C++编程思想 答案 第五章 其他章节请点击用户名找 thinking in C++ annotated solution guide(charpter 5).

C++编程思想 答案 第五章 其他章节请点击用户名找 thinking in C++ annotated solution guide(charpter 5).
C++编程思想 答案 第五章 其他章节请点击用户名找 thinking in C++ annotated solution guide(charpter 5).

[ Viewing Hints ] [ Book Home Page ] [ Free Newsletter ]

[ Seminars ] [ Seminars on CD ROM ] [ Consulting ]

Annotated Solution Guide

Revision 1.0

for Thinking in C++, 2nd edition, Volume 1

by Chuck Allison

?2001 MindView, Inc. All Rights Reserved.

[ Previous Chapter ] [ Table of Contents ] [ Next Chapter ] Chapter 5

5-1

Create a class with public, private, and protected data members and function members. Create an object of this class and see what kind of compiler messages you get when you try to access all the class members.

(Left to the reader)

5-2

Write a struct called Lib that contains three string objects a, b, and c. In main( ) create a Lib object called x and assign to x.a, x.b, and x.c. Print out the values. Now replace a, b, and c with an array of string s[3]. Show that your code in main( ) breaks as a result of the change. Now create a class called Libc, with private string objects a, b, and c, and member functions seta( ), geta( ), setb( ), getb( ), setc( ), and getc( ) to set and get the values. Write main( ) as before. Now change the private string objects a, b, and c to a private array of string s[3]. Show that the code in main( ) does not break as a result of the change.

(Left to the reader)

5-3

Create a class and a global friend function that manipulates the private data in the class. (Left to the reader)

5-4

Write two classes, each of which has a member function that takes a pointer to an object of the other class. Create instances of both objects in main( ) and call the aforementioned member function in each class.

Solution:

//: S05:PointToMeAndYou.cpp

#include

using namespace std;

class You; // Forward declaration

class Me {

public:

void ProcessYou(You* p) {

cout << "Processing You at " << p << endl;

}

};

class You {

public:

void ProcessMe(Me* p) {

cout << "Processing Me at " << p << endl;

}

};

int main() {

Me me;

You you;

me.ProcessYou(&you);

you.ProcessMe(&me);

}

/* Output:

Processing You at 0065FDF4

Processing Me at 0065FDFC

*/

///:~

When two classes refer to each other, it is necessary to forward-declare at least one of them, as I did above. You must only use pointers, of course, or you’ll truly find yourself in a

chicken-and-egg fix. FYI: when classes have a relationship, for example, and Employee“has-a” Manager, it is common to reflect this relationship by actually storing a pointer to the Manager object as a member in the Employee object, so you don’t have to explicitly pass pointers a s arguments to member functions like I did here.

5-5

Create three classes. The first class contains private data, and grants friendship to the entire second class and to a member function of the third class. In main( ), demonstrate that all of these work correctly.

Solution:

//: S05:MyFriends.cpp

#include

using namespace std;

class HasStuff; // Must precede GoodFriend definition

class GoodFriend { // Must precede HasStuff definition

public:

void hasAccess(HasStuff* p);

void hasNoAccess(HasStuff* p) {

cout << "Cannot access " << p << endl;

}

};

class HasStuff {

private:

int x;

friend class BestFriend;

friend void GoodFriend::hasAccess(HasStuff*);

};

// Must follow HasStuff definition:

void GoodFriend::hasAccess(HasStuff* p) {

cout << "From GoodFriend::hasAccess: " << p->x << endl; }

// All methods of BestFriend have access to HasStuff::x

// This must also follow the HasStuff definition:

class BestFriend {

public:

void initFriend(HasStuff* p) {

p->x = 5;

}

void queryFriend(HasStuff* p) {

cout << "From BestFriend: " << p->x << endl;

}

};

int main() {

HasStuff h;

BestFriend b;

b.initFriend(&h);

b.queryFriend(&h);

GoodFriend g;

g.hasAccess(&h);

g.hasNoAccess(&h);

}

/* Output:

From BestFriend: 5

From GoodFriend::hasAccess: 5

Cannot access 0065FE00

*/

///:~

This is another exercise in forward declarations. The definition of GoodFriend requires the existence of class HasStuff, but I cannot include the implementation of GoodFriend::has Access( ) in situ, because it uses the fact that HasStuff contains an integer named x (likewise for the entire class BestFriend). Also, if you tried to access HasStuff::x in

GoodFriend::hasNoAccess( ) you woul d get a compiler error. The statement “friend class BestFriend” inside of HasStuff is simultaneously a forward declaration and a friend declaration, otherwise I would have had to forward-declare BestFriend before the definition of HasStuff (but I’m lazy).

5-6

Create a Hen class. Inside this, nest a Nest class. Inside Nest, place an Egg class. Each class should have a display( ) member function. In main( ), create an instance of each class and call the display( ) function for each one.

Solution:

//: S05:NestedFriends.cpp

#include

using namespace std;

class Hen {

public:

void display() {

cout << "Hen::display\n";

}

class Nest {

public:

void display() {

cout << "Hen::Nest::display\n";

}

class Egg {

public:

void display() {

cout << "Hen::Nest::Egg::display\n";

}

};

};

};

int main() {

Hen h;

Hen::Nest n;

Hen::Nest::Egg e;

h.display();

n.display();

e.display();

}

/* Output:

Hen::display

Hen::Nest::display

Hen::Nest::Egg::display

*/

///:~

Nest and Egg are just like normal classes except they reside in the scope of other classes instead of the global scope, which explains the need for the explicit qualification via the scope resolution operator. Also, Hen has no access rights to any private members of Nest or Egg, nor does Nest have any rights to Egg’s private members (if there were any – see the next exercise).

5-7

Modify Exercise 6 so that Nest and Egg each contain private data. Grant friendship to allow the enclosing classes access to this private data.

Solution:

//: S05:NestedFriends.cpp

#include

using namespace std;

class Hen {

public:

class Nest {

int x;

friend class Hen;

public:

class Egg {

int y;

friend class Nest;

public:

void display() {

cout << "Hen::Nest::Egg::display: " << y << endl;

}

};

void initEgg(Egg* e) {

e->y = 2;

}

void display() {

cout << "Hen::Nest::display: " << x << endl;

}

};

void initNest(Nest* n) {

n->x = 1;

}

void display() {

cout << "Hen::display\n";

}

};

int main() {

Hen h;

Hen::Nest n;

Hen::Nest::Egg e;

h.initNest(&n);

n.initEgg(&e);

h.display();

n.display();

e.display();

}

/* Output:

Hen::display

Hen::Nest::display: 1

Hen::Nest::Egg::display: 2

*/

///:~

In this example I had to move the implementation of Hen::Nest::display( ) past the nested class Egg, because it access members of Egg. The same reasoning applies to the init-functions above.

5-8

Create a class with data members distributed among numerous public, private, and protected sections. Add a member function showMap( ) that prints the names of each of these data members and their addresses. If possible, compile and run this program on more than one compiler and/or computer and/or operating system to see if there are layout differences in the object.

Here’s a sample for two particular compilers:

Solution:

//: S05:MapMembers.cpp

#include

using namespace std;

class Mapped {

int x;

protected:

int y;

public:

int z;

void showMap() {

cout << "x is at " << &x << endl;

cout << "y is at " << &y << endl;

cout << "z is at " << &z << endl;

}

};

int main() {

Mapped m;

m.showMap();

}

/* Output:

// Compiler A:

x is at 0065FDF8

y is at 0065FDFC

z is at 0065FE00

// Compiler B:

x is at 0064FDEC

y is at 0064FDF0

z is at 0064FDF4

*/

///:~

5-9

Copy the implementation and test files for Stash in Chapter 4 so that you can compile and test Stash.h in this chapter.

(Left to the reader)

5-10

Place objects of the Hen class from Exercise 6 in a Stash. Fetch them out and print them (if you have not already done so, you will need to add Hen::print( )).

(Left to the reader)

5-11

Copy the implementation and test files for Stack in Chapter 4 so that you can compile and test Stack2.h in this chapter.

(Left to the reader)

5-12

Place objects of the Hen class from Exercise 6 in a Stack. Fetch them out and print them (if you have not already done so, you will need to add Hen::print( )).

(Left to the reader)

5-13

Modify Cheshire in Handle.cpp, and verify that your project manager recompiles and relinks only this file, but doesn’t recompile UseHandle.cpp.

(Left to the reader)

5-14

Create a StackOfInt class (a stack that holds int s) using the “Cheshire cat” technique that hides the low-level data structure you use to store the elements in a class called StackImp. Implement two versions of StackImp: one that uses a fixed-length array of int, and one that uses a

vector. Have a preset maximum size f or the stack so you don’t have to worry about expanding the array in the first version. Note that the StackOfInt.h class doesn’t have to change with StackImp.

Solution:

Here’s the StackOfInt class:

//: S05:StackOfInt.h

#include // for size_t

#include // for INT_MIN

// VC++ doesn’t put size_t in std:

#ifndef _MSC_VER

using std::size_t;

#endif

struct StackImp; // Incomplete type declaration

struct StackOfInt {

enum {STKERROR = INT_MIN};

void init();

void cleanup();

int push(int);

int pop();

int top();

size_t size();

private:

StackImp* pImpl; // The “smile”

};

///:~

To do Cheshire Cat, I just declare the StackImp class (this makes it an “incomplete” type), and declare a pointer to it as a member of StackOfInt. The implementations of StackOfInt’s member functions will use the internals of StackImp via pImpl, so I have to define the method bodies in a separate .cpp file (otherwise we’re not hiding anything!). Here’s the .cpp file for the array version:

//: S05:StackOfInt1.cpp {O}

// Uses an array to implement a stack

#include "StackOfInt.h"

// Complete the incomplete type StackImp:

// (This could be in a separate header file)

struct StackImp {

enum {MAXSIZE = 100};

int data[MAXSIZE];

int ptr;

};

void StackOfInt::init() {

pImpl = new StackImp;

}

int StackOfInt::push(int x) {

if (pImpl->ptr == StackImp::MAXSIZE)

return STKERROR;

else {

pImpl->data[pImpl->ptr++] = x;

return x;

}

}

int StackOfInt::pop() {

return (pImpl->ptr == StackImp::MAXSIZE) ? STKERROR

: pImpl->data[--pImpl->ptr];

}

int StackOfInt::top() {

return (pImpl->ptr == StackImp::MAXSIZE) ? STKERROR

: pImpl->data[pImpl->ptr-1];

}

size_t StackOfInt::size() {

return pImpl->ptr;

}

void StackOfInt::cleanup() {

delete pImpl;

}

///:~

First off I complete the definition of StackImp, then implement the methods of StackOfInt. The most important thing to do is create StackOfInt’s StackImp member on the heap, so the user must call the init( ) before using the stack functions, and must remember to call cleanup( ) when finished. (All of this is taken care of automatically by a constructor and a destructor, as explained in the nest chapter). Here’s a sample test program:

//: S05:StackOfIntTest.cpp

//{L} StackOfInt1

#include "StackOfInt.h"

#include

int main() {

using namespace std;

StackOfInt stk;

stk.init();

for (int i = 0; i < 5; ++i)

stk.push(i);

while (stk.size() > 0)

cout << stk.pop() << endl; }

/* Output:

4

3

2

1

*/

///:~

Here’s the vector version:

//: S05:StackOfInt2.cpp {O}

// Uses a vector to implement a stack #include "StackOfInt.h"

#include

using namespace std;

// Complete the incomplete type StackImp:

// (This could be in a separate header file)

struct StackImp {

enum {MAXSIZE = 100};

vector data;

};

void StackOfInt::init() {

pImpl = new StackImp;

}

int StackOfInt::push(int x) {

if (pImpl->data.size() == StackImp::MAXSIZE) return STKERROR;

else {

pImpl->data.push_back(x);

return x;

}

}

高一数学各个章节知识点总结

必修一 第一章集合与函数概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 第二章基本初等函数(Ⅰ) 2.1 指数函数 2.2 对数函数 2.3 幂函数 第三章函数的应用 3.1 函数与方程 3.2 函数模型及其应用 必修二 第一章空间几何体 1.1 空间几何体的结构 1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积 第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质 第三章直线与方程 3.1 直线的倾斜角与斜率 3.2 直线的方程 3.3 直线的交点坐标与距离公式 必修三 第一章算法初步

1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例 第二章统计 2.1 随机抽样 阅读与思考一个著名的案例 阅读与思考广告中数据的可靠性 阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体 阅读与思考生产过程中的质量控制图 2.3 变量间的相关关系 阅读与思考相关关系的强与弱 第三章概率 3.1 随机事件的概率 3.2 古典概型 3.3 几何概型 必修四 第一章三角函数 1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质 1.5 函数y=Asin(ωx+ψ) 1.6 三角函数模型的简单应用 第二章平面向量 2.1 平面向量的实际背景及基本概念 2.2 平面向量的线性运算

2.3 平面向量的基本定理及坐标表示 2.4 平面向量的数量积 2.5 平面向量应用举例 第三章三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的三角恒等变换 必修五 第一章解三角形 1.1 正弦定理和余弦定理 探究与发现解三角形的进一步讨论 1.2 应用举例 阅读与思考海伦和秦九韶 1.3 实习作业 第二章数列 2.1 数列的概念与简单表示法 2.2 等差数列 2.3 等差数列的前n项和 2.4 等比数列 2.5 等比数列前n项和 第三章不等式 3.1 不等关系与不等式 3.2 一元二次不等式及其解法 3.3 二元一次不等式(组)与简单的线性规划问题 3.4 基本不等式 必修三实用性和适用性在高一作用不大,所以高一上学期学必修一二,下学期学必修四五,跳过必修三

第19章 一次函数知识点总结和常见题型归类

第十九章 一次函数知识点总结与常见题型 基本概念 学生姓名 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定 的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1 x (4)y =2 1-3x (5)y =x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y =2x - B .y = 1 2 x - C .y =24x - D .y =2x +·2x - 函数5y x =-中自变量x 的取值范围是___________. 已知函数22 1 +- =x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<

初中函数知识点总结非常全

知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。 5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于2 2y x + 知识点三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点四、正比例函数和一次函数 1、正比例函数和一次函数的概念

高一数学必修一各章知识点总结技巧解答

高一数学必修1各章知识点总结 一、集合 1、集合的中元素的三个特性: 2、集合的表示方法:列举法与描述法、图示法 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数R 二、集合间的基本关系 1.?包含?关系—子集 注意:B A?有两种可能(1)A是B的一部分,;(2)A 与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A 2.?相等?关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} ?元素相同则两集合相等? 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真 子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集

例题: 1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2.集合{a ,b ,c }的真子集共有 个 3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 . 4.设集合A=}{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人, 两种实验都做错得有4人,则这两种实验都做对的有 人。 6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= . 7.已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,A ∩C=Φ,求m 的值

高中数学函数知识点总结

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||2 2301 若,则实数的值构成的集合为B A a ? 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 注意映射个数的求法。如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。 如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。 函数)(x y ?=的图象与直线a x =交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型?

初中函数知识点总结归纳

函数知识点总结(掌握函数的定义、性质和图像) (一)正比例函数和一次函数 1、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 2、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 一次函数y=kx+b 的图象是经过(0,b )和(- k b ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移) (1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(- k b ,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限 ?? ??>>00 b k 直线经过第一、二、三象限 ?? ??<>00 b k 直线经过第一、三、四象限 ??? ?><0 b k 直线经过第一、二、四象限 ????<<0 b k 直线经过第二、三、四象限

第七章--三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为{}()360 k k Z ααβ? =+∈ x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈ 3、第一象限角:{ }()036090360 k k k Z αα?? +<<+∈ 第二象限角:{ }()90360180360 k k k Z αα?? +<<+∈ 第三象限角:{ }()180360270360 k k k Z αα?? +<<+∈ 第四象限角:{ }()270360360360 k k k Z αα?? +<<+∈ 4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()036090360 k k k Z αα?? +<<+∈ 锐角:{ }090 αα<< 小于90的角:{}90αα< 任意角的概念 弧长公式 角度制与 弧度制 同角三角函数的基本关系式 诱导 公式 计算与化简 证明恒等式 任意角的 三角函数 三角函数的 图像和性质 已知三角函数值求角 和角公式 倍角公式 差角公式 应用 应用 应用 应用 应用 应用 应用

5、若α为第二象限角,那么 2 α 为第几象限角? ππαππ k k 222 +≤≤+ ππ α ππ k k +≤ ≤ +2 2 4 ,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.01801≈=?π 815730.571801'?=?≈?=π 8、角度与弧度对应表: 角度 0? 30? 45? 60? 90 120? 135? 150? 180? 360? 弧度 6π 4π 3π 2 π 23 π 34 π 56 π π 2π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,22r x y =+. 2、三角函数值对应表: 度 0 30 45 60 90 120 135 150 180 ? 270 360 弧度 6 π 4 π 3 π 2π 23π 34π 56π π 32 π 2π sin α 0 12 22 32 1 32 22 12 1 cos α 1 32 22 12 12 - 2 2- 32- 1- 1 tan α 0 33 1 3 无 3- 1- 33 - 无 r y) (x,α P

(完整版)第19章-一次函数知识点总结

第十九章 一次函数知识点总结 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应(或者观察图像画竖线,若只有一个交点则Y 是X 的函数) 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1 x (4)y =2 1-3x (5)y =x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个 3、自变量取值范围:一个函数的自变量允许取值的范围 4、确定函数自变量取值范围的方法: (1)关系式为整式时,函数自变量取值范围为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数自变量取值范围还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y B .y C .y D .y 5、函数的图像:一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

初中数学所有函数的知识点总结

课题 §3. 5 正比例函数、反比例函数、一次函数和二次函数 教学目标 1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质 2、会用待定系数法确定函数的解析式 教学重点 掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质 教学难点 掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质 教学方法 讲练结合法 教学过程 (I)知识要点 (见下表:)

注:二次函数))((44)2(2 22 n x m x a a b a c a b x a c bx ax y --=-++=++=(0≠a ) 对称轴a b x 2-=,顶点)442(2a b ac a b --, 抛物线与x 轴交点坐标)0()0(,,,n m (II )例题讲解 例1、求满足下列条件的二次函数的解析式: (1)抛物线过点A (1,1),B (2,2),C (4,2-) (2)抛物线的顶点为P (1,5)且过点Q (3,3) (3)抛物线对称轴是2=x ,它在x 轴上截出的线段AB 长为22 ,且抛物线过点(1,7)。 解:(1)设)0(2 ≠++=a c bx ax y ,将A 、B 、C 三点坐标分别代入,可得方程组为 ?????-==-=?????-=++=++=++2 41 24162 241c b a c b a c b a c b a 解得 242-+-=∴x x y (2)设二次函数为5)1(2--=x a y ,将Q 点坐标代入,即35)13(2 =--a ,得 2=a ,故3425)1(222--=--=x x x y (3)∵抛物线对称轴为2=x ; ∴抛物线与x 轴的两个交点A 、B 应关于2-=x 对称; ∴由题设条件可得两个交点坐标分别为)0222()022(,、,+--B A ∴可设函数解析式为:a x a x x a y 2)2()22)(22(2-+=- +++=,将(1,7) 代入方程可得1=a ∴所求二次函数为242 ++=x x y , 例2:二次函数的图像过点(0,8),)51(--,,(4,0) (1)求函数图像的顶点坐标、对称轴、最值及单调区间 (2)当x 取何值时,①y≥0,②y<0 解:(1)依题意可设函数的解析式为:)0(2 ≠++=a c bx ax y 将三点坐标分别代入,可得方程组为: ?????=++-=+--=0 41658 c b a c b a c 解得?????-=-=-=821c b a 9)1(8222--=--=∴x x x y ∴函数图像的顶点为(1,9-),对称轴为1=x 又∵01>=a , ∴函数有最小值,且9m in -=y ,无最大值 函数的增区间为[1,+∞),减区间为]1(,-∞

高中数学函数与导数章节知识点总结

高中数学导数章节知识点总结 考点1:与导数定义式有关的求值问题 1:已知 等于 A. 1 B. C. 3 D. 1.已知 ,则 的值是______ . 考点2:导数的四则运算问题 1:下列求导运算正确的是 A. B. C. D. 2:已知函数,为 的导函数,则 的值为______. 考点3:复合函数的导数计算问题 1:设 ,则 A. B. C. D. 2:函数的导函数 ______ 考点4:含)('a f 的导数计算问题 1:已知定义在R 上的函数 ,则 A. B. C. D. 2:设函数满足,则 ______. 考点5:求在某点处的切线方程问题 1:曲线在点处的切线方程为 A. B. C. D. 2:曲线在处的切线方程为_________________. 考点6:求过某点的切线方程问题 1:已知直线过原点且与曲线相切,则直线斜率 A. B. C. D. 2:若直线过点)1,0(-且与曲线x y ln =相切,则直线方程为:

考点7:根据相切求参数值问题 1:已知直线与曲线相切,则a 的值为 A. 1 B. 2 C. D. 2:若曲线在点处的切线平行于x 轴,则 ________. 考点8:求切线斜率或倾斜角范围问题 1:点P 在曲线3 2)(3 +-=x x x f 上移动,设P 点处的切线的倾斜角为α,则α的取值范围是 ( ) A. ?? ????2,0π B. ),4 3[)2,0[πππY C.),43[ ππ D. ]4 3,2(π π 2:在曲线的所有切线中,斜率最小的切线方程为_______ 考点9:求曲线上点到直线距离的最值问题 1:已知P 为曲线x y C ln :=上的动点,则P 到直线03:=+-y x l 距离的最小值为( ) A. 2 B. 22 C.2 D. 3 考点10:求具体函数的单调区间问题 1:函数x e x x f )1()(+=的单调递增区间是 A. ),2[+∞- B. ),1[+∞- C. D. 2:函数x x x f ln )(=的单调减区间为 考点11:已知单调性,求参数范围问题 1:已知函数 在区间 上是增函数,则实数m 的取值范围为 A. B. C. D. 2:若函数在区间上单调递增,则实数a 的取值范围是______. 考点12:解抽象不等式问题 1:已知函数是函数 的导函数, ,对任意实数都有,则不等 式 的解集为 A. B. C. D. 2:函数的定义域为R ,且 , ,则不等式 的解集为______ . 考点13:求具体函数的极值问题 1:函数 ,则 A. 为函数的极大值点 B. 为函数的极小值点 C. 为函数 的极大值点 D. 为函数 的极小值点

高中函数知识点总结

高中数学函数知识点归纳 1..函数的单调性 (1)设那么 上是增函数; 上是减函数. (2)设函数在某个区间内可导,如果,则为增函数;如果 ,则为减函数. 注:如果函数和都是减函数,则在公共定义域内,和函数也是减函数;如果函数和在其对应的定义域上都是减函数,则复合函数 是增函数. 2.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数. 注:若函数是偶函数,则;若函数是偶函数,则. 注:对于函数(),恒成立,则函数的对称轴是函数;两个函数与的图象关于直线对称. 注:若,则函数的图象关于点对称;若 ,则函数为周期为的周期函数. 3. 多项式函数的奇偶性 多项式函数是奇函数的偶次项(即奇数项)的系数全为零. 多项式函数是偶函数的奇次项(即偶数项)的系数全为零. 23.函数的图象的对称性 (1)函数的图象关于直线对称 . (2)函数的图象关于直线对称 . 4.两个函数图象的对称性

(1)函数与函数的图象关于直线(即轴)对称. (2)函数与函数的图象关于直线对称. (3)函数和的图象关于直线y=x对称. 25.若将函数的图象右移、上移个单位,得到函数的图 象;若将曲线的图象右移、上移个单位,得到曲线的图象. 5.互为反函数的两个函数的关系 . 27.若函数存在反函数,则其反函数为,并不是 ,而函数是的反函数. 6.几个常见的函数方程 (1)正比例函数,. (2)指数函数,. (3)对数函数,. (4)幂函数,. (5)余弦函数,正弦函数,, . 7.几个函数方程的周期(约定a>0) (1),则的周期T=a; (2), 或, 或, 或,则的周期T=2a; (3),则的周期T=3a; (4)且,则 的周期T=4a; (5) ,则的周期T=5a;

高中函数的知识点总结

高中函数的知识点总结 关于高中函数的知识点总结 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中

心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.

第十九章一次函数知识点总结

一次函数知识点总结 一、函数 1.变量的定义:在某一变化过程中,我们称数值发生变化的量为变量。 变量还分为自变量和因变量。 2.常量的定义:在某一变化过程中,有些量的数值始终不变,我们称它们为常量。 3.函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x?的每一个确定的值,y都有唯一 确定的值与其对应,那么我们就说x是自变量,y是x的函数,y的值称为函数值. 4.函数的三种表示法:(1)表达式法(解析式法);(2)列表法;(3)图象法. 用数学式子表示函数的方法叫做表达式法(解析式法)。 由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。 把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的方法叫做图像法。 5.求函数的自变量取值范围的方法. (1)要使函数的表达式有意义:○1整式(多项式和单项式)时为全体实数;○2分式时,让分母≠0;○3含二次根号 时,让被开方数≠0 。 (2)对实际问题中的函数关系,要使实际问题有意义。注意可能含有隐含非负或大于0的条件。 6.求函数值方法:把所给自变量的值代入函数表达式中,就可以求出相应的函数值. 7.描点法画函数图象的一般步骤如下: Step1:列表(表中给出一些自变量的值及其对应的函数值); Step2:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); Step3:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来). 8.判断y是不是x的函数的题型 ○1给出解析式让你判断:可给x值来求y的值,若y的值唯一确定,则y是x的函数;否则不是。 ○2给出图像让你判断:过x轴做垂线,垂线与图像交点多余一个(≥2)时,y不是x的函数;否则y是x的函数。 二、正比例函数 1.正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,?其中k叫做比例系数。 注意点○1自变量x的次数是一次幂,且只含有x的一次项;○2比例系数k≠0;○3不含有常数项,只有x 一次幂的单项而已。 2.正比例函数图像:一般地,正比例函数的y=kx(k是常数,k≠0)的图象是一条经过原点的直线,?我们称它为 直线y=kx. 当k>0时,直线y=kx经过第一、三象限(正奇),从左向右上升,即随着x的增大y也增大。 当k<0时,直线y=kx经过第二、四象限(负偶),从左向右下降,即随着x的增大y反而减小。 画正比例函数的最简单方法: (1)先选取两点,通常选出(0,0)与点(1,k);

高中数学函数知识点总结大全

函数知识点大全 一次函数 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx (k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 五、一次函数在生活中的应用:

函数知识点总结

一次函数知识点总结 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值 与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)、平面直角坐标系 1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中水平的数轴叫做横轴(或x轴),取向右为正方向;竖直的数轴叫做纵轴(y轴),取向上为正方向;两轴的交点O叫做原点。在平面内,原点的右边为正,左边为负,原点的上边为正,下边为负。 2、坐标平面内被x轴、y轴分割成四个部分,按照“逆时针方向”分别为第一象限、第二象限、第三象限、第四象限 注意:x轴、y轴原点不属于任何象限。 3、平面直角坐标系中的点分别向x轴、y轴作垂线段,在x轴上垂足所显示的数称为该点的横坐标,在y轴上垂足所显示的数称为该点的纵坐标。点的坐标反映的是一个点在平面内的位置。 写坐标的规则:横坐标在前,纵坐标在后,中间用“,”隔开,全部用小括号括起来。 如P(3,2)横坐标为3,纵坐标为2。 特别注意坐标的顺序不同,表示的就是不同位置的点。 所以点的坐标是一对有顺序的实数,称为有序实数对。 4、平面直角坐标系中的点与有序实数对一一对应。 5、坐标的特征 (1)在第一象限内的点,横坐标是正数,纵坐标是正数;在第二象限内的点,横坐标是负数,纵坐标是正数; 在第三象限内的点,横坐标是负数,纵坐标是负数;在第四象限内的点,横坐标是正数,纵坐标是负数; (2)x轴上点的纵坐标等于零;y轴上点的横坐标等于零. 6、对称点的坐标特征 (1)关于x轴对称的两点:横坐标相同,纵坐标绝对值相等,符号相反; (2)关于y轴对称的两点:横坐标绝对值相等,符号相反,纵坐标相同; (3)关于原点对称的两点:横坐标绝对值相等,符号相反,纵坐标也绝对值相等,符号相反。 (4)第一、三象限角平分线上点:横坐标与纵坐标相同;

(完整版)职高数学各章节知识点汇总

第一章 集合 一、集合的概念 1、集合中元素的特性:确定性、互异性、无序性。 2、元素与集合的关系:A a A a ?∈, 二、集合之间的关系 注:1、子集:一个集合中有n 个元素,则这个集合的子集个数为n 2,真子集个数为12-n 。 2、空集是任何集合的子集,是任何非空集合的真子集。 三、集合之间的运算 1、交集:{}B x A x x B A ∈∈=且|I 2、并集:{} B x A x x B A ∈∈=或|Y 3、补集:{}A x U x x A C U ?∈=,|且 四、充要条件: q p ?,p 是q 的充分条件,q 是p 的必要条件。 q p ?,p 是q 的充要条件,q 是p 的充要条件。 第二章 不等式 一、不等式的基本性质: 1、加法法则: 2、乘法法则: 3、传递性: 4、移项: 二、一元二次不等式的解法

注:当0<-<>?>>a x a a a x a x a x a a x )0(||)0(||或 第三章 函数 一、函数的概念: 1、函数的两要素:定义域、对应法则。 函数定义域的条件: (1)分式中的0≠分母; (2)偶次方根的被开方数0≥; (3)对数的真数0>,底数10≠>且; (4)零指数幂的底数0≠。 2、函数的性质: (1)单调性:一设二求三判定 设:21,x x 是给定区间( )上的任意两上不等的实数 函数为减函数函数为增函数00) ()(121 2??-=?-=?x y x y x f x f y x x x (2)奇偶性: 判断方法:先判断函数的定义域是否关于原点对称,再看)(x f 与)(x f -的关系: )()(x f x f =-偶函数 ;)()(x f x f -=-奇函数;)()(x f x f ±≠-非奇非偶 图象特征:偶函数图象关于y 轴对称,奇函数图象关于原点对称。 二、一次函数 1、 )0(≠+=k b kx y

最新高一数学第三章函数的应用知识点总结

高一数学第三章函数的应用知识点总结 一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数 )(x f y =的图象与x 轴交点的横坐标。 即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点. 3、函数零点的求法: ○ 1 (代数法)求方程0)(=x f 的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 零点存在性定理:如果函数y=f(x)在区间〔a,b 〕上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。 先判定函数单调性,然后证明是否有f (a )·f(b)<0 4、二次函数的零点: 二次函数)0(2≠++=a c bx ax y . (1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点. (2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点. 5、二分法求方程的近似解或函数的零点 ①确定区间〔a,b 〕,验证f(a)·f(b)<0,给定精度ε; ②求区间(a,b)的中点c ; ③计算f(c): 若f(c)=0,则c 就是函数的零点; 若f(a)·f(c)<0,则令b=c (此时零点x0∈(a,c));若f(c)·f(b)<0,则令a=c (此时零点x0∈(c,b)); ④判断是否达到精度ε;即若∣a-b ∣<ε,则得到零点近似值a (或b );否则重复步骤②~④.

高中数学函数知识点总结

福利:本教程由购物省钱的超半价(https://www.360docs.net/doc/cd16444134.html,)整理提供 领下面余额宝红包才是大红包,一般都是5-10元支付的时候把支付方式转为余额宝就行呢没钱往里冲点每天都可以领取早餐钱哟! 李老师微信:LLS88288 小军哥潮装铺微信:7947917 下方是正文: 函数 一、函数的定义: 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A. (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.函数的三要素:定义域、值域、对应法则 3.函数的表示方法:(1)解析法:明确函数的定义域 (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、 离散的点等等。 (3)列表法:选取的自变量要有代表性,可以反应定义域的特征。 4、函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y) 的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反 过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法 A、描点法: B、图象变换法:平移变换;伸缩变换;对称变换,即平移。 (3)函数图像平移变换的特点: 1)加左减右——————只对x 2)上减下加——————只对y 3)函数y=f(x) 关于X轴对称得函数y=-f(x) 4)函数y=f(x) 关于Y轴对称得函数y=f(-x) 5)函数y=f(x) 关于原点对称得函数y=-f(-x) 6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得 函数y=| f(x)| 7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|) 二、函数的基本性质 1、函数解析式子的求法 (1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)、求函数的解析式的主要方法有: 1)代入法: 2)待定系数法: 3)换元法: 4)拼凑法: 2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成 的集合.

相关文档
最新文档