数学物理方法答案-刘连寿

数学物理方法答案-刘连寿
数学物理方法答案-刘连寿

6—1 4.

7.

9.

10.

11.

6—2 2.

3.

5.

7.

6—3 1.

6.

7.

10.

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0z f z e d ζ ζζ=?,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)uxy = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y - C.(cos sin )x e y y y y - D.(cos sin )x e x y y y -

数学物理方法第八章作业答案

P 175 8.1在0x =的邻区域内,求解下列方程: (1) 2 (1)0x y''xy'y -+-= 解:依题意将方程化为标准形式2 2 10(1) (1) x y''y'y x x + - =-- 2 ()(1) x p x x = -,2 1()(1) q x x =- - 可见0x =是方程的常点. 设方程的级数解为0 ()n n n y x c x ∞ == ∑,则1 1 ()n n n y'x nc x ∞ -== ∑,2 2 ()(1)n n n y''x n n c x ∞ -== -∑ 代入原方程得2 2 2 1 2 2102 2 2 1 (1)(1)0(1)(1)0 n n n n n n n n n n n n n n n n n n n n n n n n n n c x x n n c x x nc x c x n n c x n n c x nc x c x ∞ ∞ ∞ ∞ ---====∞ ∞ ∞ ∞ -====---+- =? -- -+ - =∑∑∑∑∑∑∑∑ 由0 x 项的系数为0有:202012102 c c c c ?-=?= 由1 x 项的系数为0有:311313200 (0)c c c c c ?+-=?=≠ 由2x 项的系数为0有:42224201143212012 24 c c c c c c c ?-?+-=?= = 由3 x 项的系数为0有:533355432300c c c c c ?-?+-=?= 由4x 项的系数为0有:64446403165434010 80 c c c c c c c ?-?+-=?= = 由5 x 项的系数为0有:755577654500c c c c c ?-?+-=?= 由6 x 项的系数为0有:866686025587656056 896 c c c c c c c ?-?+-=?== …… ∴ 方程的级数解为 2 4 6 8 0100000 1115()2 24 80 896 n n n y x c x c c x c x c x c x c x ∞== =++ + + + +???∑

数学物理方法第三章答案完整版

第三章答案 1. (6分)已知齐次状态方程Ax x =&的状态转移矩阵)(t Φ如下,求其逆矩阵)(1 t -Φ和系统矩阵A 。 ??? ???+-+---=Φ--------2t t 2t t 2t t 2t t 3e 2e 3e 3e 2e 2e 2e 3e )t (。 解: ??????+-+---=-Φ=Φ-2t t 2t t 2t t 2t t 1 3e 2e 3e 3e 2e 2e 2e 3e )t ()t ( (3分) ? ? ? ? ??=Φ==4-3-21|)t (A 0t & (3分) 2. (8分)求定常控制系统的状态响应。 ()()()()()()0101,0,0,11210x t x t u t t x u t t ??????=+≥== ? ? ?--?????? & 解:11t t t At t t t t t t e te te e e t t te e te -------+??+??== ? ?----?? ?? (4分) 0()()(0)()()10t t t t t x t t x Bu t d e te e d te e e ττττττ τττ------=Φ+Φ-????+??=+=??????--?????? ?? (4分) 3.(3分) 已知齐次状态方程Ax x =&的状态转移矩阵)(t Φ如下,求其系统矩阵A 。 ?? ? ???+-+---=Φ--------2t t 2t t 2t t 2t t 3e 2e 3e 3e 2e 2e 2e 3e )t (。 解:? ? ? ? ??=Φ==4-3-21|)t (A 0t & (3分) 4.(8分)已知系统的状态方程为: u x x ?? ????+??????=111101&, 初始条件为1)0(1=x ,0)0(2=x 。求系统在单位阶跃输入作用下的响应。 解:解法1:?? ? ???=??? ? ????????---=Φ--t t t e te e s s L t 01101)(1 1; (4分) ?? ????-=??????-+??????=??? ?????????-+????????????=?---t t t t t t t t t t t t t te e te e te e d e e t e e te e x 212111)(00100τττττ。 (4分) 解法2: ?? ????--=??????--+??????--=+-=-s s s s s s s s s s x s Bu A s s x 21)1(1 11)1(11)1(1)}0()({)I ()(22221 ;

数学物理方法习题答案[1]

数学物理方法习题答案: 第二章: 1、(1)a 与b 的连线的垂直平分线;以0z 为圆心,2为半径的圆。 (2)左半平面0,x <但是除去圆22(1)2x y ++=及其内部;圆2211()416x y -+= 2、2 ,cos(2)sin(2)i e i π ππ+; 32,2[cos(sin(3)i e i π ππ+; ,(cos1sin1)i e e e i ?+ 3、22k e ππ--; (623)i k e ππ+; 42355cos sin 10cos sin sin ?????-+; 11()sin ()cos 22b b b b e e a i e e a --++- 1 ()cos 2 y y ay b e e x e ---- 4、(1) 2214u υ+= 变为W 平面上半径为1 2的圆。 (2)u υ=- 平分二、四象限的直线。 5、(1) z ie iC -+; 2(1) 2i z -; ln i z - (2) 选取极坐标 ,, ()2 2 u C f z ?? υ==+=6、ln C z D + 第三章: 1、 (1) i π (2)、 i ie π-- (3)、 0 (4)、i π (5)、6i π 2、 设 ()!n z z e f n ξ ξ= z 为参变数,则 () 1 220 1 1 () 1(0)2!2! 1()()!!! ! n z n n n l l n n n n z z n z e d f d f i n i n z d z z e e n n d n n ξξξξξξξξπξξπξ ξ +=== ====? ? 第四章: 1、(1) 23 23 ()()ln 22z i z i z i i i i i ---+-+- (2)23313 (1) 2!3!e z z z ++++ (3) 211111()()[(1)(1)](1)11222k k k k k k z z i i i z z z i z i z i ∞=---=-=--++--<+-+∑ 2、(1) 1 n n z ∞ =--∑ (2) 11()43f z z z =--- ①3z <时 11011()34k k k k z ∞ ++=-∑ , 34z <<时

第七章 数学物理定解问题习题 数学物理方法梁昆淼

第七章 数学物理定解问题 1. 一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端长为5/1处把弦朝横向拨开距离h ,然后放手任其振动。横向位移),(t x u 的初始条件为 ???≤<-≤≤==)5/()4/()(5)5/0(/5,0l x l l x l h l x l hx u u t 。 2.数学物理方程定解问题的适定性是指解的_存在性__,__唯一性__,__稳定性_。 3.一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端长为3/l 处 把弦朝横向拨开距离h ,然后放手任其振动。横向位移),(t x u 的初始条件为 .0)0,(u ; )3/( ,2/)(3)0,( )3/0( ,/3)0,(t =≤≤-=≤≤=x l x l l x l h x u l x l hx x u 和 4. 一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端长为5/9处 把弦朝横向拨开距离h ,然后放手任其振动。横向位移),(t x u 的初始条件为、 95,[0,]59(,)9()5,[,]49t hx l x l u x t h l x l x l l =?∈??=?-?∈??。 5. 一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端长为3/2处把弦朝横向拨开距离h ,然后放手任其振动。横向位移),(t x u 的初始条件为 ???≤<-≤≤==)3/2(/)(3)3/20(2/3,0l x l l x l h l x l hx u u t 。 6.一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端长为6/l 处 把弦朝横向拨开距离h ,然后放手任其振动。横向位移),(t x u 的初始条件为 。 7. 一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端四分之一

数学物理方法试题

嘉应学院 物理 系 《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 2、奇点分为几类?如何判别? (6分) 3、何谓定解问题的适定性?(6分) 4、什么是解析函数?其特征有哪些?(6分) 5、写出)(x δ挑选性的表达式(6分) 6、写出复数2 3 1i +的三角形式和指数形式(8分) 7、求函数 2 ) 2)(1(--z z z 在奇点的留数(8分) 8、求回路积分 dz z z z ?=12cos (8分) 9、计算实变函数定积分dx x x ?∞ ∞-++1 1 4 2(8分) 10、求幂级数k k i z k )(11 -∑∞ = 的收敛半径(8分) 二、计算题(共30分) 1、试用分离变数法求解定解问题(14分) ?? ?????=-===><<=-====0, 2/100 ,000002t t t l x x x x xx tt u x u u u t l x u a u

2、把下列问题转化为具有齐次边界条件的定解问题(不必求解)(6分) ??? ? ? ???? ===-==?====0,sin 0),(000b y y a x x u a x B u u y b Ay u u π 3、求方程 满足初始条件y(0)=0,y ’(0)=1 的解。(10分) 嘉应学院 物理 系 《数学物理方法》A 课程考试题 一、简答题(共70分) 1、什么是解析函数?其特征有哪些?(6分) 2、奇点分为几类?如何判别? (6分) 3、何谓定解问题的适定性?(6分) 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分) 5、写出)(x δ挑选性的表达式(6分) 6、求幂级数k k i z k )(11 -∑∞ = 的收敛半径(8分) 7、求函数2 )2)(1(1 --z z 在奇点的留数(8分) 8、求回路积分 dz z z z ?=12cos (8分) t e y y y -=-'+''32

数学物理方法试题

数学物理方法试卷 一、选择题(每题4分,共20分) 1.柯西问题指的是( ) A .微分方程和边界条件. B. 微分方程和初始条件. C .微分方程和初始边界条件. D. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( ) A .存在性和唯一性. B. 唯一性和稳定性. C. 存在性和稳定性. D. 存在性、唯一性和稳定性. 3.牛曼内问题 ?????=??=?Γ f n u u ,02 有解的必要条件是( ) A .0=f . B .0=Γu . C .0=?ΓdS f . D .0=?Γ dS u . 4.用分离变量法求解偏微分方程中,特征值问题???==<<=+0 )()0(0 ,0)()(''l X X l x x X x X λ 的解是( ) A .) cos , (2x l n l n ππ??? ??. B .) sin , (2 x l n l n ππ?? ? ??. C .) 2)12(cos ,2)12( (2x l n l n ππ-??? ??-. D .) 2)12(sin ,2)12( (2x l n l n ππ-?? ? ??-. 5.指出下列微分方程哪个是双曲型的( ) A .0254=++++y x yy xy xx u u u u u . B .044=+-yy xy xx u u u . C .02222=++++y x yy xy xx u y xyu u y xyu u x . D .023=+-yy xy xx u u u . 二、填空题(每题4分,共20分)

1.求定解问题???? ?????≤≤==>-==><<=??-??====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x u t u t t t x x 的解是( ) 2.对于如下的二阶线性偏微分方程 0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx 其特征方程为( ). 3.二阶常微分方程0)()4341()(1)(2'''=-++ x y x x y x x y 的任一特解=y ( ). 4.二维拉普拉斯方程的基本解为( r 1ln ),三维拉普拉斯方程的基本解为( ). 5.已知x x x J x x x J cos 2)( ,sin 2)(2 121ππ== -,利用Bessel 函数递推公式求 =)(2 3x J ( ). 三、(20分)用分离变量法求解如下定解问题 222220 000, 0, 00, 0, t 0, 0, 0x .x x l t t t u u a x l t t x u u x x u x u l ====???-=<<>???????==>?????==≤≤?? 解:

数学物理方法典型习题

典型习题 一、填空题: 1 的值为 , , 。 2 、1-+的指数表示为_________ ,三角表示为 。 3、幂级数2 k k=1(k!)k z k ∞ ∑的收敛半径为 。 4、ln(5)-的值为 。 5、均匀介质球,半径为0R ,在其中心置一个点电荷Q 。已知球的介电常数为 ε,球外为真空,则电势所满足的泛定方程为 、 。 6、在单位圆的上半圆周,积分1 1||__________z dz -=?。 7、长为a 的两端固定弦的自由振动的定解问问题 。 8、具有轴对称性的拉普拉斯方程的通解为 。 9、对函数f(x)实施傅里叶变换的定义为 ,f (k )的傅里叶逆变换为 。 10、对函数f(x)实施拉普拉斯变换的定义为 。 二、简答题 1、已知()f z u iv =+是解析函数,其中22 v(x,y)=x y +xy -,求 (,)u x y 。 2、已知函数1w z = ,写出z 平面的直线Im 1z =在w 平面中的,u v 满足的方程。 3、将函数21()56f z z z =-+在环域2||3z <<及0|2|1z <-<内展开成洛朗级数. 4、长为L 的弹性杆,一端x=0固定,另一端沿杆的轴线方向被拉长p 后静止(在弹性限度内),突然放手后任其振动。试写出杆的泛定方程及定解条件。 三、计算积分: 1. ||22(1)(21)z zdz I z z ==-+? 2.||2sin (3)z zdz I z z ==+? 3.22202(1)x I dx x ∞ =+? 4.||1(31)(2) z zdz I z z ==++? 5. ||23cos z zdz I z ==? 6. 240x dx 1x I ∞=+? 7、0sin x dx x ∞ ? 8、20cos 1x dx x ∞+? 四、使用行波法求解下列方程的初值问题

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

数学物理方法第08章习题

第八章 习题答案 8.1-1 证明递推公式: (1)()()()x l x x x l l l P P P 1=' -'- (2)()()()()x l x x x l l l P 1P P 1+=' -'+ (3)()()()()x l x x l l l P 12P P 11+=' -'-+ 证明:基本递推公式 ()()()()()x l x l x x l l l l 11P 1P P 12+-++=+ ① ()()()()x x x x x l l l l ' -'+'=-+P 2P P P 11 ② (1)将①式对x 求导后可得: ()()()()()()()x l x l x l x x l l l l l '++'=++'++-11P 1P P 12P 12 ③ 由③-()?+1l ②可得 (目的:消去()x l ' +1P ) ()()()()()()x l x l x x l l l l P 1P 12P 12+-++'+ ()()()()()x l x x l x l l l l '++'+-'=--P 12P 1P 11 整理可得:()()()x l x x x l l l P P P 1=' -'- (2)将()()()x l x x x l l l P P P 1=' -'-乘以l 得: ()()()x l x l x lx l l l P P P 21=' -'- ④ 由③-④得 (目的:消去()x l ' -1P ) ()()()()()()x l x l x x l l l l '+=++'++12P 1P 1P 1 整理可得:()()()()x l x x x l l l P 1P P 1+=' -'+ (3)由2×③-()12+l ×②可得: (目的:消去()x l ' P ) ()()()()()()x l x l x l l l l '++'+++-+11P 12P 12P 24 ()()()()()x l x l x l l l l P 12P 22P 211++' ++'+- 整理可得:()()()()x l x x l l l P 12P P 11+=' -'-+

(整理)数学物理方法

《数学物理方法》课程考试大纲 一、课程说明: 本课程是物理学专业的一门重要基础课程,它是继高等数学后的一门数学基础课程。 本课程的教学目的是:(1) 掌握复变函数、数学物理方程、特殊函数的基本概念、基本原理、基本解题计算方法;(2) 掌握把物理问题归结成数学问题的方法,以及对数学结果做出物理解释。为今后学习电动力学、量子力学和统计物理等理论物理课程打下必要的数学基础。 本课程的重点是解析函数、留数定理、傅里叶变换、数学物理方程、分离变数法、傅里叶级数法、本征值问题等。 本课程的难点是把物理问题归结成数学问题,以及各种数学物理方程的求解。 二、参考教材: 必读书:《数学物理方法》,梁昆淼编,高等教育出版社,1998年6月第3版。 参考书:《数学物理方法》,汪德新编,科学出版社,2006年8月第3版;《数学物理方法》,赵蕙芬、陆全康编,高等教育出版社,2003年8月第2版。 三、考试要点: 第一章复变函数 (一)考核知识点 1、复数及复数的运算 2、复变函数及其导数 3、解析函数的定义、柯西-黎曼条件 (二)考核要求 1、掌握复数三种形式的转换。 2、掌握复变函数的导数和解析等基本概念,并掌握判断导数是否存在和函数是否解析的 方法。 u 。 3、了解解析函数与调和函数的关系,并能从已知调和函数u或v,求解析函数iv 第二章复变函数的积分 (一)考核知识点 1、复变函数积分的运算 2、柯西定理 (二)考核要求 1、理解单通区域和复通区域的柯西定理,并能用它们来计算复变函数的积分。

2、掌握应用原函数法计算积分。 3、掌握柯西公式计算积分。 第三章幂级数展开 (一)考核知识点 1、幂级数的收敛半径 2、解析函数的泰勒展开 3、解析函数的洛朗展开 (二)考核要求 1、理解幂级数收敛圆的性质。 2、掌握把解析函数展开成泰勒级数的方法。 3、掌握把环域中的解析函数展开成洛朗级数的方法。 4、理解孤立奇点的分类及其类型判断。 第四章留数定理 (一)考核知识点 1、留数的计算 2、留数定理 3、利用留数定理计算实变函数定积分 (二)考核要求 1、掌握留数定理和留数计算方法。 2、掌握利用留数定理计算三类实变函数定积分。 第五章傅里叶变换 (一)考核知识点 1、傅里叶级数 2、傅里叶变换 3、δ函数 (二)考核要求 1、掌握周期函数的傅里叶级数形式和定义在有限区间) ,0(l上的函数的傅里叶展开。 2、掌握非周期函数的傅里叶变换。 3、掌握δ函数的性质及其傅里叶积分的形式。 第七章数学物理方程的定解问题

【最最最最最新】数学物理方法试卷(附答案)

福师大物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类?如何判别?(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性?(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 4、什么是解析函数?其特征有哪些?(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数2 31i +的三角形式和指数形式(8分) 三角形式:()3sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=????? ?---=→z z z z sf z

【】数学物理方法试卷(全答案)

嘉应学院物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 # 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 > 4、什么是解析函数其特征有哪些(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 |

4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型(6分) 数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数 231i +的三角形式和指数形式(8分) ¥ 三角形式:()3 sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2

数学物理方法习题及解答

2. 试解方程:()0,04 4 >=+a a z 44424400000 ,0,1,2,3 ,,,,i k i i z a a e z ae k ae z i i πππ π ωωωωω+=-=====--若令则 1.计算: (1) i i i i 524321-+ -+ (2) y = (3) 求复数2 12?? + ? ??? 的实部u 和虚部v 、模r 与幅角θ (1) 原式= ()()()12342531081052 916 2525255 i i i i i i +?+-?+-++=+=-+-- (2) 3 32( )10205 2(0,1,2,3,4)k i e k ππ+==原式 (3) 2 223 221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,223 i i i e r π πππππ θπ??==+=+==- ?????=-===+=±±L 原式所以:, 3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++- 3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u e x y y y e y x u e x y y y y y v e y y x y e y y x v e y y y x y y u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'= ?证明:所以:。 由于在平面上可微 所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v i e x y y y e y i e y y x y e y x x ?+=-++++? 由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-= 解: ()()()()()()()222222222212,2,21 2,2,,,2112, 2211 1,0,1,1,, 221112. 222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ??? =-+==+==? ?=-++-++ ?? ?而即所以由知带入上式,则则解析函数 2. ()21,3,,.i i i i i i e ++试求

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

第八章 分离变数法数学物理方法 梁昆淼

第八章 分离变数法 1. 设)(x X 满足方程0=-''X X λ和边界条件0)(')0('==l X X ,其中λ可为任意实数,试根据λ的可能取值求解方程,并根据边界条件确定本征值λ和本征函数。 解:可分为三种情况讨论: 1) 0>λ ,解为x x e C e C x X λλ-+=21)(,由边界条件只能得到平庸解 0)(=x X , 显然没有意义。 ----------------(3分) 2) 0=λ,解为21)(C x C x X +=,代入边界条件得01=C ,于是 22,)(C C x X =为任意常数。 ----------------(2分) 3) 0<λ,解为.sin cos )(21x C x C x X λλ-+-=,代入边界条件得 ???=-=????=-+---=-.0sin ,0. 0)cos sin (,012212l C C l C l C C λλλλλ a) 当 λ 的取值使得 0sin ≠-l λ 时,必有 01=C ,这和上两种情况一 样没有意义。 b)当 λ 的取值使得 0sin =-l λ 时, 1C 不必为 零,这种是有意义的情况。此时由 0sin =-l λ 得到本征值 λ:).,3,2,1(22 2 =-=?-=n l n n l πλλ π 综合2)和3)两种情况得本征值).,3,2,1,0(22 2 =-=n l n πλ 此时,本征解为.cos )(1x l n C x X π= ----------------(5分) 1. 2.已知复变量函数为解析函数,其实部满足

下面的条件, (1) 试给出所满足的数学物理定解问题; (2) 试用分离变数或其它方法找到泛定方程的一个特解,并利用它将或方向上的边界条件齐次化,然后求解 ; (3) 根据求出虚部。 3.设)(x X 满足方程0=+''X X λ和边界条件'(0)'(2)0X X π==,其中λ可为任意实数,试根据λ的可能取值求解方程,并根据边界条件确定本征值λ和本征函数。(本小题 11 分) 解:(1) 由题意,对于常微分方程: ()()0X x X x λ''+= (1) (0)(2)0 X X π''== (2) 现在先求解X ,对0,0,0λλλ<=>三种情况进行讨论: a) 0λ<,由(1)式的解是 12()x x X x C e C e λλ---=+ 积分常数1C ,2C ,由(2)决定,即 120C C -=,22120E E C e C e ππ----= 由此得出01=C , 02=C 而0)(≡x X 。无实际意义,即0λ<无可能性。(3分) b) 0λ=,式(1)的解是 21)(C x C x X += 则根据(2)式,有 10C =, 1(2)0X C π'== 即2C 为任意数 此时2()X x C ≡。(3分)

数学物理方法试题汇总

12届真题 1. 求下列各小题(2*5=10分): (1)用几何图形表示0arg(1)4z π<-< ; (2)给出序列(1/)sin 6 n n z i n π=+的聚点; (3)在复数域中求解方程cos 4z =的解; (4)给出二阶偏微分方程的基本类型; (5)给出解析函数所满足的柯西-黎曼方程。 2.按给定路径计算下列积分(5*2=10分): (1)320Re i zdz +?,积分路径为线段[0,3]和[3,3+2i]组成的折线; (2 )11,==?积分路径由z=1出发的。 3.利用留数定理计算下列积分(5*2=10分): (1)2 41x dx x +∞ -∞+?; (2)3||1z z e dz z =?。 4.求常微分方程20w z w ''-=在0z =邻域内的两个级数解(15分)。 5.求下列线性非奇次偏微分方程的通解:2222u u xy y x y ??-=-??(15分)。 6.利用分离变量法求解:(20分) 2222000 (),|0, |0,0, 0.x x l t t u u x l x t x u u u u t ====???-=-?????==????==??? 7.用拉普拉斯变换方法求解半无解问题(20分)

220, 0,0,(0,)1, lim (,) 0, (,0)|0, 0. x u u x t t x u t u x t t u x x κ→∞???-=>>?????=>??=>??? 有界,

2005级 一、填空(请写在答题纸上,每题6分,共计48分) 1. 三维泊松方程是______________________________ 2. 边界为Γ的区域Ω上函数u 的第二类边界条件为___________________。 3. 极坐标下的二维拉普拉斯方程为__________________________。 4. 定解问题20 02||0tt xx t t t u u x u x u ===-∞<<+∞???==??, ,的解__________________________。 5. 三维拉普拉斯方程的牛曼内问题为______________________________; 其解存在的必要条件为____________。 6. 写出4阶贝塞尔方程的标准形式_____________________________。 7. 设2()J x 为2阶贝塞尔函数,则22()d x J kx dx ????=__________________。 8. 设弦一端在0x =处固定,另一端在x l =处做自由运动。则弦振动问题的边界条件为: 二、(10分)求解定解问题: 200(0)()00()0.t xx x x u a u x l t u t u l t t u x x x l ?=<<>?==≥??=≤≤? , ,,,,, , ,0,

相关文档
最新文档