光学涡旋简介

光学涡旋简介
光学涡旋简介

光学涡旋简介

****WT****

2016年5月18日

摘要:光学涡旋是一种具有螺旋相位波前,带有轨道角动量(OAM),能够携带不同拓扑电荷数的光束。

携带不同拓扑电荷数的光学涡旋是相互正交的,因此,光学涡旋可以在光纤通信系统中进行模分复用,

它能够极大的提高光纤通信系统的容量。本文主要简单介绍涡旋光束,以及涡旋光束的生成和检测方法。

关键词:光学涡旋,轨道角动量,光纤通信,模分复用

Brief Introduction of Optical Vortex

Abstract:Optical vortex is light beams with helical phase fronts vector, which can carry orbital angular

momentum (OAM) with different topological charge number. Beams with different OAM orders are mutually

orthogonal, hence it can be used in mode multiplexing and demultplexing in optical communication system

which can improve the capacity of optical fiber communication system dramatically. In this paper, I will

introduce optical vortex, and its generation and measure methods.

Key Words:optical vortex, orbital angular momentum, fiber communication, mode multiplexing

1. 引言

随着通信技术的发展以及移动互联网、物联网的兴起,传统的光纤通信系统容量已经不能满足人们日益增长的需求。为了提高光纤通信的系统容量,空分复用[1]技术越来越受到科研工作者们的关注。空分复用的实现技术主要有多心光纤[2]和模分复用[3]。模分复用是利用不同模式的正交性,每个模式可以作为一个数据信道,来进行数据传输。常见的模分复用使用的是光纤中的高阶模和光学涡旋[4]中的OAM模。不同的OAM模是相互正交的,因此,它可以在光纤通信系统中进行模分复用,极大的提高光纤通信系统的容量。本文首先对光学涡旋进行简单的介绍,然后重点介绍涡旋光束在空间光和光纤中的生成方法以及检测方法,最后简单介绍涡旋光束在通信中的应用。

2. 涡旋光束简介

(a) (b) (c)

图1 涡旋光束示意图

如图1(a)所示,光纤涡旋是一种具有螺旋相位波前,带有轨道角动量(OAM),能够携带不同拓扑电荷数的光束[5];它的模场呈环形分布,如图1(b)所示;图1(c)表示的是拓扑电荷为1时的相位分布图,可以看出,在一个周期内,它的相位从0变化到2π,以此类推,当拓扑电荷数为n时,在

一个周期内,它的相位从0变化到2n π。此外,涡旋光束还具有一些其它特殊的特性,比如具有相位奇点[6]、具有多种空间偏振态、具有无限种相互正交的本征态等。由于它的这些特殊性质,光学涡旋在光学镊子、高分辨率成像、光学微操控、大规模复用通信[7]、量子通信等领域有广泛的应用。

3. 光学涡旋生成

光学涡旋的生成主要有基于空间光的生成方法和基于全光纤结构的生成方法。基于空间光生成的涡旋光束相对来说转化效率和模式纯度较高,而基于全光纤结构生成的涡旋光束转化效率和模式纯度较低,但是,基于全光纤结构生成的涡旋光束便于与光纤相连,插入损耗也非常低,而且转化效率和模式纯度还可以通过改进光纤结构继续提升,因此,基于全光纤结构的生成方法具有很好的应用前景。

3.1 基于空间光的生成方法

图2 基于空间光的生成方法

如图2所示,基于空间光的生成方法主要有螺旋相位板法[8]、空间光调制法[9]、全息光栅法[10]、柱透镜法[11]等。其中,螺旋相位板法使用的是一个沿着方位角逐渐变厚的透明薄板,当高斯光通过螺旋相位板时,由于厚度不均匀,光束会转换成具有螺旋相位波前的涡旋光束。在实验中,这种方法生成的OAM 光束携带的拓扑电荷数最高可以达到5050[12]。空间光调制器是一种可以对光波的幅度、相位、偏振态等物理信息中的一部分或者全部实现空间调制的光电器件。利用液晶的电光效应,可以实现空间光调制器对入射光波的振幅和相位调制,使得光波实现波前变换。通过利用空间光调制器加载叉形光栅全息图则可以产生光学涡旋。全息光栅法是将干涉条纹的信息记录到感光光栅片(大部分是叉形光栅,又称位错光栅)中,再利用一束与参考光条件完全相同的光照射感光片,通过衍射,借助计算机就可以再现各种信息(包括光的振幅和相位),从而合成涡旋光束。柱透镜法是利用柱透镜对光束的相位调制作用来生成涡旋光束。

3.2 基于全光纤结构的生成方法

由于光纤结构的多样性,基于全光纤结构的生成涡旋光束的方法非常多,在这里就简单举几个

例子。如图3所示,这两种都是基于光栅的涡旋光束的生成方法,其中图3(a)表示的是微弯光栅法

图3基于光栅的生成方法

(b)

(a)

生成涡旋光束,当光束通过微弯光栅时,光纤中激发出一对HE 21模,并产生π/2的相位差,从而生成涡旋光束[13]。图3(b)表示华中科技大学的一个课题组做的实验,他们利用机械长周期光栅挤压少模光纤,使少模光纤中的LP 11a 和LP 11b 模产生π/2的相位差,从而生成涡旋光束[14]。

图4基于特殊光纤结构的生成方法

图4表示的是利用特殊设计的光纤结构来产生涡旋光束的方法。其中图4(a)表示的是华南师范大学的一个课题组做的仿真,他们在单模和少模光纤中间做一个螺旋相位盘,螺旋相位盘的有效折射率沿方位角方向递增,可以等效为一个螺旋相位板,从而在少模光纤中生成涡旋光束[15]。图4(b)表示的是南开大学的一个课题组做的仿真,他们做了一个多心结构和环形折射率分布的光纤,当基模从中间的纤芯通过时,在环形折射率区域耦合出涡旋光束[16]。此外,南加州大学也做了多种类似的光纤结构能够较好的耦合出涡旋光束[17],我们目前也正在把单模-少模耦合器和光纤激光器结合起来做一个全光纤涡旋激光器。

4. 光学涡旋检测

光学涡旋的检测办法有很多,各有利弊,常见的有以下几种:

4.1 螺旋相位板和全息光栅法

图5 螺旋相位板、全息光栅和干涉法

如图5(a)和(b)所示,和涡旋光束的生成相反,当携带拓扑电荷数为l 的涡旋光束通过一个拓扑电荷数为-l 的螺旋相位板或者全息光栅[18]时,正好可以转化成高斯光,然后通过透镜聚焦后能透过一个小孔被检测器检测到,这种方法可以用来检测携带特定拓扑电荷数的涡旋光束。

4.2 干涉法

当平面波和球面波分别与涡旋光束进行干涉时,会形成叉形或者涡旋形的干涉条纹,我们可以根据干涉图案来检测涡旋光束[19]。图5(c)所示的是拓扑电荷数为1、2、0.5、1.33的涡旋光束与平面波或球面波干涉使时的图案,我们可以通过叉的个数和方向或者涡旋的个数和方向来判断拓扑电荷数的大小和正负。

4.3 圆弧缝隙法

(b) (a)

(c)

图6圆弧缝隙法和像散聚焦法

如图6(a)所示,做一个90°的空心圆弧,根据惠更斯-菲涅尔原理,当携带有不同拓扑电荷数的涡旋光束通过这个缝隙时会发生不一样的衍射,导致在后面的平板上形成的焦点的位置发生偏移。焦点的偏移量与拓扑电荷数的关系如图6(b)所示[20]。因此,我们可以根据焦点的偏移量来得到拓扑电荷数的大小的正负。

4.4像散聚焦法

当涡旋光束通过一个倾斜6°的双凸透镜时会形成几个离散的光斑,光斑的个数为拓扑电荷数加1,光斑的倾斜角度与拓扑电荷数的正负相关[21]。因此,我们可以通过观察光斑的个数和倾斜角度来检测涡旋光束。图6(c)表示的是检测拓扑电荷数为3的示意图。

4.5渐变周期光栅法

图7渐变周期光栅法

北京理工大学的一个课题组做了如图7(a)和(b)所示的渐变周期的光栅[22],当涡旋光束通过这个光栅时会产生和通过双凸透镜时一样的光斑,如图7(c)所示,光斑的个数依然为拓扑电荷数加1,光斑的倾斜角度与拓扑电荷数的正负相关。因此,我们可以通过观察透过光栅后光斑的个数和倾斜角度来检测涡旋光束。

5. 总结展望

本文首先对光学涡旋进行简介,然后介绍了基于空间光和基于全光纤结构的生成方法,最后介绍了几种常见的检测方法。对于涡旋光的生成,目前大部分的研究都集中在拓扑电荷数为1的涡旋光,生成的模式纯度也有待提高。高阶数、高模式纯度的涡旋光束的生成还有待进一步研究。对于涡旋光的检测,目前实验室中使用的最多的还是用干涉法进行检测,使用这种方法进行检测不像其它检测方法一样需要使用特制的透镜或者光栅,但是它也有很多局限,比如,干涉法不能检测非整数阶的涡旋光束,也不能检测脉冲形式的涡旋光束,因为两个脉冲光束进行干涉时,空间上可以重叠,但时间上不一定能重叠,所以不一定能形成干涉条纹。当然,其它检测方法也不能检测非整数阶的涡旋光束,新型的检测方法还有待研究。

(b)

(c)

参考文献

[1]Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013,

7(5): 354-362.

[2]Scifres D R. Multiple core fiber laser and optical amplifier: U.S. Patent 5,566,196[P]. 1996-10-15.

[3]Berdagué S, Facq P. Mode division multiplexing in optical fibers[J]. Applied optics, 1982, 21(11): 1950-1955.

[4]Coullet P, Gil L, Rocca F. Optical vortices[J]. Optics Communications, 1989, 73(5): 403-408.

[5]Ramachandran S, Kristensen P. Optical vortices in fiber[J]. Nanophotonics, 2013, 2(5-6): 455-474.

[6]Desyatnikov A S, Torner L, Kivshar Y S. Optical vortices and vortex solitons[J]. arXiv preprint nlin/0501026,

2005.

[7]Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J].

Science, 2013, 340(6140): 1545-1548.

[8]Sueda K, Miyaji G, Miyanaga N, et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for

high intensity laser pulses[J]. Optics express, 2004, 12(15): 3548-3553.

[9]Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J].

Physical review letters, 2010, 105(15): 153601.

[10]Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001,

412(6844): 313-316.

[11]Beijersbergen M W, Allen L, Van der Veen H, et al. Astigmatic laser mode converters and transfer of orbital

angular momentum[J]. Optics Communications, 1993, 96(1): 123-132.

[12]Shen Y, Campbell G T, Hage B, et al. Generation and interferometric analysis of high charge optical vortices[J].

Journal of Optics, 2013, 15(4): 044005.

[13]Ramachandran S, Wang Z, Yan M. Bandwidth control of long-period grating-based mode converters in few-mode

fibers[J]. Optics letters, 2002, 27(9): 698-700.

[14]Li S, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter[J]. Optics letters, 2015,

40(18): 4376-4379.

[15]Zhou B, Lei F, Liu L, et al. All-Optical-Fiber Orbital Angular Momentum Mode Generator With a Helical Phase

Disk Inserted Between Fibers[J]. Photonics Journal, IEEE, 2015, 7(6): 1-7.

[16]Huang W, Liu Y, Wang Z, et al. Generation and excitation of different orbital angular momentum states in a

tunable microstructure optical fiber[J]. Optics Express, 2015, 23(26): 33741-33752.

[17]Yan Y, Wang J, Zhang L, et al. Fiber coupler for generating orbital angular momentum modes[J]. Optics letters,

2011, 36(21): 4269-4271.

[18]Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon[J]. Physical

review letters, 2002, 88(25): 257901.

[19]李阳月, 陈子阳, 刘辉, 等. 涡旋光束的产生与干涉[J]. 物理学报, 2010, 59(3): 1740-1748.

[20]Zhou H, Dong J, Zhang P, et al. Detecting orbital angular momentum of light with an arc slit[C]//CLEO: Science

and Innovations. Optical Society of America, 2015: STh1F. 7.

[21]Zhdanova A A, Shutova M, Bahari A, et al. Topological charge algebra of optical vortices in nonlinear

interactions[J]. Optics Express, 2015, 23(26): 34109-34117.

[22]Dai K, Gao C, Zhong L, et al. Measuring OAM states of light beams with gradually-changing-period gratings[J].

Optics letters, 2015, 40(4): 562-565.

Brief Introduction of Optical Vortex

****WT****

[****WT****, 通信与信息系统]

With the development of communication, the capacity of traditional fiber network can't satisfy people's needs, so mode-division multiplexing (MDM) has been proposed as an efficient way to improve the capacity of fiber communication system. In such a case, each mode can carry an independent data channel, and the orthogonality enables efficient (de)multiplexing and low inter-mode crosstalk among multiple modes. There are several different types of orthogonal modal basis sets that are potential candidates for such MDM systems. One such set is optical vortex. Optical vortex, which describes the “phase twist” (helical phase pattern) of light beams, has recently gained interest due to its potential applications in many diverse areas. Particularly promising is the use of OAM for optical communications since: (1) coaxially propagating OAM beams with different azimuthal OAM states are mutually orthogonal, (2) inter-beam crosstalk can be minimized, and (3) the beams can be efficiently multiplexed and demultiplexed. As a result, multiple OAM states could be used as different carriers for multiplexing and transmitting multiple data streams, thereby potentially increasing the system capacity.

There are many approaches to generate optical vortex. One group is based on space light and another group is based on optical fiber. For the conversion in apace light, the most common methods for optical vortex beams generation use spiral phase plate (SPP), spatial light modulator (SLM), cylindrical lens converters, helical phase mask, computer-generation hologram, q-plate and so on. Recently, generation of optical vortex beams in optic fiber has become an attractive approach. Because of the diversity of fiber structure, there are a lot of approaches to generate optical vortex in fiber, such as micro bend grating, mode converter, mode selective coupler, helical phase plate and so on.

There are also many methods to detect optical vortex. The most common method in laboratory is interference method. The interference pattern varies with the topological charge of vortex beams, this phenomenon can be used to detect the topological charge of vortex beam. There are also many other methods, such as arc slit method, astigmatic focusing method, gradually-changing-period gratings method and so on. Although methods to detect optical vortex are varies, they all can't detect the topological charge of fractional vortex beam. So there is still a long way to go.

In conclusion, optical vortex has recently gained interest due to its potential applications in many diverse areas. There are many methods have been researched to generate and detect it, in this paper, I just briefly introduce some common methods.

Keywords: optical vortex, orbital angular momentum, fiber communication, mode multiplexing

大口径环形涡旋激光光束的产生和检测

大口径环形涡旋激光光束的产生和检测 摘要:本文分别从理论和实验上研究了涡旋光束的产生和干涉,理论上分析了分数阶和整数阶涡旋光束与球面波的干涉,对干涉条纹进行观察发现,实验观察结果与理论结果相符合,研究表明随着涡旋光束的拓扑荷数的改变,干涉条纹也发生变化。这样利用光轨道角动量作为信息载体实现光通信,有望极大地提高通信的安全性、容量以及数据的传输速率。 关键词:大口径涡旋光束;拓扑荷数;轨道角动量;干涉;光通信 1 引言 涡旋光束是具有螺线行相位分布的光束,其表达式中带有相位因exp,在其传播方向上,每个光子携带有数值为h l(l称为光子()θil 波波束的拓扑荷)的轨道角动量,其中l称为拓扑荷数。由于涡旋光束具有轨道角动量h l,所携带的轨道角动量可以传递给微粒,驱动微粒旋转,实现对微粒的俘获、平移等等。 信息安全和大容量光通信技术一直是通信领域的研究热点。近年来涡旋光束的产生及其传输特性引起了人们广泛的兴趣。涡旋光束在信息编码上有很大的应用前景,利用涡旋光束的轨道角动量可对信息进行编码和传输。在通常的空间(大气)光通信研究中,常用的编码调制方案是强度调制-直接检测(IM-DD)方案,所涉及的物理参量主要是光的强度、偏振态和调制频率等等。而利用涡旋光束进行的信息编码具有很多独特的优点:(1)光涡旋场是一种具有螺旋波前相位的电磁波(光波),在通信中若应用涡旋光束的轨道角动量进行编

码,由于光束的轨道角动量可以取1 ,2 ,3 等整数,也可以取分数,这大大地加大了信息编码的容量,并且基于涡旋光束的信息编码还具有更高的保密相对于传统的二进制编码而言,就可以有效地提高数据传输容量,即具有更高的编码能力;(2)涡旋光束中角的位置(angular position)与拓扑荷l之间满足不确定性关系,这意味着对于测量而言,要使测得的轨道角动量误差足够小,则测量角位置的范围就应该足够大,这说明,如果应用轨道角动量编码进行通信,则任何窃听信息者都不可能接受到完整而准确的信息,也就不可能精确测得光束的轨道角动量,即运用轨道角动量进行编码的光通信有更高的保密性,具有防窃听的优点。 关于如何从一个激光高斯基模变换到涡旋光束,有关学者已经提出了许多方法,比如在腔内放螺旋位相片直接产生,用计算机得到的位相片产生,用柱面镜或楔形镜产生光学涡旋,此外,在光纤中光涡旋场也能产生。现有的方法所产生的光束直径和光功率一般都很小,只能应用于“光学扳手”,如操控原子、微粒和细胞等。本文研究的一种大口径环形涡旋激光光束的产生和检测方法,可应用于空间(大气)光通信中。 2 实验装置及原理 图1 所示为一螺旋相位板,该相位板的作用是可以使入射光斑产生一个随方位角变化的相位延迟。这种相位板是在高温真空箱中压制而成的,光学系统有效通光孔径为a,相位板的透过率函数可表示为

光电传感器介绍

光电式传感器 1.概述 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。 光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2.物理特性 2.1外光电效应 2.1.1光子假设 1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。单色光由大量不连续的光子组成。若单色光频率为n,那么每个 光子的能量为E=hv, 动量为。 由爱因斯坦光子假说发展成现代光子论(photon theory)的两个基本点是:

(1) 光是由一颗一颗的光子组成的光子流。每个光子的能量为E = hv,动量 为。由N个光子组成的光子流,能量为N hv。 (2) 光与物质相互作用,即是每个光子与物质中的微观粒子相互作用。 根据能量守恒定律,约束得最不紧的电子在离开金属面时具有最大的初动 能,所以对于电子应有: 2.2 内光电效应 光电传感器通常是指能敏感到由紫外线到红外线光的光能量,并能将光能转化成电信号的器件。其工作原理是基于一些物质的光电效应。 光电效应:当具有一定能量E的光子投射到某些物质的表面时,具有辐射能量的微粒将透过受光的表面层,赋予这些物质的电子以附加能量,或者改变物质的电阻大小,或者使其产生电动势,导致与其相连接的闭合回路中电流的变化,从而实现了光—电转换过程。在光线作用下能使物体电阻率改变的称为内光电效应。属于内光电效应的光电转换元件有光敏电阻以及由光敏电阻制成的光导管等。 2.2.1光电导效应 光照变化引起半导体材料电导变化的现象称光电导效应(又称为光电效应、光敏效应),即光电导效应是光照射到某些物体上后,引起其电性能变化的一类光致电改变现象的总称。当光照射到半导体材料时,材料吸收光子的能量,使非传导态电子变为传导态电子,引起载流子浓度增大,因而导致材料电导率增大。在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光电器件。

涡旋光-Matlab

基于Matlab的涡旋光干涉场计算机模拟 摘要: 涡旋光束是具有连续螺旋状相位的光束,即光束的波阵面是旋涡状的,具有奇异性,其光束的中心是一个暗核,此处的光强为零,相位无法确定。对于光学涡旋,特别是具有复杂拓扑结构的光学涡旋,可以通过计算机模拟的方法获得实验上难以准确测量干涉场分布。本文利用Matlab模拟不同拓扑荷值的涡旋光的产生,以及不同拓扑荷值涡旋光与平面光,球面光的干涉,给出了相应的干涉图样。 引言: 利用波动方程对波的传输行为进行描述时,方程的解常常具有奇点,表明波在这些地方发生了突变。当光波的相位存在无法定义的奇点且奇点处光强为零时,光波相位围绕该奇点沿垂直于传播方向呈螺旋型分布,将会形成光学涡旋。由于光学涡旋独特的相位和强度分布及新颖的拓扑特性使之可以产生较大的轨道角动量。从而在光学操控、数据存储、光学开关等方面具有巨大的潜在应用价值,因此光学涡旋在过去的十几年里成为一个活跃的研究领域。 目前,主要产生涡旋光的方法有以下几种:模式转化法、螺旋相位板法、计算全息法等。本文主要是从计算机数值模拟入手,把复杂的涡旋光产生机理以及与不同特殊光束的干涉场用图像的方法表现出来。为后续的实验验证做理论准备,以及计算全息产生涡旋光的方法提供理论方法。 2涡旋光的产生 涡旋场相位的表达是在柱坐标系r,θ,z中进行的,m为拓扑荷,z为传播距离。对于拓扑荷为m的光学涡旋,可以表示成: Ψl r→=U r,z exp??mθexp???kz=u r→+?ν r→ ?kz为相位因子,k是波数,U r,z表示振幅分布。 分析上式可以发现,涡旋场的相位分布是由光束的相位因子exp??mθ决定的,沿着光涡旋 的传播方向会形成螺旋波前的结构。并且绕涡旋中心(即奇点)运动一周,相位会改变2πm,奇点的形成是由于光线汇聚进行干涉相消最终形成暗中空的结构,此时奇点处光场的强度为零,所形成的光涡旋的位置可令上式中的实部、虚部均为零求得。在具体的函数表述中可分别令复合场振幅的实、虚部为零列方程组进而能够确定奇点的具体位置。 下图为不同拓扑和值光学的结构图: 3涡旋光与平面光的干涉

光学膜简介

光学膜会议纪要 一、冰箱面板膜IMD膜 该膜为三层结构,将薄膜放入注射成型模腔内,使薄膜紧贴注射的塑料外面热熔合,形成光洁漂亮的面板。 二、隔热膜 对基膜的要求是高透光率和低雾度,涂布后绝对不能有划痕。在PET上涂布隔热涂层后贴在汽车窗和建筑玻璃上用于吸收、反射近红外线(波长600~2300纳米),起隔热防爆作用。 结构是36μm隔热膜和23μm离型膜,揭去离型膜后直接贴在玻璃上。 目前主要有两种技术路线: ⑴、干法:以美国3M为代表,先在PET薄膜表层涂防刮伤层,再真空溅射吸收、反射近红外线材料(共7种材料) ⑵、湿法:以美国龙膜为代表,将纳米分散的材料一次性涂在PET 薄膜上。主要成分氧化锆、氧化铟锡。 湿法是DOCRIV推销的技术。 DOCRIV在中恒合作生产了隔热膜PET基膜,雾度0.8%,在保定乐凯进行涂布,据DOCRIV介绍说隔热效果和美国龙膜效果相当。但存在的问题是①采用的是微凹版涂布,不能保证无划痕;②空气净化程度达不到要求。 热隔膜结构:

隔热防雾膜——既隔热又防雾 三、光学膜 1、IMO膜触摸屏膜 在PET薄膜表面涂布上抗划伤、抗静电(106~108Ω)涂层,背面真空溅射导电膜(共三层,且透明),再在导电层上印刷电路,再蚀出多余的导电层。 目前IMO只用日本生产,技术封锁。对基膜的要求非常高,雾度≤1%,透光率≥92%,厚度平整性非常高,175μm,宽度125cm。 在基膜达不到要求下,可以用作液晶屏保护膜(不加导电层)。2、光扩散膜 主要功能是提升光线亮度,并将导光板射出之光线柔散化,提供均匀的面光源;通常做法是在PET基材上,涂布光学粒子颗粒/玻璃微珠。扩散膜是通过在光学膜片材料上的微细颗粒(beads)实现光的扩散。 扩散膜要求颗粒涂布均匀,颗粒不能脱落,目前合肥乐凯生产光扩散膜,但在颗粒脱落上还未很好解决。

FBG光学传感器简介

FBG光学传感器简介 近几十年以来,电气传感器一直作为测量物理与机械现象的标准设备发挥 着它的作用。尽管它们在测试测量中无处不在,但作为电气化的设备,他们有 着与生俱来的缺陷,例如信号传输过程中的损耗,容易受电磁噪声的干扰等等。这些缺陷会造成在一些特殊的应用场合中,电气传感器的使用变得相当具有挑 战性,甚至完全不适用。光纤光学传感器就是针对这些应用挑战极好的解决方法,使用光束代替电流,而使用标准光纤代替铜线作为传输介质。 在过去的二十年中,光电子学的发展以及光纤通信行业中大量的革新极大地 降低了光学器件的价格,提高了质量。通过调整光学器件行业的经济规模,光 纤传感器和光纤仪器已经从实验室试验研究阶段扩展到了现场实际应用场合, 比如建筑结构健康监测应用等。 光纤传感器简介 从基本原理来看,光纤传感器会根据所测试的外部环境参数的变化来改变其 传播的光波的一个或几个属性,比如强度、相位、偏振状态以及频率等。非固 有型(混合型) 光纤传感器仅仅将光纤作为光波在设备与传感元件之间的传输介质,而固有型光纤传感器则将光纤本身作为传感元件使用。 光纤传感技术的核心是光纤–一条纤细的玻璃线,光波能够在其中心进行传播。光纤主要由三个部分组成:纤芯(core),包层(cladding)和保护层(buffer coating)。其中包层能够将纤芯发出的杂散光波反射回纤芯中,以保证光波在纤芯中具有最低的传输损耗。这个功能的实现原理是纤芯的光折射率比包层的折 射率高,这样光波从纤芯传播到包层的时候会发生全内反射。最外面的保护层 提供保护作用,避免外界环境或外力对光纤造成损坏。而且可以根据需要要强 度和保护程序的不同,使用多层保护层。

光学材料特性

光学材料特性表:

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5% 常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢

耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定 耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响 日光及耐气候性:紫外透过滤73.5% 常用光学塑料-聚碳酸酯PC 密度(kg/m3):1.2 ×10E3 nD ν:1.586(25) 29.9 透过率(%):80~90 吸水率(%):23CRH50% 0.15 水中0.35 玻璃化温度:149 熔点(或粘流温度):225~250(267) 马丁耐热:116~129 热变形温度:132~141(4.6×105Pa) 132138(18.5×105Pa) 线膨胀系数:6×10-5 计算收缩率(%):0.5~0.7 比热J/kgK:1256 导热系数W/m K:0.193 燃烧性m/min:自熄 耐酸性及对盐溶液的稳定性:强氧化剂有破坏作用,在高于60水中水解,对稀酸,盐,水稳定 耐碱性:强碱溶液,氨和胺类能腐蚀和分解,弱碱影响较轻 耐油性:对动物油和多数烃油及其酯类稳定 耐有机溶剂性:溶于氯化烃和部分酮,酯及芳香烃中,不溶于脂肪族,碳氢化合物,醚和醇类 日光及耐气候性:日光照射微脆化 常用光学塑料-烯丙基二甘碳酸酯CR39 密度(kg/m3):25 1.32×10E3 nD ν:1.498 53.6~57.8 透过率(%):92 吸水率(%):0.2 24h 25 玻璃化温度:

光学涡旋的最佳环带结构

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 1 光学涡旋的基础知识 (1) 2 常见的光学涡旋产生方法 (2) 2.1 几何光学模式转换法 (2) 2.2 计算全息法 (2) 2.3 螺旋相位板法 (3) 2.4 液晶空间光调制法 (4) 3 最佳环带结构的确定 (4) 3.1 理论分析 (5) 3.2 计算全息图法产生的最佳环带结构 (6) 4 总结 (9) 参考文献 (9) 致谢 (10)

光学涡旋的最佳环带结构 电子信息科学与技术专业学生 崔雪梅 指导老师 韩玉晶 摘要:本论文对光学涡旋做了简单介绍,并介绍了几种产生光学涡旋的方法。重点从理论上分析了常 见方法产生涡旋具有次级亮环的原因,提出采用环形全息图有效的消除次级亮环,并通过分析计算 确定了最佳环带结构和涡旋光场拓扑荷之间的关系式,从理论上和实验上验证了最佳环带结构的正 确性和可行性,这在光学微操控、生物医学、粒子分流等众多前沿领域有着广阔的应用前景。 关键词:光学涡旋;轨道角动量;空间光调制器;螺旋相位波前;傅立叶变换 The optimal structure of optical vortices Student majoring in Science and Technology of Electronic Information Cui Xue-mei Tutor Han Yu-jing Abstract: The paper introduces the optical vortex simply, and introduces some methods for generation of optical vortices. The reason of secondary sub-rings of optical vortices generated by common method was analyzed in theory, the method for suppression the sub-rings by use of annular computer generated hologram was proposed, the relation between the optimal annular structure and the topological charge was deduced. The results of simulation and experiments certified the correctness and feasibility of the optimal structure. It has wide applications in micro-manipulation, biomedical, particle separation and other fields. Then sum up the generation methods of optical vortex systematic. The reason of Computer-Generated Hologram finally focuses on the best band structure optical wraps the theory research. Optical vortex is a spiral wave with the special light field before structure; it is modern singularities optical important branch. For its important research value gets more and more extensive attention. Keywords: Optical vortices; Orbital angular momentum; Spatial light modulator; Helical wave front; Fourier transform 引言 环绕位相奇点的旋流被称为涡旋,在自然界中普遍存在有涡旋现象,如水漩 涡,大气涡旋等。然而各种物理系统中也有涡旋的存在,如氦超流体的微观结构,超导 体磁通量的量子线等等。同时,涡旋也是任何波现象固有的一种属性。光是电磁波的一 种其中也存在涡旋,当平面波中存在着类似于晶体的“螺旋式缺陷”时,波前会绕在传 播方向上的一条线以螺旋方式旋转,形成螺旋形的波前,这非常类似于流体中的涡旋现 象,所以这类光波被称作“光学涡旋”(Optical Vortices ,简称OV )。 光学涡旋[1]是一种具有螺旋型波前结构的特殊光场,是现代奇点光学的一个重要分 支,近年来在光学微操纵、光学信息传输、非线性光学、激光光学、微粒波导、生物医 学、原子光学和分子光学中得到广泛的研究与应用。其中光学涡旋一个最重要的特性是 具有确定的光子轨道角动量。 1 光学涡旋的基础知识 光学涡旋的特点就是具有螺旋型相位分布[2],任意一个涡旋光束的相位都包含 exp(il θ)相位因子,l 为拓扑荷,通常为整数。当光波沿z 轴传播时,拓扑荷为l 的光学 涡旋场可以简单的表述为: )exp()exp(),,(),,(0ikz il z r E z r E -=θθθ (1.1) 其中,E 0(r,θ,z )为光场在z 处的振幅分布。根据公式(1.1)可以看出,光学涡旋场的相位分 布是由相位因子exp (il θ)决定的,即沿光束传播方向横截面上,当环绕涡旋中心一周, 光学涡旋场的相位改变2l π,在螺旋相位的中心就会有一个相位奇点,由于螺旋相位波

常见光学材料简介

常见光学材料简介 透镜是光学实验中的主要元件之一,可采用多种不同的光学材料制成,用于光束的准直、聚焦、成像。Newport提供的各种球面和非球面透镜,主要制作材料有BK7玻璃、紫外级熔融石英(UVFS)、红外级氟化钙(CaF2)、氟化镁(MgF2),以及硒化锌(ZnSe)。在从可见光到近红外小于2.1μm的光谱范围内,BK7玻璃具有良好的性能,且价格适中。在紫外区域一直到195nm,紫外级熔融石英是一种非常好的选择。在可见光到近红外2.1μm范围内,熔融石英具有比BK7玻璃更高的透射率,更好的均匀度以及更低的热膨胀系数。氟化钙和氟化镁则适用于深紫外或红外应用。 本文将对这些常见光学材料的性质和应用进行介绍,并列出了一些基本的材料参数,如折射率、透射率、反射率、Abbe数、热膨胀系数、传导率、热容量、密度、Knoop硬度,及杨氏模量。 BK7玻璃 BK7是一种常见的硼硅酸盐冕玻璃,广泛用作可见光和近红外区域的光学材料。它的高均匀度,低气泡和杂质含量,以及简单的生产和加工工艺,使它成为制作透射性光学元件的良好选择。BK7的硬度也比较高,可以防止划伤。透射光谱范围380-2100nm。但是它具有较高的热膨胀系数,不适合用在环境温度多变的应用中。 UV Grade Fused Silica(UVFS) 紫外级熔融石英 紫外级熔融石英是一种合成的无定型熔融石英材料,具有极高的纯度。这种非晶的石英玻璃具有很低的热膨胀系数,良好的光学性能,以及高紫外透过率,可以透射直到195nm的紫外光。它的透射性和均匀度均优于晶体形态的石英,且没有石英晶体的那些取向性和热不稳定性等问题。由于它的高激光损伤阈值,熔融石英常用于高功率激光的应用中。它的光谱透射范围可以达到2.1μm,且具有良好的折射率均匀性和极低的杂质含量。常见应用包括透射性和折射性的光学元件,尤其是对激光损伤阈值要求较高的应用。 CaF2 氟化钙 氟化钙是一种具有简单立方晶格结构的晶体材料,采用真空Stockbarger技术生长制备。它在真空紫外波段到红外波段都具有良好的透射性。这种宽光谱透射特性,加上它没有双折射性质,使它成为紫外到红外宽光谱应用理想选择。氟化钙在0.25-7μm内的透射率在90%以上,并具有较高的激光损伤阈值,常用于制作准分子激光的光学元件。红外级氟化钙通常采用自然界中可见的萤石生长而成,成本低廉。但氟化钙具有较大的热膨胀系数,热稳定性很差,要避免使用在高温环境中。氟化钙的折射率比较低,因此通常不需要在表面镀增透膜。 MgF2 氟化镁 氟化镁是一种具有正双折射性质的晶体,可采用Stockbarger技术生长,同样在真空紫外波段到红外波段具有良好的透射。通常在切割时使它的c轴与光轴方向平行,以降低双折射性质。氟化镁是另一种深紫外到红外的光学材料选择,透射范围0.15-6.5μm。另外,它可用

TFT-LCD光学膜介绍

一、光学薄膜简介 1、光学薄膜的定义 光学薄膜在我们的生活中无处不在,从精密及光学设备、显示器设备到日常生活中的光学薄膜应用;比方说,平时戴的眼镜、数码相机、各式家电用品,或者是钞票上的防伪技术,皆能被称之为光学薄膜技术应用之延伸。倘若没有光学薄膜技术作为发展基础,近代光电、通讯或是镭射技术将无法有所进展,这也显示出光学薄膜技术研究发展的重要性。 光学薄膜系指在光学元件或独立基板上,制镀上或涂布一层或多层介电质膜或金属膜或这两类膜的组合,以改变光波之传递特性,包括光的透射、反射、吸收、散射、偏振及相位改变。故经由适当设计可以调变不同波段元件表面之穿透率及反射率,亦可以使不同偏振平面的光具有不同的特性。 一般来说,光学薄膜的生产方式主要分为干法和湿法的生产工艺。所谓的干式就是没有液体出现在整个加工过程中,例如真空蒸镀是在一真空环境中,以电能加热固体原物料,经升华成气体后附着在一个固体基材的表面上,完成涂布加工。日常生活中所看到装饰用的金色、银色或具金属质感的包装膜,就是以干式涂布方式制造的产品。但是在实际量产的考虑下,干式涂布运用的范围小于湿式涂布。湿式涂布一般的做法是把具有各种功能的成分混合成液态涂料,以不同的加工方式涂布在基材上,然后使液态涂料干燥固化做成产品。在本文中仅讨论湿式涂布技术的光学薄膜产业。 2、光学薄膜种类 光学薄膜根据其用途分类、特性与应用可分为:反射膜、增透膜/减反射膜、滤光片、偏光片/偏光膜、补偿膜/相位差板、配向膜、扩散膜/片、增亮膜/棱镜片/聚光片、遮光膜/黑白胶等。相关衍生的种类有光学级保护膜、窗膜等。 2.1、反射膜 反射膜一般可分为两类,一类是金属反射膜,一类是全电介质反射膜。此外,还有将两者结合的金属电介质反射膜,功能是增加光学表面的反射率。 一般金属都具有较大的消光系数。当光束由空气入射到金属表面时,进入金属内的光振幅迅速衰减,使得进入金属内部的光能相应减少,而反射光能增加。消光系数越大,光振幅衰减越迅速,进入金属内部的光能越少,反射率越高。人们总是选择消光系数较大,光学性质较稳定的金属作为金属膜材料。在紫外区常用的金属薄材料是铝,在可见光区常用铝和银,在红外区常用金、银和铜,此外,铬和铂也常作一些特种薄膜的膜料。由于铝、银、铜等材料在空气中很容易氧化而降低性能,所以必须用电介质膜加以保护。常用的保护膜材料有一氧化硅、氟化镁、二氧化硅、三氧化二铝等。 金属反射膜的优点是制备工艺简单,工作的波长范围宽;缺点是光损大,反射率不可能很高。为了使金属反射膜的反射率进一步提高,可以在膜的外侧加镀几层一定厚度的电介质层,组成金属电介质反射膜。需要指出的是,金属电介质射膜增加了某一波长(或者某一波

简述涡旋光

涡旋光的简介 光学涡旋是一类等相位面呈螺旋状的光束,具有轨道角动量。在传输过程中,光束中心因相位不确定或发生突变而产生奇点,在奇点处的光强为零、无加热效应、无衍射效应。与光孤子一样,涡旋光因其独特而迷人的性质,自1989年被首次提出以后,很快被人们系统研究,迅速成了现代光学研究中一个重要的分支。短短数十年,光学涡旋从概念的诞生到服务实践,因其在光学角动量和动力学行为方面的特殊性,使其得到了广泛而实际的应用。首先,光学涡旋主要被应用光学微操纵技术。与传统方法相比,光学为操纵具有无接触、无损伤、可靠性高、重复性高、尺度小等特点,光子在对介观粒子的微操纵方面具有自己独特的优势。 涡旋光束是具有螺线形相位分布的光束,其表达式中带有相位因子,光束中的每个光子携带 的轨道角动量,其中l 称为拓扑荷数。由于涡旋光束具有轨道角动量,所携带的轨道角动量可以传递给微粒,以驱动微粒旋转,还可以实现对微米、亚微米微粒的俘获、平移。另外,涡旋光在信息编码上也有较大的应用前景,利用涡旋光束的轨道角动量可对信息进行编码与传输。这种新型的编码方式有很多独特的优点,1)由于拓扑电荷数l 的取值可以为整数,零,甚至分数,所以有很高的编码能力。2)具有更高的保密性。我曾看过一片汪小刚的关于图像加密的文章,就是用涡旋光来实现的,具有很高的安全性。目前关于涡旋光束拓扑电荷数测量的研究主要局限于整数阶的涡旋光束,然而对分数阶涡旋光束的研究也具有很重要的意义。因为涡旋光束的分数阶取值可以使其具有更强的编码能力,不同于整数阶涡旋光束圆对称光强分布,分数阶涡旋光束的亮环上会出现缺口,这使得涡旋光束有更广泛的发展前途。 连续螺旋状相位的光束,它的波阵面是螺旋涡状,且在中心具有一个暗核,光强为零,具有奇异性。光束还具有轨道角动量,并且绕着传播的光轴旋转进行传播,波前是螺旋状。涡旋光束最重要的特征就是它携带轨道角动量,与拓扑电荷有关。因此,可以根据拓扑电荷数的不同,将沿z 轴传播的涡旋光束数字表达式在柱坐标下可以简化为: ()()()()ikz il z r E E --=exp exp ,,z ,r,0θθθ 其中,E 表示在柱坐标下某处涡旋光束的电场,0E 表示振幅强度,l 表示拓扑电荷数,可以为整数,也可以为零和分数,k 为波数,大小为λπ2= k ,θ为方位角。涡旋光的螺旋相位就是由式中θil e -这一项所决定,则沿z 轴传播的涡旋光束相位φ分布可以表示为: ()kz l z r +=θθφ,, 除此之外,涡旋光束的角动量主要是因为它有拓扑电荷数,因此可以将涡旋光束的光场表达式简化为:?il e u u 0=。按照电动力学理论,它的角动量为自旋角动量和轨道角动量的 叠加,且与电场和磁场的关系为:() r d B E r S L J ???=+=0ε 当光束在近轴条件下传播,满足近轴近似,有: ikz e z y u k i y u ik H u B ??? ? ????+== 0

光学材料的研究现状及应用样本

光学材料研究现状及应用 姓名: 学号: 学院班级: 发光材料已成为人们寻常生活中不可缺少材料,被广泛地用在各种显示、照明和医疗等领域,如电视屏幕、电脑显示屏、X射线透射仪等,显微镜、望远镜、经纬仪、摄像机等各种光学仪器,核心某些都是由光学材料制造光学零件。当前发光材料重要是无机发光材料,从形态上分,有粉末状多晶、薄膜和单晶等。一、引言 光布满着整个宇宙,各种星体都在发光:远红外光、红外光、可见光、紫外光,以及X射线等。人类生活在光世界里,白天靠日光,黑夜靠灯光,夜间还要靠星光。要运用光,就要创造工具,就要有制造工具材料—光学材料。 自然中存在某些天然光学材料:国内夜明珠、发光壁;印度蛇眼石、叙利亚孔雀暖玉等。这些材料具备奇异发光现象,能在无光环境下放出各种色泽晶莹光辉。由于这些光学材料稀有,被视为人间珍宝,成为权力和财富象征。春秋战国时期,墨子就研究光传播规律,浮现了最古老光学材料—青铜反光镜。17世纪,瑞士人纪南熔制出光学玻璃,重要用于天文望远镜;随后,欧洲浮现了望远镜和三色棱镜,人造光学玻璃成为重要光学材料。20世纪初,以望远镜、显微镜、光谱仪以及物理光学仪器四大类为主体,建立了光学工业。 光学材料是传播光线材料,这些材料以折射、反射和透射方式,变化光线方向、强度和位相,使光线按预定规定和途径传播,也可吸取或透过一定波长范畴光线而变化光线光谱成分。 光学材料涉及光纤材料、发光材料、红外材料、激光材料和光色材料等。

二、研究现状及重要应用领域 1.发光材料 发光是物质将某种方式吸取能量转化为光向外辐射过程,是热辐射外另一种能量辐射现象。光子是电子在受激高能态返回低能态时发出,当发出光子能量在1.8-3.1eV时,便是可见光。而材料发光所需能量可从较高能量电磁辐射(如紫外光)中得到,也可从高能电子或热能、机械能和化学能中得到。 发光材料是指吸取光照,然后转化为光材料。发光材料晶格要具备构造缺陷或杂质缺陷,材料才具备发光性能。构造缺陷是晶格间空位等晶格缺陷,由其引起发光称为自激活发光,因此制备发光材料采用适当基质十分重要。如果在基质材料中有选取地掺入微量杂质在晶格中形成杂质缺陷,由其引起发光叫激活发光,掺入微量杂质普通都充当发光中心,称为激活剂。咱们实际应用发光材料大多是激活型发光材料。 依照发光类型,可以把发光材料分为光致发光材料、阴极射线发光材料、电致发光材料、X射线发光材料、发光二极管等。 1.1光致发光材料 发光就是物质内部以某种方式吸取能量后来,以热辐射以外光辐射形式发射出多余能量过程。用光激发材料而产生发光现象,称为光致发光。光致发光材料一种重要应用领域是照明光源,涉及低压汞灯、高压汞灯、彩色荧光灯、三基色灯和紫外灯等。其另一种重要应用领域是等离子体显示。光致发光粉是制作发光油墨、发光涂料、发光塑料、发光印花浆抱负材料。光致发光材料在安全面上应用是其最为普遍。在安全面,光致发光材料可用作安全出口批示标记、撤离标记等。另一方面用光致发光材料制作精美产品,某些不属安全标志产品,T恤衫、宣传品、小朋友玩具、小标签等可以运用光致发光材料进行装饰印刷。 1.2阴极射线发光材料

光学涡旋简介

光学涡旋简介 ****WT**** 2016年5月18日 摘要:光学涡旋是一种具有螺旋相位波前,带有轨道角动量(OAM),能够携带不同拓扑电荷数的光束。 携带不同拓扑电荷数的光学涡旋是相互正交的,因此,光学涡旋可以在光纤通信系统中进行模分复用, 它能够极大的提高光纤通信系统的容量。本文主要简单介绍涡旋光束,以及涡旋光束的生成和检测方法。 关键词:光学涡旋,轨道角动量,光纤通信,模分复用 Brief Introduction of Optical Vortex Abstract:Optical vortex is light beams with helical phase fronts vector, which can carry orbital angular momentum (OAM) with different topological charge number. Beams with different OAM orders are mutually orthogonal, hence it can be used in mode multiplexing and demultplexing in optical communication system which can improve the capacity of optical fiber communication system dramatically. In this paper, I will introduce optical vortex, and its generation and measure methods. Key Words:optical vortex, orbital angular momentum, fiber communication, mode multiplexing 1. 引言 随着通信技术的发展以及移动互联网、物联网的兴起,传统的光纤通信系统容量已经不能满足人们日益增长的需求。为了提高光纤通信的系统容量,空分复用[1]技术越来越受到科研工作者们的关注。空分复用的实现技术主要有多心光纤[2]和模分复用[3]。模分复用是利用不同模式的正交性,每个模式可以作为一个数据信道,来进行数据传输。常见的模分复用使用的是光纤中的高阶模和光学涡旋[4]中的OAM模。不同的OAM模是相互正交的,因此,它可以在光纤通信系统中进行模分复用,极大的提高光纤通信系统的容量。本文首先对光学涡旋进行简单的介绍,然后重点介绍涡旋光束在空间光和光纤中的生成方法以及检测方法,最后简单介绍涡旋光束在通信中的应用。 2. 涡旋光束简介 (a) (b) (c) 图1 涡旋光束示意图 如图1(a)所示,光纤涡旋是一种具有螺旋相位波前,带有轨道角动量(OAM),能够携带不同拓扑电荷数的光束[5];它的模场呈环形分布,如图1(b)所示;图1(c)表示的是拓扑电荷为1时的相位分布图,可以看出,在一个周期内,它的相位从0变化到2π,以此类推,当拓扑电荷数为n时,在

基于超表面涡旋的产生、调制和传输特性研究

基于超表面涡旋的产生、调制和传输特性研究具有螺旋相位波前的涡旋光束因携带轨道角动量为光场调控提供了更多的自由度,因此在光学通信、光学微操控和信息编码等方面有着广阔的应用。光学涡旋的产生常借助于螺旋相位板、光栅和光纤等传统光学元件,通过光波在传播过程中吸收、旋光或色散效应的累积来实现。近年来,超表面光学元件以其紧凑超薄的结构和相比传统的光学元件更易于光学集成的优势引起广泛关注。超表面可通过超薄纳米结构与光的相互作用使透射场产生突变相位来操控光波,它为构建各种超薄光学器件和推进平面光子学的发展提供了关键技术,也为光学涡旋的产生提供了新的思路。 因此基于超表面和纳米结构开展光学涡旋及其传输特性的研究具有重要的意义。本论文以光学超表面为基础,基于纳米结构引起的突变相位开展波前调控的研究,通过设计超表面结构实现了光学涡旋的产生、调制和传输特性的研究。论文的创新性工作包括如下几个方面:一是设计了无偏振依赖的光学涡旋发生器,二是设计了空间复用的聚焦透镜和聚焦涡旋透镜,三是基于螺旋缝产生了可变拓扑荷的光学涡旋。基于超表面的涡旋发生器具有结构简单和功能灵活可控的优势,为拓展涡旋光束的应用产生了重要影响。 论文的具体内容安排如下:第一章是论文的绪论部分。绪论介绍了超表面和光学涡旋的研究背景及本论文要展开的工作。超表面是本文的基础,本章首先介绍了超表面的基础知识。超表面可调控光场的偏振态,绪论给出了偏振光和偏振元件的矩阵描述,包括各类偏振光和几类偏振元件在圆偏振基中的描述。 本章还描述了涡旋光束,介绍了涡旋光束的传统产生方法,包括螺旋相位板法,激光腔内调制法以及计算全息法等,这些方法都存在体积庞大而不利于光学集成等问题,超表面设计的光学涡旋发生器则很好的解决了这个问题。本章的最后介绍了几种基于超表面的光学涡旋发生器,包括相位递增的纳米天线构成的涡旋发生器、利用纳米孔几何相移设计的空间复用涡旋发生器和利用阿基米德螺缝产生的可变拓扑荷涡旋发生器。第二章介绍了无偏振依赖的等离涡旋发生器。针对目前涡旋发生器对入射光的偏振态有强烈的依赖性这一局限,我们设计了一种在任意偏振态的线偏振光照明下都能够产生光学涡旋的涡旋发生器。 该器件由刻蚀在银膜上的两组矩形孔构成,这两组矩形孔均匀的排列在一个

最新光电传感器介绍

光电传感器介绍

光电式传感器 1.概述 2.物理特性 2.1外光电效应 2.1.1光子假设 2.2 内光电效应 2.2.1光电导效应 2.2.2光电转换元件 3.光电式传感器 3.1工作原理 3.2光电传感器分类 4.光电传感器应用 4.1光电传感器优点 4.1.1光电式带材跑偏检测器 4.1.2包装充填物高度检测 4.1.3光电色质检测 4.1.4烟尘浊度监测仪 4.1.5其他方面的应用 5.光纤传感器 5.1基本工作原理 5.2光纤的种类与特性 5.3光纤传感器的应用

6.常用光电传感器及生产厂家和参数 光电式传感器 1.概述 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。 光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位

移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2.物理特性 2.1外光电效应 2.1.1光子假设 1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。单色光由大量不连续的光子组成。若单色光频率为n,那么 每个光子的能量为E=hv, 动量为。 由爱因斯坦光子假说发展成现代光子论(photon theory)的两个基本点是: (1) 光是由一颗一颗的光子组成的光子流。每个光子的能量为E = hv, 动量为。由N个光子组成的光子流,能量为N hv。 (2) 光与物质相互作用,即是每个光子与物质中的微观粒子相互作用。 根据能量守恒定律,约束得最不紧的电子在离开金属面时具有最大的初动 能,所以对于电子应有: 2.2 内光电效应 光电传感器通常是指能敏感到由紫外线到红外线光的光能量,并能将光能转化成电信号的器件。其工作原理是基于一些物质的光电效应。 光电效应:当具有一定能量E的光子投射到某些物质的表面时,具有辐射能量的微粒将透过受光的表面层,赋予这些物质的电子以附加能量,或者改变物质的电阻大小,或者使其产生电动势,导致与其相连接的闭合回路中电流的变

光学材料大全

有色玻璃牌号 无色光学玻璃类型 光学晶体主要性能参数添加日期:2002-10-29

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5%

常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定 耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响 日光及耐气候性:紫外透过滤73.5% 常用光学塑料-聚碳酸酯PC 密度(kg/m3):1.2 ×10E3 nD ν:1.586(25) 29.9 透过率(%):80~90 吸水率(%):23CRH50% 0.15 水中0.35 玻璃化温度:149 熔点(或粘流温度):225~250(267) 马丁耐热:116~129 热变形温度:132~141(4.6×105Pa) 132138(18.5×105Pa) 线膨胀系数:6×10-5 计算收缩率(%):0.5~0.7 比热J/kgK:1256 导热系数W/m K:0.193 燃烧性m/min:自熄 耐酸性及对盐溶液的稳定性:强氧化剂有破坏作用,在高于60水中水解,对稀酸,盐,水稳定 耐碱性:强碱溶液,氨和胺类能腐蚀和分解,弱碱影响较轻 耐油性:对动物油和多数烃油及其酯类稳定

光电传感器的分类及应用

光电传感器的分类及应用 [摘要]:传感器是衡量一个国家科学技术现代化程度的重要标志。光电传感器作为传感器中的重要一员,广泛应用在社会生活的各个方面。本文简介了光敏二极管的原理,并简单介绍了常见的五种光敏传感器工作原理及应用场合,同时结合传感器的工作原理,举例说明了传感器在日常生活的常见应用。 [关键字]光电传感器光电传感器光敏二极管 在当今信息时代,传感器已经渗透到各行各业。在生活中,我们常常依靠传感器来实现监测和自动调节功能。在高新技术领域,微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得传感器的应用与日俱增。光电传感器以光电效应为理论基础,由光电材料构成,具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,在检测和控制中应用非常广泛。 光电传感器是各种光电检测系统中实现光电转换的关键元件,而光电材料是光电传感器中的重要组成部分。光照在光电材料上时,材料表面的电子吸收能量。当电子吸收的能量足够大时,电子会克服原子核对它的束缚力,脱离材料表面而进入外界空间,从而改变光电材料的导电性。光电传感器是采用光电材料作为检测的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器中常用的光电元件是光敏二极管和光敏三极管。光敏二极管的工作原理是光照照到P-N结上时,吸收光能并转换为电能。光敏二极管在光敏元件中有两种工作状态:(1)当光敏二极管加上反向电压时,管子中的反向电流随着光照强度的改变而改变,光照强度越大,反向电流越大,大多数都工作在这种状态。(2)光敏二极管上不加电压,利用P-N结在受光照时产生正向电压的原理,把它用作微型光电池。当有光照时,光敏二极管输出电流。光敏三极管除了具有光敏二极管能将光信号转换成电信号的功能外,还有对电信号放大的功能。因此与光敏二极管相比,光敏三极管有更高的灵敏度。光敏二极管与光敏三极管在光电传感器中起着重要决定性作用。 光敏传感器工作时,发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管、激二极管及红外发射二极管,光束不间断地发射,或者改变脉冲宽度,接收器有光电二极管、光电三极管、光电池组成,在接收器的前面,装有光学元件如透镜和光圈等,在其后面是检测电路,它能滤出有效信号,此外,光电关的结构元件中还有发射板和光导纤维。1 光电传感器主要有以下五种。

相关文档
最新文档