DL15,000 DNA Marker takara

DL15,000 DNA Marker takara
DL15,000 DNA Marker takara

DL15,000 DNA Marker-Takara

浓度

约350 ng/ 5μl

■制品说明

DL15,000 DNA Marker为已含有1×Loading Buffer的DNA溶液,可取5 μl直接电泳,使用十分方便。DL15,000 DNA Marker由DNA片段15,000 bp、10,000 bp、7,500 bp、5,000 bp、2,500 bp、1,000 bp以及250 bp构成,每次取5 μl电泳时,每条带的DNA量约为50 ng。

■保存

-20℃。

融化后于4℃保存,避免反复冻融。

■1%的Agarose电泳图像示意图

■注意事项

1. 电泳时的加样孔宽度小于6 mm 时,每次取5 μl 制品电泳便可得到清晰条带。如果加样孔增宽,须适当增加Marker 制品的加

样量。

2. 对DNA电泳而言,Agarose的纯度对DNA条带的清晰度影响很大。因此,电泳时应尽量选用质量好的Agarose,推荐使用胶浓

度为0.7%~1%。

3. 进行Agarose电泳时,Agarose的浓度与DNA片段的分离性能关系密切。Agarose 浓度越大,对短片段DNA分离性能越好;

反之,Agarose浓度越小,越有利于长片段DNA的分离。

TAKARA 实验室常规试剂配制方法

031*-2./4,+ 5 8679giaifi [`eg]\_debe^h \ZgZbe^ edb`d]:mwwtYOOyyyNwioiuiNjsqNjr .1/{30,z +|2}-4*~ Q c gunvM_\p Jt_WNTL WNVL XNPK : I JRNS7GDO :H :8b~:;:8:M JRNS QK :H 4^R U ;8t 3L A99 POg /} T8Yclw\1yU <8[?`~t 3-C9ix ;AD gQG O U =8u 1E j 2P :HU >8m >m B,{qY 7>]dU SF Z I61E |0P7>q N ijQG O Y Hkg_ra G peY > k +5m:VY 1E gQG O e L vh989I JRNS7GDO : H :8b~:A:8@M JRNS QK :H 4^R U ;8t 3L A99POg /}T8Yclw\1yU <8J-C9ixQG OP A8AU =8u 1E j 2P :HU >8m >m B,{qY 7>]dU SF Z I61E |0P7>q N ijQG O Y Hkg_ra G peY > k +5m:VY 1E gQG O e L vh989m B,{U =87>]dU S c

高效联合抗反转录病毒治疗对艾滋病患者生存质量的影响

高效联合抗反转录病毒治疗对艾滋病患者生存质量的影响 目的对艾滋病患者采取高效联合抗反转录病毒治疗,并观察其对患者生存质量的影响。 方法选取2015年1月~2017年1月到我中心进行治疗的艾滋病患者56例。所有患者均采取高效联合抗反转录病毒治疗,对患者进行6个月的动态追踪,评价其生存质量。结果治疗后0、2、4、6个月,分别进行生存质量测评,独立程度评分逐渐上升(P<0.05);对比不同治疗时间患者的生存质量评分,心理和环境2方面评分差异显著,7~24个月治疗时间的患者评分最高。结论高效联合抗反转录病毒治疗能够提示患者独立程度,持续抗病毒治疗7~24个月时,患者的心理和环境领域生存质量更佳。 标签:艾滋病;生存质量;治疗 生存质量是一个评价治疗效果的综合性指标,能够反映患者的生理功能、社会、环境、心理等多方面状态,比体内病毒量、血清CD4+细胞水平等评价指标更加全面。本文将对艾滋病患者采取高效联合抗反转录病毒治疗(HAART),并观察其对患者生存质量的影响,现报道如下。 1 资料与方法 1.1 一般资料 选取2015年1月~2017年1月到我中心进行治疗的艾滋病患者56例。所有患者均符合《艾滋病诊疗指南》的诊断标准。其中男37例,女19例,平均年龄(38.92±5.20)岁。感染途径:性接触56例,其他2例。 1.2 方法 所有患者均采取高效联合抗反转录病毒治疗,对患者进行6个月的动态追踪,每2个月评价一次患者的生存质量,并检测患者的血常规、肝肾功能、免疫学指标等(CD4+、Th/Ts)等,共4次。 1.3 评价标准 采取EHOQOL-HIV生存质量简表测量患者的躯体、心理、精神、社会适应、环境、独立程度等指标,共31条,百分制,分数越高表明生存质量越高。 1.4 统计学方法 采取SPSS 21.0进行数据处理,计量资料以“x±s”表示,用t检验,以P<0.05为差异有统计学意义。

常用限制性内切酶酶切位点汇总

Acc65I识别位点AccI识别位点AciI识别位点AclI识别位点AcuI识别位点 AfeI识别位点AflII识别位点AflIII识别位点AgeI识别位点AhdI识别位点AleI识别位点AluI识别位点AlwI识别位点AlwNI识别位点ApaI识别位点ApaLI识别位点ApeKI识别位点ApoI识别位点AscI识别位点AseI识别位点AsiSI识别位点AvaI识别位点AvaII识别位点AvrII识别位点BaeI识别位点BamHI识别位点BanI识别位点BanII识别位点

BbvCI识别位点BbvI识别位点 BccI识别位点BceAI识别位点BcgI识别位点 BciVI识别位点 BclI识别位点 BfaI识别位点 BfuAI识别位点 BglI识别位点 BglII识别位点 BlpI识别位点 Bme1580I识别位点BmgBI识别位点BmrI识别位点BmtI识别位点BpmI识别位点Bpu10I识别位点BpuEI识别位点BsaAI识别位点BsaBI识别位点BsaHI识别位点BsaI识别位点BsaJI识别位点BsaWI识别位点BsaXI识别位点BseRI识别位点BseYI识别位点

BsiEI 识别位点BsiHKAI 识别位点BsiWI识别位点BslI 识别位点BsmAI识别位点 BsmBI识别位点BsmFI识别位点BsmI识别位点BsoBI识别位点Bsp1286I识别位点BspCNI识别位点BspDI识别位点BspEI识别位点BspHI识别位点BspMI识别位点BspQI识别位点BsrBI识别位点BsrDI识别位点BsrFI识别位点BsrGI识别位点BsrI识别位点BssHII识别位点BssKI识别位点BssSI识别位点BstAPI识别位点BstBI识别位点BstEII识别位点BstNI识别位点

限制性内切酶酶切位点汇总

Acc65I识别位点 AccI识别位点 AciI识别位点 AclI识别位点 AcuI识别位点 AfeI识别位点 AflII识别位点 AflIII识别位点 AgeI识别位点 AhdI识别位点 AleI识别位点 AluI识别位点 AlwI识别位点 AlwNI识别位点 ApaI识别位点 ApaLI识别位点 ApeKI识别位点 ApoI识别位点 AscI识别位点 AseI识别位点 AsiSI识别位点 AvaI识别位点 AvaII识别位点 AvrII识别位点 BaeI识别位点 BamHI识别位点 BanI识别位点 BanII识别位点

BbvCI识别位点 BbvI识别位点 BccI识别位点 BceAI识别位点 BcgI识别位点 BciVI识别位点 BclI识别位点 BfaI识别位点 BfuAI识别位点 BglI识别位点 BglII识别位点 BlpI识别位点 Bme1580I识别位点 BmgBI识别位点 BmrI识别位点 BmtI识别位点 BpmI识别位点 Bpu10I识别位点 BpuEI识别位点 BsaAI识别位点 BsaBI识别位点 BsaHI识别位点 BsaI识别位点 BsaJI识别位点 BsaWI识别位点 BsaXI识别位点 BseRI识别位点 BseYI识别位点

BsiEI识别位点 BsiHKAI识别位点 BsiWI识别位点 BslI识别位点 BsmAI识别位点 BsmBI识别位点 BsmFI识别位点 BsmI识别位点 BsoBI识别位点 Bsp1286I识别位点 BspCNI识别位点BspDI识别位点 BspEI识别位点 BspHI识别位点 BspMI识别位点 BspQI识别位点 BsrBI识别位点 BsrDI识别位点 BsrFI识别位点 BsrGI识别位点 BsrI识别位点 BssHII识别位点 BssKI识别位点 BssSI识别位点 BstAPI识别位点 BstBI识别位点 BstEII识别位点 BstNI识别位点

常用限制性内切酶酶切位点保护残基

酶切位点保护碱基-PCR引物设计用于限制性内切酶 发布: 2010-05-24 20:19| 来源:生物吧| 编辑:刘浩| 查看: 161 次 本文给出了分子克隆中常用限制性内切酶的保护碱基序列,如AccI,AflIII,AscI,AvaI,BamHI,BglII,BssHII,BstEII,BstXI,ClaI,EcoRI,HaeIII,HindIII,KpnI,MluI,NcoI,NdeI,NheI,NotI,NsiI,PacI,PmeI,PstI,PvuI,SacI,SacII,SalI,ScaI,SmaI,SpeI,SphI,StuI,XbaI,XhoI,XmaI, 为什么要添加保护碱基? 在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。 其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。 该如何添加保护碱基? 添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。 添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260单位的寡核苷酸。取1μg已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别反应2小时和20小时。反应缓冲液含70mM Tris-HCl (pH 7.6), 10 mM MgCl2, 5 mMDTT及适量的NaCl或KCl(视酶的具体要求而定)。20%的PAGE(7M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。

Takara说明书

Code No. RR047A 研究用 PrimeScript TM RT reagent Kit with gDNA Eraser (Perfect Real Time) 说明书

目录 内容页码 ●制品说明1 ●制品内容 1 ●试剂盒外必备材料 1 ●保存 1 ●特长 2 ●使用注意 2 ●操作方法 2 ●Real Time PCR 4 ●实验例 6 ●附录7 ●关联产品8

●制品说明 为了准确地进行基因表达量分析,必须满足只有cDNA作为模板检出的先决条件,但Total RNA中常常混有基因组DNA,并可以直接作为PCR反应的模板进行扩增,因此会造成解析结果不准确。为了避免这种情况发生,通常将检测用引物设计在内含子前后的外显子上,使基因组DNA得不到扩增。但是,此方法不适合具有单个外显子的基因或两个外显子之间所跨的内含子过小的基因,同时当基因组上有伪基因存在时、或设计引物对基因组有非特异性扩增时、以及基因信息没被完全解析的生物种等也同样不适合于本方法。在这种情况下,我们常常需要对Total RNA样品进行DNase I处理,以除去残存的基因组DNA。而DNase I处理通常要进行复杂的纯化操作,同时会造成RNA的降解和损失。 PrimeScript RT reagent Kit with gDNA Eraser是可以除去基因组DNA进行Real Time RT-PCR反应的专用反转录试剂。Kit中使用了具有较强DNA分解活性的gDNA Eraser,通过42℃,2 min即可除去基因组DNA。同时由于反转录试剂中含有抑制DNA分解酶活性的组分,经过gDNA Eraser处理后的样品可以直接进行15 min的反转录反应合成cDNA,因此,20 min内即可迅速完成从基因组DNA去除到cDNA 合成的全过程。 使用本制品合成的cDNA适用于SYBR? Green分析法和TaqMan?探针分析法,可以根据实验目的,选择与SYBR?Premix Ex Taq II(Tli RNaseH Plus)、Premix Ex Taq(Probe qPCR)等定量试剂组合使用。注意:Takara Bio使用SYBR? Green I作为研究试剂已得到Molecular Probes Inc.的许可。SYBR?为Molecular Probes Inc.的注册商标。 ●制品内容(20 μl反应×100次) 1. gDNA Eraser 100 μl 2. 5×gDNA Eraser Buffer*1200 μl 3. PrimeScript RT Enzyme Mix I*2100 μl 4. 5×PrimeScript Buffer 2(for Real Time)*3400 μl 5. RT Primer Mix*4 400 μl 6. RNase Free dH2O 1 ml×2 7. EASY Dilution(for Real Time PCR)*5 1 ml *1:5×gDNA Eraser Buffer在反转录反应前使用,请务必进行基因组DNA的除去反应。 *2:含有RNase Inhibitor。 *3:含有dNTP Mixture。 *4:含有Oligo dT Primer和Random 6 mers。 *5:制作标准曲线时梯度稀释DNA或RNA标准品的稀释液。模板DNA或RNA如果用水或TE Buffer稀释时,由于受Microtube吸附作用等的影响,往往不能准确地进行稀释,导致实验结果精 度降低。使用本制品时,即使稀释至低浓度也能够进行准确地稀释,容易在宽广范围内获得准确定 量的标准曲线。本制品不影响反转录和PCR反应,用其稀释后的样品可直接使用。EASY Dilution 也可以单独购买(Code No.9160)。 注意:EASY Dilution请与本公司Real Time PCR试剂组合使用,对于其他公司的同类制品的适用性本公司尚未进行确认。 ●试剂盒外必备材料 热循环仪(或37℃水浴,42℃水浴和85℃加热块) 反转录反应所用0.2 ml和1.5 ml的微量反应管 微量移液器和枪头(高压灭菌) ●保存:-20℃。

常用限制性内切酶酶切位点

AatII 识别位点 Acc65I 识别位点 AccI 识别位点 AciI 识别位点 AclI 识别位点 AcuI 识别位点 AfeI 识别位点 AflII 识别位点 AflIII 识别位点 AgeI 识别位点 AhdI 识别位点 AleI 识别位点 AluI 识别位点 AlwI 识别位点 AlwNI 识别位点 ApaI 识别位点 ApaLI 识别位点 ApeKI 识别位点 ApoI 识别位点 AscI 识别位点 AseI 识别位点 AsiSI 识别位点

AvaI识别位点 AvaII识别位点 AvrII识别位点 BaeI识别位点 BamHI 识别位点 BanI识别位点 BanII识别位点 BbsI识别位点 BbvCI识别位点 BbvI识别位点 BccI识别位点 BceAI识别位点BcgI识别位点BciVI识别位点BclI识别位点 BfaI识别位点BfuAI识别位点BglI识别位点BglII识别位点BlpI识别位点Bme1580I识别位点BmgBI识别位点BmrI识别位点

BmtI 识别位点 BpmI 识别位点 Bpu10I 识别位点 BpuEI 识别位点 BsaAI 识别位点 BsaBI 识别位点 BsaHI 识别位点 BsaI 识别位点 BsaJI 识别位点 BsaWI 识别位点 BsaXI 识别位点 BseRI 识别位点 BseYI 识别位点 BsgI 识别位点 BsiEI 识别位点 BsiHKAI 识别位点 BsiWI 识别位点 BslI 识别位点 BsmAI 识别位点 BsmBI 识别位点 BsmFI 识别位点 BsmI 识别位点

Takara RT-PCR Kit

Code No.:DRR019A RNA PCR Kit (AMV) Ver.3.0 (100次量)

目录 内 容 页 码 ●制品说明 1 ●制品内容 1 ●保存 2 ●RNA PCR原理 2 ●试剂盒特点 3 ●RNA样品制备 4 ●使用注意 4 ●引物选择 5 ●实验操作 5 ●Q&A9 ●参考文献 9

●制品说明 PCR(Polymerase Chain Reaction;聚合酶链式反应)是一种体外扩增DNA的简单而有效的方法。虽然原理上PCR法是扩增DNA,RNA不能直接被扩增,但是经过反转录酶的作用把RNA反转录成cDNA 后,PCR法便可应用于RNA的解析了。迄今为止,此方法已广泛应用于RNA的构造解析、cDNA的克隆及RNA水平上的表达解析等多种领域。 TaKaRa RNA PCR Kit Ver.3.0是使用AMV(Avian Myeloblastosis Virus)由来的反转录酶将RNA合成cDNA,然后在同一反应管中使用Hot Start PCR用TaKaRa Ex Taq HS DNA聚合酶扩增此cDNA的RT-PCR试剂盒。本试剂盒含有从RNA到cDNA,然后使用PCR法扩增此cDNA所需的全部试剂。 本试剂盒中的Oligo dT-Adaptor Primer的独特设计,大大地提高了Poly(A )+ RNA 3′端区域的cDNA合成效率。Hot Start PCR用DNA聚合酶TaKaRa Ex Taq HS的应用,大大地增加了本试剂盒的扩增性能。 ●制品内容(100次量) 1. AMV Reverse Transcriptase XL(5 U/μl) 50 μl (Avian Myeloblastosis Virus来源) 2. RNase Inhibitor(40 U/μl) 25 μl 3. Random 9 mers(50 pmol/μl) 50 μl 4. Oligo dT-Adaptor Primer(2.5 pmol/μl) 50 μl 5. RNase Free dH2O 1 ml 6. TaKaRa Ex Taq?HS(5 U/μl) 40 μl 7. M13 Primer M4(20 pmol/μl) 50 μl 8. 10×RT Buffer 1 ml [100 mM Tris-HCl(pH8.3),500 mM KCl] 9. 5×PCR Buffer 1 ml 10. dNTP Mixture(各10 mM) 150 μl 11. MgCl2(25 mM) 1 ml 12. Control R-1 Primer(20 pmol/μl) 25 μl (Positive Control RNA下游引物) 13. Control F-1 Primer(20 pmol/μl) 25 μl (Positive Control RNA上游引物) 14. Positive Control RNA(2×105 copies/μl) 25 μl (Transcribed poly(A)+ RNA of pSPTet3 plasmid) 【各种引物序列】 引物名称 各引物序列 Random 9 mers 5′-(P)NNNNNNNNN-3′ Oligo dT-Adaptor Primer 包含dT区域及M13 Primer M4序列。 Control F-1 Primer 5′-CTGCTCGCTTCGCTACTTGGA-3′ Control R-1 Primer 5′-CGGCACCTGTCCTACGAGTTG-3′ M13 Primer M4 5′-GTTTTCCCAGTCACGAC-3′ -1-

TaKaRa TP600型 梯度PCR仪使用说明书

TP600型PCR仪使用说明 目 录 一.外观及功能介绍----------------------------------------------------------------------------------------2二.性能一览表----------------------------------------------------------------------------------------------3三.操作方法------------------------------------------------------------------------------------------------3 1.概述------------------------------------------------------------------------------------------------3 2.使用现有程序进行PCR反应-----------------------------------------------------------------4 3.建立新程序---------------------------------------------------------------------------------------7 4.修改现有程序------------------------------------------------------------------------------------9 5.注册新用户---------------------------------------------------------------------------------------9 6.应用扩展模式-----------------------------------------------------------------------------------10 7.工具栏的使用-----------------------------------------------------------------------------------12

限制性内切酶的一般原则和建议!

限制性内切酶的一般原则和建议! 1.如何做酶切反应? 该问题看似什么简单: DNA中加上酶,然后保温一段时间就可以了。但是在实际操作过程中,我们不断听到:切不动,装不上。问题在什么地方?能系列生产限制性内切酶的公司国际上,就那么几个,位列前 3 的是NEB, Fermentas, SibEnzyme。这些公司提供酶的品质一般都能得到保证。您可以怀疑酶的质量问题,但是更多的问题来源于模板是否合适酶切要求。下面几点对你的酶切是有帮助的。 1) 成功酶切的关键是准备好模板DNA。DNA样品中不能含有有机溶剂(会使酶变性或产生星号货性),不能含有干扰酶活性的污染物质,不能含有高浓度的EDTA (TE中的EDTA浓度较低,对Mg的浓度影响较小);同时要对DNA甲基化程度及其对酶切效率的影响要做到心中有数。 2) 选用合适的酶。根据酶切序列选用,特别注意选用甲基化对酶活性的干扰。 3) 正确使用和保存酶。酶需要保存在-20度的低温环境中,只是在需要用酶才从冰箱中取出来。运输和临时存放时需要将酶至于冰上。手拿酶管时不要接触酶管下步含酶的部分,移酶时尽可能用长TIP, 避免污染。用完后需要及时送回原处。注意:酶通常是最后加。所有4) 反应体积需要根据实验目的定,常规的酶切一般要维持在10-50ul,酶切鉴定10-20ul就可以了。 5) 模板浓度问题:浓度过高,溶液黏度过大,酶不能有效扩散,酶切效果不会好。浓度过低,也会影响酶活性。 6) 注意模板用量和反应体积的关系。对酶用量,模板用量,反应体积等要素的确定需要的是时间和经验的积累。 7) 酶切反应的各个组分加完后,需要用TIP小心混匀几次,short spin 一下就可以保温了。一般不能使用振荡器混匀。 8) 反应温度的选择。一般反应都用37度,但是 Sma I 的最适合温度是25度,37度时酶仍表现出活性,但是效率下降50%。部分从耐热菌制备的酶需要在37度以上的温度反应,如Taq I的最适温度为65度,37度保温,效率仅为前者的1/10。 9) 反应时间的选择。一般酶切鉴定30分钟就可以了。要完全酶切可以采用少量的酶长时间反应,或较高的酶量短时间处理都可以达到。在使用高酶量的时候需要注意甘油的最终浓度不要超过5%,也就是说10ul的体系,酶的用量不要超过1ul。 10) 是否和如何终止反应?酶切鉴定之类的实验不需要特殊处理。灭活的手段:加入高浓度的EDTA;65度或80度热处理20-30分钟;部分从高温菌纯化出来的内切酶由于最适的反应温度比较高,热处理灭活不一定完全,需要用苯酚/氯仿/乙醇方法纯化;电泳回收也是实验室常用除酶的手段。 2.如果遇到酶切不动或切不完全,该怎么办? 要回答这么问题常常需要了解酶活性单位是如何确定,我们多次接到这样的问题:1个单位的酶能在60分钟内切1ug的DNA,为什么我们的DNA那么少切那么长时间也不能切开或切完全?从下面几个因素去考虑: 1) 酶是否有活性:酶的活性单位通常是在60分钟酶切1ug lambda DNA或特定线状DNA所需要的酶量。鉴定酶的活性高低不是用您待切的DNA模板,也不是别的公司的酶来判定。因为不同公司酶可能是从不同系统中纯化的,虽然识别位点相同,但是酶的特性可能是有差异的。鉴定酶必须使用使用说明书上认定的酶活确定的方式,通常需要用lambda DAN做模板来判定。同时如果酶对甲基化敏感,还需要用Dcm-, Dam-的DNA.不排除由于运输或分装不当导致酶活性下降,这种情况是很少发生。我们公

takara 胶回收试剂盒说明书

操作流程 1. 使用TAE缓冲液或TBE缓冲液制作琼脂糖凝胶,然后对目的DNA进行琼脂糖凝胶电泳。 2. 在紫外灯下切出含有目的DNA的琼脂糖凝胶,用纸巾吸尽凝胶表面的液体。此时应注意尽量切除不含目的DNA部分的凝胶,尽量减小凝胶体积,提高DNA回收率。胶块超过300 mg时,请使用多个Column进行回收,否则严重影响收率。注)切胶时请注意不要将DNA 长时间暴露于紫外灯下,以防止DNA损伤。 3. 切碎胶块。胶块切碎后可以加快操作步骤6的胶块溶解时间,提高DNA回收率。 4. 称量胶块重量,计算胶块体积。计算胶块体积时,以1 mg=1 μl 进行计算。 5. 向胶块中加入胶块溶解液Buffer GM,Buffer GM的加量如下表: 凝胶浓度Buffer GM使用量 1.0%3个凝胶体积量 1.0%~1.5%4个凝胶体积量 1.5%~ 2.0%5个凝胶体积量 6. 均匀混合后室温15-25℃溶解胶块(胶浓度较大或比较难溶时可以在37℃加热)。此时应间断振荡混合,使胶块充分溶解(约5~10分钟)。 7. 当凝胶完全溶解后,观察溶胶液的颜色,如果溶胶液颜色由黄色变为橙色或粉色,向上述胶块溶解液中加入3 M醋酸钠溶液(pH5.2)10 μl,均匀混合至溶液恢复黄色。当分离小于400 bp的DNA片段时,应在此溶液中再加入终浓度为20%的异丙醇。 8. 将试剂盒中的Spin Column安置于Collection Tube上。 9. 将上述操作步骤7的溶液转移至Spin Column中,12,000 rpm离心1分钟,弃滤液。注)如将滤液再加入Spin Column中离心一次,可以提高DNA的回收率。 10. 将700 μl 的Buffer WB加入Spin Column中,室温12,000 rpm离心30秒钟,弃滤液。注)请确认Buffer WB中已经加入了指定体积的100%乙醇。 11. 重复操作步骤10。 12. 将Spin Column安置于Collection Tube上,室温12,000 rpm离心1分钟。 13. 将Spin Column安置于新的1.5 ml的离心管上,在Spin Column膜的中央处加入30 μl 灭菌蒸馏水或Elution Buffer,室温静置1分钟。注)将灭菌蒸馏水或Elution Buffer加热至60℃使用时有利于提高洗脱效率。 14. 室温12,000 rpm离心1分钟洗脱DNA。

Takara T4 polymerase

T4 DNA Polymerase 使 用 说 明 书 TaKaRa Code: D2040 包 装: T4 DNA Polymerase(2~5 U/μl) 50 Units 10×T4 DNA Polymerase Buffer 1 ml 0.1% BSA* 500 μl * BSA在-20℃下易产生沉淀,应尽量避免多次反复冻融。短期 使用请在4℃下保存。产生稍许沉淀不影响反应效果。 保 存: -20℃ ●制品说明 在模板及引物存在的条件下,催化与模板互补的脱氧核苷酸依次选择性地连接在引物的3′-OH末端上的反应。本酶还具有单链DNA特异性的3′→5′外切核酸酶活性,该活性比Klenow Fragment强100~1,000倍,也作用于双链DNA,在dNTP存在条件下表现出聚合酶活性,当dNTP用尽时转为降解DNA 的活性。本酶不含 5′→3′的外切核酸酶活性。 ●酶贮存溶液 KPB 缓冲液(pH6.5) 200 mM DTT 1 mM Glycerol 50 % ●起 源 Escherichia coli carrying the plasmid containing phage T4 DNA polymerase gene。 ●活性定义 以热变性小牛胸腺DNA为模板/引物,在37℃、pH8.8的条件下,30分钟内使10 nmol全核苷酸掺入酸不溶性沉淀物所需要的酶量定义为1个活性单位(U)。 ●纯 度 2 U的本酶和1 μg的Closed circular(RFI)pBR322 DNA在37℃下反应16小时,DNA的电泳谱带 不发生变化。

●用 途 1)利用较强的3′→5′的外切核酸酶活性,通过置换合成(Replacement synthesis)从DNA片段的3’末端进行标记。 2) DNA末端的平滑化。 3) 通过引物伸长法解析mRNA转录的起始点。 ●使用注意 1) 本酶的最适pH为8~9,在pH7.5及pH9.7时活性约为50%。 2) 活性的表达需要Mg2+的存在。为了获得最大活性,还需要SH基的还原剂存在。 3) 整个反应体系中的离子强度超过100 mM时活性将被抑制。 4) 本酶易受模板DNA高级结构的影响,T4 gene 32产物可以显著提高聚合酶活性,而3′→5′的外切核酸酶活性则完全被抑制。 5) 在10×反应缓冲液中直接加入0.1% BSA时会产生大量白色沉淀,因此,在调制反应液时请按下列顺序添加试剂: dH2O→10×反应缓冲液→0.1% BSA→底物DNA。 ●添附Buffer组成(保存:-20℃) 10×T4 DNA Polymerase Buffer Tris-acetate(pH7.9) 330 mM CH3COOK 660 mM (CH3COO)2Mg100 mM DTT 5 mM ●使用例 DNA片段的末端平滑化 1. 在微量离心管内配制下列反应液,全量为9 μl。 突出末端DNA片段 0.1 pmol以上 10×T4 DNA Polymerase Buffer 1 μl 0.1 % BSA 1 μl dNTP Mixture(各2.5 mM) 1 μl dH2O up to 9 μl 2. 为防止DNA末端的“退火”(Annealing),先在70℃进行5分钟保温后,移入37℃的恒温槽中。 3. 加入1~2 U的T4 DNA Polymerase,用取样器轻轻混合(Pipetting),避免用振荡器剧烈搅拌。 4. 在37℃保温5分钟。 5. 用振荡器剧烈搅拌使酶失活(用振荡器搅拌后酶几乎全部失活)。为了避免过剩反应,把反应液置于冰中。进行连接反应时,最好马上进行。如果不立刻进行下一步反应,应进行苯酚/氯仿处理、乙醇沉淀后在-20℃下保存。 V2010.02

常用限制性内切酶酶切位点汇总

ApaI识别位点Acc65I识别位点 ApaLI识别位点AccI识别位点 ApeKI识别位点AciI识别位点 ApoI识别位点AclI识别位点 AscI识别位点AcuI识别位点 AseI识别位点AfeI识别位点 AsiSI识别位点AflII识别位点 AvaI识别位点AflIII识别位点 AvaII识别位点AgeI识别位点 AvrII识别位点AhdI识别位点 BaeI识别位点AleI识别位点 BamHI识别位点AluI识别位点 BanI识别位点AlwI识别位点 BanII识别位点AlwNI识别位点

BmrI识别位点BbvCI识别位点 BmtI识别位点BbvI识别位点 BpmI识别位点BccI识别位点 Bpu10I识别位点BceAI识别位点 BpuEI识别位点BcgI识别位点 BsaAI识别位点BciVI识别位点 BsaBI识别位点BclI识别位点 BsaHI识别位点BfaI识别位点 BsaI识别位点BfuAI识别位点 BsaJI识别位点BglI识别位点 BsaWI识别位点BglII识别位点 BsaXI识别位点BlpI识别位点 BseRI识别位点Bme1580I识别位点 BseYI识别位点BmgBI识别位点

BspMI识别位点BsiEI识别位点 BspQI识别位点BsiHKAI识别位点 BsrBI识别位点BsiWI识别位点 BsrDI识别位点BslI识别位点 BsrFI识别位点BsmAI识别位点 BsrGI识别位点BsmBI识别位点 BsrI识别位点BsmFI识别位点 BssHII识别位点BsmI识别位点 BssKI识别位点BsoBI识别位点 BssSI识别位点Bsp1286I识别位点 BstAPI识别位点BspCNI识别位点 BstBI识别位点BspDI识别位点 BstEII识别位点BspEI识别位点 BstNI识别位点BspHI识别位点

常见限制性内切酶识别序列(酶切位点)

The Type II restriction systems typically contain individual restriction enzymes and modification enzymes encoded by separate genes. The Type II restriction enzymes typically recognize specific DNA sequences and cleave at constant positions at or close to that sequence to produce 5-phosphates and 3-hydroxyls. Usually they require Mg 2+ ions as a cofactor, although some have more exotic requirements. The methyltransferases usually recognize the same sequence although some are more promiscuous. Three types of DNA methyltransferases have been found as part of Type II R-M systems forming either C5-methylcytosine, N4-methylcytosine or N6-methyladenine. ApaI (类型:Type II restriction enzyme )识别序列:5'GGGCC^C 3' BamHI(类型:Type II restriction enzyme )识别序列:5' G^GATCC 3' BglII (类型:Type II restriction enzyme )识别序列:5' A^GATCT 3' EcoRI (类型:Type II restriction enzyme )识别序列:5' G^AATTC 3' HindIII (类型:Type II restriction enzyme )识别序列:5' A^AGCTT 3' KpnI (类型:Type II restriction enzyme )识别序列:5' GGTAC^C 3' NcoI (类型:Type II restriction enzyme )识别序列:5' C^CATGG 3' NdeI (类型:Type II restriction enzyme )识别序列:5' CA^TATG 3' NheI (类型:Type II restriction enzyme )识别序列:5' G^CTAGC 3' NotI (类型:Type II restriction enzyme )识别序列:5' GC^GGCCGC 3' SacI (类型:Type II restriction enzyme )识别序列:5' GAGCT^C 3' SalI (类型:Type II restriction enzyme )识别序列:5' G^TCGAC 3' SphI (类型:Type II restriction enzyme )识别序列:5' GCATG^C 3' XbaI (类型:Type II restriction enzyme )识别序列:5' T^CTAGA 3' XhoI (类型:Type II restriction enzyme )识别序列:5' C^TCGAG 3' 当然,上面总结的这些肯定不全,要查找更多内切酶的识别序列,你还可以选择下面几种方法: 1. 查你所使用的内切酶的公司的目录或者网站;NEB网站上提供的识别序列图表下载 2. 用软件如:Primer Premier5.0或Bioedit等,这些软件均提供了内切酶识别序列的信息;

常用限制性内切酶酶切位点总结

常用限制性内切酶酶切位点总结

————————————————————————————————作者:————————————————————————————————日期:

Acc65I识别位点 AccI识别位点 AciI识别位点 AclI识别位点 AcuI识别位点 AfeI识别位点 AflII识别位点 AflIII识别位点 AgeI识别位点 AhdI识别位点 AleI识别位点 AluI识别位点 AlwI识别位点 AlwNI识别位点 ApaI识别位点 ApaLI识别位点 ApeKI识别位点 ApoI识别位点 AscI识别位点 AseI识别位点 AsiSI识别位点 AvaI识别位点 AvaII识别位点 AvrII识别位点 BaeI识别位点 BamHI识别位点 BanI识别位点 BanII识别位点

BbvCI识别位点 BbvI识别位点 BccI识别位点 BceAI识别位点 BcgI识别位点 BciVI识别位点 BclI识别位点 BfaI识别位点 BfuAI识别位点 BglI识别位点 BglII识别位点 BlpI识别位点 Bme1580I识别位点 BmgBI识别位点 BmrI识别位点 BmtI识别位点 BpmI识别位点 Bpu10I识别位点 BpuEI识别位点 BsaAI识别位点 BsaBI识别位点 BsaHI识别位点 BsaI识别位点 BsaJI识别位点 BsaWI识别位点 BsaXI识别位点 BseRI识别位点 BseYI识别位点

BsiEI识别位点 BsiHKAI识别位点 BsiWI识别位点 BslI识别位点 BsmAI识别位点 BsmBI识别位点 BsmFI识别位点 BsmI识别位点 BsoBI识别位点 Bsp1286I识别位点 BspCNI识别位点BspDI识别位点 BspEI识别位点 BspHI识别位点 BspMI识别位点 BspQI识别位点 BsrBI识别位点 BsrDI识别位点 BsrFI识别位点 BsrGI识别位点 BsrI识别位点 BssHII识别位点 BssKI识别位点 BssSI识别位点 BstAPI识别位点 BstBI识别位点 BstEII识别位点 BstNI识别位点

takara分子伴侣说明书

Cat. # 3340 For Research Use Chaperone Plasmid Set Product Manual v201405

Table of Contents I. Description (3) II. Components (3) III. Storage (5) IV. Protocol (5) V. FAQs (6) VI. References (8) VII. Related Products (9) Safety Precautions Because the araB promoter and araC gene derived from Salmonella typhimurium are present on the Chaperone Plasmids pG-KJE8, pGro7, pKJE7, and pTf16, please follow all relevant guidelines for experiments using recombinant DNA as indicted by your organization when using this prod-uct.

I.Description Large-scale expression of recombinant proteins is essential for structural and func- tional analyses of proteins. A variety of protein expression systems have been devel- oped to produce high levels of protein. Escherichia coli is commonly used as a host for protein expression, since it is a simple system that can be used to express a wide variety of proteins. However, expression of protein in E. coli often results in various problems, such as the formation of inclusion bodies and protease degradation of the protein. These frequently encountered issues often are a result of improper folding of the expressed proteins. Molecular chaperones are involved in protein folding, and numerous studies have been conducted to elucidate the mechanisms of in vivo protein folding. Takara's Chap- erone Plasmid Set consists of five different types of chaperone plasmids developed by HSP Research Institute, Inc. The plasmids are designed to enable efficient expression of multiple molecular chaperones known to work cooperatively in the protein folding process. It has been reported that coexpression of a target protein with one of these chaperone plasmids increases recovery of expressed proteins in the soluble fraction. Such proteins often form inclusion bodies using conventional methods (Figure 1). II.Components 1.Plasmid pG-KJE8 : 10 ng/μl 100 μl 2.Plasmid pGro7 : 10 ng/μl 100 μl 3.Plasmid pKJE7 : 10 ng/μl 100 μl 4.Plasmid pG-Tf2 : 10 ng/μl 100 μl 5.Plasmid pTf16 : 10 ng/μl 100 μl No.Plasmid Chaperone Promoter Inducer Resistant Marker References 1pG-KJE8d n a K-d n a J- grpE araB L-Arabinose Cm2, 3 groES-groEL Pzt-1Tetracycline 2pGro7groES-groEL araB L-Arabinose Cm2 3pKJE7d n a K-d n a J- grpE araB L-Arabinose Cm2 4pG-Tf2groES-groEL- tig Pzt-1Tetracycline Cm3 5pTf16tig araB L-Arabinose Cm3

相关文档
最新文档