时需要向心力,向心力必来源于地球对物体的万有引力,重力实际上是万有引力的一个分力,由于纬度的变化,物体作圆周运动的向心力也不断变化,因而地球表面的物体重力将随纬度的变化而变化,即重力加速度的值g 随纬度变化而变化;从赤道到两极逐渐增大.在赤道上,在两极

【题1】如图1所示,P、Q为质量均为m 的两个质点,分别置于地球表面不同纬度上,如果把地球看成是一个均匀球体,P、Q两质点随地球自转做匀速圆周运动,则以下说法中正确的是:( ) A .P 、Q 做圆周运动的向心力大小相等 B .P 、Q 受地球重力相等 C .P 、Q 做圆周运动的角速度大小相等 D .P 、Q 做圆周运动的周期相等 (2)忽略地球(星球)自转影响,

则地球(星球)表面或地球(星球)上方高空物体所受的重力就是地球(星球)对物体的万有引力。特别的,在星球表面附近对任意质量为m 的物体有:GM gR R

Mm G

mg =?=2

2这就是黄金代换公式,此式虽然是在星球表面附近推得的,但在星球非表面附近的问题中,亦可用。

高中物理公式大全.doc

高中物理公式大全 一、力学 1、胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料 有关) 2、重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受 到的地球引力) 3 、求F 1、F 2 两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围:? F1-F2 ?≤ F≤ F1 + F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。 F合=0 或: F x合=0 F y合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1) 滑动摩擦力: f= μ F N 说明:① F N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ②μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关. (2) 静摩擦力:其大小与其他力有关,由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O≤ f静≤ f m (f m 为最大静摩擦力,与正压力有关)

说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b、摩擦力可以做正功,也可以做负功,还可以不做功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力: F= ρgV (注意单位) 7、万有引力: F=G m m r 12 2 (1)适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。 (2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3)在天体上的应用:(M--天体质量,m—卫星质量, R--天体半径,g--天体表面重力加速度,h— 卫星到天体表面的高度) a 、万有引力=向心力 G Mm R h m () + = 2 V R h m R h m T R h 2 2 2 2 2 4 () ()() + =+=+ ω π b、在地球表面附近,重力=万有引力 mg = G Mm R2 g = G M R2 c、第一宇宙速度 mg = m V R 2 V=gR GM R =/ 8、库仑力:F=K22 1 r q q (适用条件:真空中,两点电荷之间的作用力) 9、电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反) 10、磁场力: (1)洛仑兹力:磁场对运动电荷的作用力。 公式:f=qVB (B⊥V) 方向--左手定则 (2)安培力:磁场对电流的作用力。

2018届高考物理公式知识点完全整理

2018届高考物理公式知识点整理一、力学公式 粗细和,K为倔强系数,只与弹簧的原长、(x为伸长量或压缩量胡克定律: F = Kx 1、 材料有关) ) (g随高度、纬度、地质结构而变化G = mg 2、重力: 、的合力的公式:3 、求F22?COSFFFF?2?F= F F 21212合力的方向与F成?角:1αθ F tg?= 1注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围:? F-F?? F? F +F 1 2 1 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ?F=0 或?F=0 ?F=0 yx推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件:力矩代数和为零. 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力:f= ?N 说明:a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G b、?为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N无关. (2 ) 静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围:O? f静? f (f为最大静摩擦力,与正压力有关) mm 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。 b、摩擦力可以作正功,也可以作负功,还可以不作功。 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。c d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力:F= ?Vg (注意单位) 7、万有引力:F=G (1).适用条件(2) .G为万有引力恒量 (3).在天体上的应用:(M一天体质量R一天体半径g一天体表面重力 加速度) a 、万有引力=向心力 G

高考物理解题模型

高考物理解题模型 目录 第一章运动和力 (1) 一、追及、相遇模型 (1) 二、先加速后减速模型 (4) 三、斜面模型 (6) 四、挂件模型 (11) 五、弹簧模型(动力学) (18)

第二章圆周运动 (20) 一、水平方向的圆盘模型 (20) 二、行星模型 (23) 第三章功和能 (1) 一、水平方向的弹性碰撞 (1) 二、水平方向的非弹性碰撞 (6) 三、人船模型 (9) 四、爆炸反冲模型 (11) 第四章力学综合 (13) 一、解题模型: (13) 二、滑轮模型 (19) 三、渡河模型 (23) 第五章电路 (1) 一、电路的动态变化 (1) 二、交变电流 (6) 第六章电磁场 (1) 一、电磁场中的单杆模型 (1) 二、电磁流量计模型 (7) 三、回旋加速模型 (10) 四、磁偏转模型 (15)

第一章 运动和力 一、追及、相遇模型 模型讲解: 1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行 驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d 。 即:d v v a ad v v 2)(2)(02 212 21-=-=--,, 故不相撞的条件为d v v a 2)(2 21-≥ 2. 甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。甲物 体在前,初速度为v 1,加速度大小为a 1。乙物体在后,初速度为v 2,加速度大小为a 2且知v 1,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据t a v t a v v 2211-=-=共,求得 1 21 2a a v v t --= 在t 时间内

高考物理万能答题模板汇总

2019高考物理万能答题模板汇总 高考物理万能答题模板(一) 题型1〓直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题. 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 题型2〓物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化. 题型3〓运动的合成与分解问题

题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解. 思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析. 题型4〓抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上. 思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足 vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解. 题型5〓圆周运动问题 题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速

高考物理必备公式大全

高考必背物理公式 质点运动 1.匀速直线运动:------t s v = ---vt s = v 表示速度,s 表示位移,t 表示时间。 2.变速直线运动:------t v s = 其中:s 表示位移,v 表示平均速度,t 表示时间。 3.匀变速直线运------基本公式:t v v a t 0-= t v s = 2 0t v v v += 导出公式:2021at t v s += 2 022v v as t -= t v v s t 2 += t v v 中中>+=2 v v 2t 2 0s 纸 带 法 :2 aT s =? 2 )(T N M S S a N M --= 2T 两侧中S v v t == 4.平抛运动:沿V 0方向 t v S x 0= 0v v x = 0=x a 0=x F y x t t = 沿垂直于V 0方向(竖直)---2 2 1gt S y = ---gt v y = ---g a y = ---mg F y = 各量方向------位移:θφtan 21 2tan 0===v gt S S x y ------速度:0tan v gt v v x y ==θ 其余量的求法:---位移:4 2220 224 1t g t v S S S y x +=+= ---速度:222022t g v v v v y x +=+= ---时间:g h t 2= 5.匀速率圆周运动: ---基本公式:---运动快慢---线速度:t s v = 其中:s 为t 时间内通过的弧长。 --转动快慢---角速度:t φ ω= 其中:φ为t 时间内转过的圆心角。 ---周期:f T 12= = ω π v r ?=π2 r v =ω ---向心力:心心ma v m r f m r T m r v m r m F =??=====ωππω2222 22 44 ---向心加速度:m F r f r T r v r a 心心=====2222 22 44ππωv ?=ω 力的表达式 1.重力---mg G =---不考虑地球自转的情况下 ,重力与万有引力相等2 R GMm mg = 2.弹力---不明显的形变---用动力学方程求解; 明显的形变---在弹性限度以内,满足胡克定律:x k f ??-= 3.摩擦力---静摩擦力---max 0f f ≤< 最大静摩擦力:N s F f μ=m a x 其中:s μ为最大静摩擦因数。 ---滑动摩擦力---N F f μ= 其中:μ为动摩擦因数,F N 为正压力。 4.力的合成和分解 ------合力的大小:θcos 2212221F F F F F ++=其中:θ为F 1与F 2的夹角; ------合力的方向: 6.核力:组成原子核的核子之间的作用力。 强力、短程力 7.电场力:------库仑力:2 2 1r Q kQ F = ------电场力:Eq F = 8.安培力:---当为有效长度均匀其中时l B l I B F I B ,,??=⊥;当0//=F I B 时。

高中物理会考(学业水平考试)公式及知识点总结

高中物理会考公式概念总结 一、直线运动: 1、匀变速直线运动: (1)平均速度 t x v = (定义式) 平均速度的方向即为运动方向 v -平均速度 国际单位:米每秒m/s 常用单位:千米每时 km/h 换算关系 1m/s=3.6km/h (2)加速度t v v t v a 0t -=??= 加速度描述速度变化的快慢,也叫速度的变化率 {以Vo 为正方向,a 与Vo 同向(做加速运动)a>0;反向(做减速运动)则a<0} 注:主要物理量及单位:初速度(0v ):m/s ; 加速度(a):m/s 2; 末速度(t v ):m/s ; 时间(t):秒(s); 位移(x):米(m ); 路程(s):米(m ); 三个基本物理量:长度 质量 时间 对应三个基本单位:m kg s (3) 基本规律: 速度公式 at v v t +=0 位移公式 2012x t at v = + 几个重要推论: (1)ax v v t 2202=- (o v 初速度,t v 末速度 匀加速直线运动:a 为正值,匀减速直线运动(比如刹车):a 为负值,) (2) A B 段中间时刻的即时速度: *(3) AB 段位移中点的即时速度: V =022t t V V x V t +== 2 s V =注意 都是在什么条件下用比较好?(在什么条件不知或不需要知道或者也用不到时,该用哪个公式?) (5)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数: (a 一匀变速直线运动的加速度,T 一每个时间间隔的时间) (用来求纸带问题中的加速度,注意单位的换算) (6)自由落体: ①初速度Vo =0 ②末速度gt V t = ③下落高度221gt h = (从Vo 位置向下计算) ④推论22t V gh = 全程平均速度 2 t V V =平均 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a =g =9.8m/s 2≈10m/s 2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 二、相互作用: 1、重力G =mg (方向竖直向下,g =9.8m/s 2≈10m/s 2,作用点在重心,重心不一定在物体上,适用于地球表面附近) 2、弹力,胡克定律:x F k =弹(x 为伸长量或压缩量;k 为劲度系数,只与弹簧的原长、粗细和材料有关) 2aT x =?

高中典型物理模型及解题方法

高中典型物理模型及方法(精华) ◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 记住:N= 21 12 12 m F m F m m ++ (N 为两物体间相互作用力), 一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2 12m m m N += 讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a N= 2 12 m F m m + ② F 1≠0;F 2≠0 N= 211212 m F m m m F ++ (20F =就是上面的情况) F=2 11221m m g)(m m g)(m m ++ F=122112m (m )m (m gsin )m m g θ++ F=A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

N 5对6=F M m (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm 12)m -(n ◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动) 研究物体通过最高点和最低点的情况,并且经常出现临界状态。(圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥 3 ③飞机做俯冲运动时,飞行员对座位的压力。 ④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。 ⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的) (1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。 为转弯时规定速度)(得由合002 0sin tan v L Rgh v R v m L h mg mg mg F ===≈=θθR g v ?=θtan 0 (是内外轨对火车都无摩擦力的临界条件) ①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧 压力 ②当火车行驶V 大于V 0时,F 合F 向,内轨道对轮缘有侧压力,F 合-N'=R 2 m v 即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。火车提速靠增大轨道半径或倾角来实现 (2)无支承的小球,在竖直平面内作圆周运动过最高点情况: 受力:由mg+T=mv 2/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能

高中物理16种常见题型的解题方法和思维模板

高中物理16种常见题型的解题方法和思维模板,一定要收藏! 高中状元计划今天 高中物理考试常见的类型无非包括以下16种,今天为同学们总结整理了这16种常见题型的解题方法和思维模板,同时介绍给大家高考物理各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力,力求做到让你一看就会,一想就通,一 题型1:直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题. 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 题型2:物体的动态平衡问题

题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种. (1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化; (2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化. 题型3:运动的合成与分解问题 题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解. 思维模板: (1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等. (2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。 题型4:抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.

2020年高考物理必考考点题型

高考物理必考考点题型 必考一、描述运动的基本概念 【典题1】2010年11月22日晚刘翔以13秒48的预赛第一成绩轻松跑进决赛,如图所示,也是他历届亚运会预赛的最佳成绩。刘翔之所以能够取得最佳成绩,取决于他在110米中的( ) A.某时刻的瞬时速度大 B.撞线时的瞬时速度大 C.平均速度大 D.起跑时的加速度大 【解题思路】在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度,是矢量,方向与位移方向相同。根据x=Vt可知,x一定,v越大,t越小,即选项C正确。 必考二、受力分析、物体的平衡 【典题2】如图所示,光滑的夹角为θ=30°的三角杆水平放置,两小球A、B分别穿在两个杆上,两球之 间有一根轻绳连接两球,现在用力将B球缓慢拉动,直到轻绳被拉直时,测出拉力F=10N则此时关于两个小球受到的力的说法正确的是() A、小球A受到重力、杆对A的弹力、绳子的张力 B、小球A受到的杆的弹力大小为20N C、此时绳子与穿有A球的杆垂直,绳子张力大小为 203 3N D、小球B受到杆的弹力大小为 203 3N 【解题思路】对A在水平面受力分析,受到垂直杆的弹力和绳子拉力,由平衡条件可知,绳子拉力必须垂直杆才能使A平衡,再对B在水平面受力分析,受到拉力F、杆的弹力以及绳子拉力,由平衡条件易得杆对A的弹力N等于绳子拉力T,即N=T=20N,杆对B的弹力N B= 203 3。 【答案】AB 必考三、x-t与v-t图象 【典题3】图示为某质点做直线运动的v-t图象,关于这个质点在4s内的运动情况,下列说法中正确的是() A、质点始终向同一方向运动 B、4s末质点离出发点最远 C、加速度大小不变,方向与初速度方向相同 D、4s内通过的路程为4m,而位移为0 【解题思路】在v-t图中判断运动方向的标准为图线在第一象限(正方向)还是第四象限(反方向),该图线穿越了t轴,故质点先向反方向运动后向正方向运动,A错;图线与坐标轴围成的面积分为第一象限(正方向位移)和第四象限(反方向位移)的面积,显然t轴上下的面积均为2,故4s末质点回到了出发点,B 错;且4s内质点往返运动回到出发点,路程为4m,位移为零,D对;判断加速度的标准是看图线的斜率, F θ A B t/s v/(m·s-2) 1 2 3 4 2 1 -2 -1 O

高考历史万能公式

高考历史万能公式 一、历史背景、原因和目的 1、历史背景=(国内+国际)(经济+政治+文化+……) ⑴经济背景=生产力+生产关系+经济结构+经济格局+…… ⑵政治背景=政局+制度+体制+政策+阶级+民族+外交+军事+…… ⑶文化背景=思想、宗教+科技+教育+…… 如:鸦片战争背景:(一)国内:1、经济:自然经济+资本主义萌芽+土地集中。2、政治:①腐败:官场+军队+财政②阶级矛盾。3、思想:愚昧自大。(二)国际:1、经济:工业革命→市场原料。2、政治:资本主义扩张。 2、历史条件:与背景分析基本相同,更侧重于有利因素 如十月革命的历史条件:(一)国内:①经济:资本主义发展到垄断,相对落后、生活贫困②政治:沙皇专制、无产阶级壮大、革命政党成熟、力量对比变化等③思想:列宁主义指导。(二)国际:帝国主义忙于一战等。 3、原因广度:原因=主观(内因)+客观(外因) ⑴主观原因:事件发起、参与者内在经济、政治、思想诸方面因素 ⑵客观原因:自然、社会环境、外在各方面经济、政治、思想因素等 原因广度与背景分析方法基本相同,背景侧重于静态分析,原因更侧重于动态分析。如美国独立战争的原因广度分析:(一)内因:①经济:资本主义经济发展、统一的市场等②政治:美利坚民族形成、资产阶级、种植园主阶级形成等③文化:统一的文化、民族意识觉醒等。(二)外因:①英国的经济掠夺和政治压迫②启蒙思想的影响等。 4、原因深度:原因:→直接→主要→根本 ⑴直接原因:最直接引发事件的偶然性因素(导火线、借口等) ⑵主要原因:包括引发事件的主观、客观各方面重要因素 ⑶根本原因:历史趋势(生产力发展、时代要求)+主观需要等 三者既有层次区别,又有联系渗透,如“五四”运动爆发的直接原因是巴黎和会上中国外交失败;主要原因涉及当时国内外各种矛盾,包括帝国主义侵略、北洋军阀黑暗统治、民族资本主义发展、无产阶级壮大、十月革命影响、马克思主义传播等因素;根本原因则是主要原因中最深层的因素。 5、矛盾分析:生产力与生产关系矛盾、经济基础与上层建筑矛盾、阶级矛盾、阶级内部矛盾、民族矛盾、宗教矛盾、不同利益集团矛盾…… 如尼德兰革命爆发的原因:①资本主义经济发展与旧制度矛盾②资产阶级与封建阶级矛盾③尼德兰人民与西班牙统治者的民族矛盾④加尔文教与天主教矛盾等等。 6、目的、动机:→直接→主要→根本 ⑴直接动机:解决当前面临的种种危机或问题 ⑵主要目的:实现某一方面目标,求得稳定和发展等 ⑶根本目的:建立或巩固统治,维护统治阶级利益(根本利益) 目的、动机属于主观方面的原因,是事件发动者的主观意愿。如王安石变法:直接动机是解决面临的社会危机;主要目的是增加财政收,缓和阶级矛盾,实现富国强兵等;根本目的是巩固封建统治。 二、历史内容=经济+政治+文化+…… 历史内容即客观历史,是人类重大历史活动的客观记载。活动的主体包括重要历史人物、群体、组织、机构等。活动内容包括经济政治方面的事件、事态、制度、政策、纲领、路线、计划、条约;文化方面的理论、技术、文物器具、工程建筑、书籍文献等。一般历史内容,可从经济、政治、文化诸方面分析。

会考必备物理公式

高中物理会考公式表 一、《力》 1.重力:mg G =(2 r GM g ∝ ,↓↑g r ,,在地球两极g 最大,在赤道g 最小) 2.合力:2121F F F F F +≤≤-合 平行四边形定则 二、《直线运动》 1. 位移:t v s ?=;2021 at t v s +=(匀变速) 2. 平均速度:t s v = (适于任何运动);t v v v t +=0(仅适用于匀变速直线运动) 3. 加速度:t v t v v a t ??=-= 0(速度变化率) 4. 速度:at v v t +=0;t s v v v v t t =+= =202 (匀变速直线运动中间时刻速度) 5. 速度位移公式:as v v t 22 02=- 6. 匀变速直线运动规律:2aT s =? 7. 自由落体运动的公式:(特点:00=v ,只受重力,a=g 且方向竖直向下) (1)速度公式:gt v t =(2)位移公式:22 1gt s =(3)速度位移公式:gh v t 22 = (4)位移与平均速度关系式:t v s t ?=2 三、牛顿运动定律 1.牛顿第二定律:ma F =合 2.动力学两类基本问题解题思路:(加速度是解题关键) 四、曲线运动 万有引力 1.平抛运动:(特点:初速度沿水平方向,物理只受重力,加速度a=g 恒定不变,平抛运动是匀变速曲线运动) 水平方向:00 ,v v t v x x ==

竖直方向:2 2 1gt y = ,gt v y = 经时间t 的速度:22 02 2 )(gt v v v vt y x +=+= 平抛运动时间:g h t 2=(取决下落高度,与初速度无关) 2.匀速圆周运动 (1)线速度:T r t s v π2= = (2)角速度:T t π φω2== (3)r v ?=ω (4)固定在同一轴上转动的物体,各点角速度相等。用皮带(无滑)传动的皮带轮、相互咬合的齿轮,轮缘上各点的线速度大小相等。 (5)向心力:r T m r m r v m F 222 24πω===(向心力为各力沿半径方向的合力,是效 果力非物体实际受到的力) (6)向心加速度:v r r v a ?=== ωω22 (7)周期:f T 1 = 3.万有引力定律 (1) 表达式:2 2 1r m m G F = (2) 应用:把天体运动看成是匀速圆周运动,其所需向心力由万有引力提供。 1) 主要公式:r T m r m r v m r Mm G 222 224πω===;mg r Mm G =2(应分清M 与m ,g 指物体所在处的重力加速度) 2) 天体质量M 的估算:r T m r Mm G 2224π=2 3 24GT r M π=? 3) 卫星的环绕速度、角速度、周期与半径的关系: 由公式r T m r m r v m r Mm G 222 224πω===判断,r GM v =,3 r GM =ω,GM r T 3 24π= 4) 第一宇宙速度是指人造卫星在地面附近绕地球做匀速圆周运动的速度, 7.9km/s ==gR v 。 5) 同步卫星:相对于地面静止且与地球自转具有相同周期的卫星,T=24h 。同 步卫星只能位于赤道正上方特定的高度(h ≈3.6?104km ),v 、ω均为定值。 五、机械能

(完整版)高中物理模型解题

高中物理模型解题 模型解题归类 一、刹车类问题 匀减速到速度为零即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间。如果问题涉及到最后阶段(到速度为零)的运动,可把这个阶段看成反向、初速度为零、加速度不变的匀加速直线运动。 【题1】汽车刹车后,停止转动的轮胎在地面上发生滑动,可以明显地看出滑动的痕迹,即常说的刹车线。由刹车线长短可以得知汽车刹车前的速度的大小,因此刹车线的长度是分析交通事故的一个重要依据。若汽车轮胎跟地面的动摩擦因数是0.7,刹车线长是14m,汽车在紧急刹车前的速度是否超过事故路段的最高限速50km/h? 【题2】一辆汽车以72km/h速率行驶,现因故紧急刹车并最终终止运动,已知汽车刹车过程加速度的大小为5m/s2,则从开始刹车经过5秒汽车通过的位移是多大 二、类竖直上抛运动问题 物体先做匀加速运动,到速度为零后,反向做匀加速运动,加速过程的加速度与减速运动过程的加速度相同。此类问题要注意到过程的对称性,解题时可以分为上升过程和下落过程,也可以取整个过程求解。 【题1】一滑块以20m/s滑上一足够长的斜面,已知滑块加速度的大小为5m/s2,则经过5秒滑块通过的位移是多大? 【题2】物体沿光滑斜面匀减速上滑,加速度大小为4m/s2,6s后又返回原点。那么下述结论正确的是() A物体开始沿斜面上滑时的速度为12m/s B物体开始沿斜面上滑时的速度为10m/s C物体沿斜面上滑的最大位移是18m D物体沿斜面上滑的最大位移是15m 三、追及相遇问题 两物体在同一直线上同向运动时,由于二者速度关系的变化,会导致二者之间的距离的变化,出现追及相撞的现象。两物体在同一直线上相向运动时,会出现相遇的现象。解决此类问题的关键是两者的位移关系,即抓住:“两物体同时出现在空间上的同一点。分析方法有:物理分析法、极值法、图像法。常见追及模型有两个:速度大者(减速)追速度小者(匀速)、速度小者(初速度为零的匀加速直线运动)追速度大者(匀速)、 1、速度大者(减速)追速度小者(匀速):(有三种情况)

高考物理压轴题常用解题方法例析09-12

高考物理压轴题常用解题方法例析 江苏省新沂市第一中学(221400) 张统勋 高考压轴题每年题目翻新,亮点较多,是参加高考的学子们感到较棘手的题目。但通过对近几年江苏高考物理试卷习题的总结、分析,我们可明显看出,压轴题较多使用的解题方法是以下两种:微元法和数列递推求和的方法;且试题难度较大的一问均与这两种方法的一种有所涉及。因而值得对涉及这两种方法的相关考题进行考前回顾,并对相关题目加强训练。 (2007年的第18题也是应用微元法的习题)。 一、微元法在物理考题中的应用 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。高中物理教材中从高一就开始有所渗透这方面的内容,如人教版物理必修一课本“匀变速直线运动的位移与时间的关系”一节,其中位移公式的推导就是利用了微元的思想。 用微元法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。因而近年高考物理试题特别青睐于对这方面方法的应用与考查,江苏高考近年连续在高考的压轴题或倒数第二题中涉及到微元法的应用解题,如2008年的最后一道压轴题、2007年高考的倒数第2题、2006年的最后一道压轴题。 对于微元法,我们在使用处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。 高考题回顾: 1.(2008·江苏高考15题)如图所示,间距为L 的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.场强为B 的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为d 1,间距为d 2.两根质量均为m 、有效电阻均为R 的导体棒a 和b 放在导轨上,并与导轨垂直. (设重力加速度为g ) (1)若a 进入第2个磁场区域时,b 以与a 同样的速度进入第1个磁场区域,求b 穿过第1个磁

高考物理必考知识点——常用的重要公式

高考物理必考知识点——常用的重要公式高中物理与九年义务教育物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,研究的重点是力学。如下为大家推荐了高考物理必考知识点,请大家仔细阅读,希望你喜欢。 1.平抛运动公式总结 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tg β=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 2.原子和原子核公式总结 1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)

2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构) 3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁} 4.原子核的组成:质子和中子(统称为核子),{A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕} 5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕 6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度} 7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。 注: (1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握; (2)熟记常见粒子的质量数和电荷数; (3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键; (4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。

高中物理学考公式大全

学习必备 欢迎下载 高中物理学考公式大全 一、运动学基本公式 1.匀变速直线运动基本公式: 速度公式:(无位移)at v v t +=0 位移公式:(无末速度)2 02 1at t v x + = 推论公式(无时间):ax v v t 2202=- (无加速度)t v v x t 2 0+= 2、计算平均速度 t x v ??=【计算所有运动的平均速度】 2 0t v v v += 【只能算匀变速运动的平均速度】 3、打点计时器 (1)两种打点计时器 (a )电磁打点计时器: 工作电压(6V 以下) 交流电 频率50HZ (b )电火花打点计时器:工作电压(220v ) 交流电 频率50HZ 【计数点要看清是相邻的打印点(间隔 )还是每隔个点取一个计数点(间隔0.1s)】 (2)纸带分析 (a (b)求某点速度公式:t x v v t 22==【会根据纸带计算某个计数点的瞬时速度】 二、力学基本规律 1、不同种类的力的特点 (1).重力:mg G =(2r GM g ∝ ,↓↑g r ,,在地球两极g 最大,在赤道g 最小) (2). 弹力: x k F ?= 【弹簧的劲度系数k 是由它的材料,粗细等元素决定的,与它受不受力以及在弹 性线度内受力的大小无关】 (3).滑动摩擦力 N F F ?=μ;【在平面地面上,FN=mg ,在斜面上等于重力沿着斜面的分力】 静摩擦力F 静 :0~F max ,【用力的平衡观点来分析】 2.合力:2121F F F F F +≤≤-合 力的合成与分解:满足平行四边形定则 三、牛顿运动定律 (1)惯性:只和质量有关 (2)F 合=ma 【用此公式时,要对物体做受力分析】 (3)作用力和反作用力:大小相等、方向相反、性质相同、同时产生同时消失,作用在不同的物体上(这是与平衡力最明显的区别) (4)运用牛顿运动定律解题

物理解题常用的方法和技巧

物理解题常用的方法和技巧 1、正交分解法 在两个互相垂直的方向上,研究物体所受外力的大小及其对运动的影响,既好操作,又便于计算。 2、画图辅助分析问题的方法 分析物体的运动时,养成画v-t图和空间几何关系图的.习惯,有助于对问题进行全面而深刻的分析。 3、平均速度法 处理物体运动的问题时,借助平均速度公式,可以降二次方程为一次方程,以简化运算,极大提高运算速度和准确率。 4、巧用牛顿第二定律 牛顿第二定律是高中阶段最重要、最基本的规律,是高考中永恒不变的热点,至少应做到在以下三种情况中的熟练应用:重力场中竖直平面内光滑轨道内侧最高点临界条件,地球卫星匀速圆周运动的条件,带电粒子在匀强磁场中匀速圆周运动的条件。 5、回避电荷正负的方法 在电场中,电荷的正负很容易导致考生判断失误,在下列情景中可设法回避:比较两点电势高低时,无论场源电荷的正负,只需记住“沿电场线方向电势降低”;比较两点电势能多少时,无论检验电荷的正负,只需记住“电场力做正功电势能减少”。 6、“大内小外”

在电学实验中,选择电流表的内外接,待测电阻比电流表内阻大很多时,电流表内接;待测电阻比电压表内阻小很多时,电流表外接。 7、针对选择题常用的方法 ①特殊值验证法:对有一定取值范围的问题,选取几个特殊值进行讨论,由此推断可能的情况以做出选择。 ②选项代入或选项比较的方法:充分利用给定的选项,做出选择。 ③半定量的方法:做选择题尽量不进行大量的推导和运算,但是写出有关公式再进行分析,是避免因主观臆断而出现错误的不二法门,因此做选择题写出物理公式也是必不可少的。 二.物理基本性质 物理学是人们对自然界中物质的运动和转变的知识做出规律性的总结,这种运动和转变应有两种。一是早期人们通过感官视觉的延伸;二是近代人们通过发明创造供观察测量用的科学仪器,实验得出的结果,间接认识物质内部组成建立在的基础上。物理学从研究角度及观点不同,可大致分为微观与宏观两部分:宏观物理学不分析微粒群中的单个作用效果而直接考虑整体效果,是最早期就已经出现的;微观物理学的诞生,起源于宏观物理学无法很好地解释黑体辐射、光电效应、原子光谱等新的实验现象。它是宏观物理学的一个修正,并随着实验技术与理论物理的发展而逐渐完善。

高考物理必考公式整理

2019年高考物理必考公式整理高中物理与九年义务教育物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,研究的重点是力学。以下是查字典物理网为大家整理的高考物理必考公式,希望可以解决您所遇到的相关问题,加油,查字典物理网一直陪伴您。 一、平抛运动公式总结 1.水平方向速度:Vx=V o 2.竖直方向速度:Vy=gt 3.水平方向位移:x=V ot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[V o2+(gt)2]1/2,合速度方向与水平夹 角:tg=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2,位移方向与水平夹角:tg=y/x=gt/2V o 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)与的关系为tg=2tg (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 二、原子和原子核公式总结

1.粒子散射试验结果a)大多数的粒子不发生偏转;(b)少数粒子发生了较大角度的偏转;(c)极少数粒子出现大角度的偏转(甚至反弹回来) 2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构) 3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:h=E初-E末{能级跃迁} 4.原子核的组成:质子和中子(统称为核子),{A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕} 5.天然放射现象:射线(粒子是氦原子核)、射线(高速运动的电子流)、射线(波长极短的电磁波)、衰变与衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。射线是伴随射线和射线产生的〔见第三册P64〕 6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度} 7.核能的计算E=mc2{当m的单位用kg时,E的单位为J;当m用原子质量单位u时,算出的E单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。 注: (1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握; (2)熟记常见粒子的质量数和电荷数; (3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;

相关文档
最新文档