定积分的基本性质

定积分的基本性质
定积分的基本性质

定积分的基本性质

一、定积分的基本性质

性质1: ∫b a1dx=∫b a dx=b-a

证: f(ξi)Δx i=

1·Δx i= (b-a)=b-a

所以

∫b a1dx=∫b a dx=b-a

性质2:(线性运算法则):设f(x),g(x)在[a,b]上可积,对任何常数α、β,则αf(x)+βg(x)在[a,b]上可积,且

∫b a[αf(x)+βg(x)]dx=α∫b a f(x)dx+β∫b a g(x)dx

证:设F(x)=αf(x)+βg(x),由

F(ξi)Δx i=[αf(ξi)+βg(ξi)]Δx i

=[αf(ξi)Δx i+βg(ξi)Δx i]

=α ∫b a f(x)dx+β∫b a g(x)dx, 因此

αf(x)+βg(x)在[a,b]上可积,且

∫b a[αf(x)+βg(x)]dx=α∫b a f(x)dx+β∫b a g(x)dx

特别当α=1,β=±1时,有

∫b a[f(x)±g(x)]dx=∫b a f(x)dx±∫b a g(x)dx

当β=0时

∫b aαf(x)dx=α∫b a f(x)dx

性质2主要用于定积分的计算

性质3:对于任意三个实数a,b,c,若f(x)在任意两点构成的区间上可积,则

∫b a f(x)dx=∫c a f(x)dx+∫b c f(x)dx

证:a,b,c的位置,由排列知有六种顺序

(i)当a

∫b a f(x)dx=

f(ξi)Δx i

=[f(ξi)Δx i+f(ξi)Δx i]

=f(ξi)Δx i+f(ξi)Δx i

= ∫c a f(x)dx+∫b c f(x)dx

(ii)当c

由(i)知 ∫a c f(x)dx=∫b c f(x)dx+∫a b f(x)dx有

-∫c a f(x)dx=∫b c f(x)dx-∫b a f(x)dx,则

∫b a f(x)dx=∫c a f(x)dx+∫b c f(x)dx

对于其它4种位置与(ii)证明类似。

性质3主要用于分段函数的计算及定积分说明。。

性质4:若f(x)在[a,b]上可积,f(x)≥0,则 ∫b a f(x)dx ≥0

证:由f(ξi)≥0,Δx i>0,有f(ξi)Δx i>0有

f(ξi)Δx i>0,由函数极限不等式知

∫b a f(x)dx=f(ξi)Δx i≥0

性质4用于不通过计算,判别定积分的符号。

性质5:若f(x),g(x)在[a,b]上可积,f(x)≥g(x),且a

∫b a f(x)dx≥∫b a g(x)dx

证:由f(x)-g(x)≥0,由性质2,4知。

∫b a f(x)dx-∫b a g(x)dx=∫b a[f(x)-g(x)]dx≥0

性质5:用于不通过计算,比较两定积分大小。

性质6:若f(x)在[a,b]上连续f(x)≥0但f(x) 0,则 ∫

b

a f(x)dx>0

证:由f(x)=0,则存在x0∈[a,b],不妨设x0∈(a,b),有f(x0)>0,由f(x)在[a,b]上连续,所以在点x0处连续,即

f(x)=f(x0)>0,由连续保号性知,对0<0,

当x∈(x0-δ1,x0+δ1)时,有f(x)> x∈[x0-,x0+] (x0-δ1,x0+δ1)时,f(x)> ,则

∫b a f(x)dx=∫ x0- a f(x)dx+f(x)dx+∫b x0+

f(x)dx ≥f(x)dx≥

∫b a f(x)dx=∫ x0- a f(x)dx+f(x)dx+∫b x0+

f(x)dx ≥f(x)dx≥

dx=dx=>0

性质6用于判断定积分值的符号

推论若f(x),g(x)在[a,b]上连续,f(x)≥g(x),且f(x)≠g(x),a∫b a g(x)dx

该推论用于不通过计算比较两定积分的大小

若将性质5用不等式

-|f(x)|≤f(x)≤|f(x)|,有

- ∫b a|f(x)|dx≤∫b a f(x)dx≤∫b a|f(x)|dx, 于是有 性质7若f(x)在[a,b]上连续,则

|∫b a f(x)|dx≤∫b a|f(x)|dx

性质8 若f(x)在[a,b]上连续,m、M是f(x)区间[a,b]上的最小值与最大值,则

m(b-a)≤ ∫b a f(x)dx≤M(b-a)

该性质用于估计定积分值的范围

证:由m≤f(x)≤M,x∈[a,b] a

由性质5知

m(b-a)= ∫b a mdx≤∫b a f(x)dx≤∫b a mdx=M(b-a)

性质9(积分中值定理)若f(x)在闭区间[a,b]上连续,则至少存一点ξ∈[a,b],使

∫b a f(x)dx=f(ξ)(b-a) (2.1)

证:由性质8知

证:由性质8知

m(b-a)≤ ∫b a f(x)dx≤M(b-a)

不等式两边同除b-a,由b-a>0,有

m≤≤M

又f(x)在[a,b]上连续,则[m,M]为函数值域,故至少存在一点ξ∈[a,b],使

=f(ξ) (2.2)

则 ∫b a f(x)dx=f(ξ)(b-a)

积分中值定理的几何意义:设f(x)≥0,则 ∫b a f(x)dx 的数值表示曲线y=f(x),y=0,x=a,x=b同成的曲边梯形面积,如图5-5表明,在区间[a,b]上至少存在一点ξ,以ξ处的纵坐标f(ξ)为高,(b-a)为底的矩形面积,等于该曲边梯形的面积。

f(ξ)即(2.2)式左边所确定的值,称为函数f(x)在区间[a,b]上的平均值。

图5-5

积分中值定理与微分中值定理同样重要,利用积

分中值定理可以证明方程根的存在性,适合某种

条件ξ的存在性及不等式,有时与微分中值定理

综合运用解决一些问题。

例设函数f(x)在[0,1]上连续,(0,1)内可导,且3

f(x)dx=f(0),证明在(0,1)内存在一点ξ,使f′(ξ)=0

证:由积分中值定理知,在[,1]上存在一点c,使

3f(x)dx=3·f(c)(1-)=f(c)=f(0)

故f(x)在区间[0,c]上满足罗尔定理条件,因此至少存在一点ξ∈(0,c) (0,1)

使f′(ξ)=0

例证明dx=0

证由积分中值定理

0≤dx

= 0≤ξn≤,有

0≤ξn n≤()n,由()n=0,由夹逼定理知

ξn n=0,而0<≤1

有·ξn n·=0,由夹逼定理知

dx=0。

定积分的概念和性质公式

1. 曲边梯形的面积 设在区间上,则由直线、、及曲线 所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间中任意插入若干个分点将分成 n 个小区间 ,小区间的长度 在每个小区间上任取一点作乘积, 求和取极限:则面积取极限

其中,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度是上的连续函数,且,求在这段时间内物体所经过的路程。 分割求近似:在内插入若干分点将其分成 n 个小区间,小区间长度,。任取, 做 求和取极限:则路程取极限 定义设函数在上有界,在中任意插入若干个分点 将分成 n 个小区间,其长度为,在每个小区间 上任取一点,作乘积,并求和, 记,如果不论对怎样分法,也不论小区间上的点

怎样取法,只要当时,和总趋于确定的极限,则称这个极限 为函数在区间上的定积分,记作,即 ,(*) 其中叫被积函数,叫被积表达式,叫积分变量,叫积分下限, 叫积分上限,叫积分区间。叫积分和式。 说明: 1.如果(*)式右边极限存在,称在区间可积,下面两类函数在区间 可积,(1)在区间上连续,则在可积。(2)在区间 上有界且只有有限个间断点,则在上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所以 3.规定 时 , 在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积;

在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积(此时,曲边梯形在轴的下方); 例1 利用定积分的几何意义写出下列积分值 (1)(三角形面积)(2)(半圆面积)

设可积 性质1 性质2 性质3 (定积分对区间的可加性)对任何三个不同的数,有 性质4 性质5 如果在区间上,,则 推论 性质6 (定积分的估值)设 M 及 m 分别是函数在区间上的最大值及最小值,则 性质7 (定积分中值定理) 如果函数在区间上连续,则在上至少有一点, 使成立

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

定积分的概念及性质

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 定积分的概念及性质 图 1 图 2 A B 4.4 定积分的概念及性质课题: 定积分的概念及性质目的要求: 理解定积分的概念及其性质重点: 定积分的概念、定积分的几何意义难点: 定积分的概念教学方法: 讲授为主、讲练结合教学时数: 2 课时教学进程: 定积分是积分学的另一个重要的基本概念,和导数概念一样,它也是在解决各种实际问题中逐渐形成并发展起来的,现已成为解决许多实际问题的有力工具.本节将首先从实际问题出发引出定积分的概念,并介绍定积分的几何意义和性质.随后的两节再介绍定积分与微分的内在联系,定积分的计算及其简单应用.一、定积分的概念 1.两个引例例 1 求曲边梯形的面积.初等数学可以计算多边形、圆形和扇形等图形的面积,但对于较复杂的曲线所围成的图形(图 1)的面积计算则无能为力.如图所示,我们总可以用若干互相垂直的直线将图形分割成如阴影部分所示的基本图形,它是由两条平行线段,一条与之垂直的线段,以及一条曲线弧所围成,这样的图形称为曲边梯形.特别地,当平行线之一缩为一点时,称为曲边三角形.现在求由直线0,,===ybxax和连续曲线)(xfy = ) 0)((xf所围成的曲边梯形 AabB (图 2)的面积 S .如 1 / 7

果曲边梯形的高不变,即Cy =(常数),则根据矩形面积公式面积=底高便可求出它的面积.但如果)(xfy =是一般曲线,则底边上每一点 x 处的高)(xf随 x 变化而变化,上述计算公式就不适用.对于这样一个初等数学无能为力的问题,我们解决的思路是:将曲边梯形分成许多小长条(图 2),每一个长条都用相应的矩形去代替,把这些矩形的面积加起来,就近似得到曲边梯形的面积S .小长条分得越细,近似程度越好,取极限就是面积 S .具体地,分四步来解决. (1) 分割(化整为零) 在区间],[ba内任意添加1n个分点: 将区间],[ba分成 n 个子区间,这些子区间的长度记为 1 i=}?{iixxx ),, 2 , 1=(ni,并用符号i x?= max表示这些子区间的最大长度.过1n个分点作 x 轴的垂线,于是将曲边梯形分割成n 个小曲边梯形,它们的面积记作i S? ),, 2 , 1=(ni.显然=i?=niSS1. (2) 代替(以直代曲)在第 i 个子区间],[1iixx 上任取一点i ,作以)(if 为高,],[1iixx为底的第 i 个小矩形,小矩形的面积为 iixf?)( ),, 2 , 1=(ni第i 个小曲边梯形的面积 iiixfS??)( ),, 2 , 1=(ni. (3) 求和(求曲边梯形面积的近似值)将 n 个小矩形的面积加起来,便得到原曲边梯形面积的近似值 nxfS1(4) 取极限(积零为整)不难想到,当分割越来越细(即 n 越来越大,同时最长的子区间长度越来越小时), n 个矩形的面积和就越来越接近于原曲边梯形的面积.于是

定积分的概念和性质公式

1.曲边梯形的面积 设在区间*I上:;--L ,则由直线工’=■<、応匚、V 1及曲线■V °/W所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间-八「中任意插入若干个分点将宀…-分成n个小区间 兀5 5 <…,小区间的长度&广呜一為」(T三12… 在每个小区间- :-一I〕上任取一点-■■作乘积 求和取极限:则面积取极限

J=1 其中;'1 ; J L厂V '…,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度| I「是上*的连续函数,且1■求在这段时间内物体所经过的路程。 分割求近似:在「〔[内插入若干分点■- _ "将其分成 n 个小区间「—,小区间长度■- _■'.-1, ■1丄。任取? _ _ 做 求和取极限:则路程一取极限 将分成n个小区间-,其长度为2 - —,在每个小区间 上任取一点「:,作乘积■- ' ■',并求和 r , 记1■r 1,如果不论对怎样分法,也不论小区间[:■ 上的 点「怎样取法,只要当「「I;时,和总趋于确定的极限,则称这个极限 为函数-—I在区间上的定积分,记作J ',即 定义设函数」?、在L?二上有界,在-亠二中任意插入若干个分点

其中叫被积函数,一’,八叫被积表达式,'‘叫积分变量,二叫积分下限, 「叫积分上限,-’」叫积分区间。■叫积分和式。 说明: 1.如果(*)式右边极限存在,称-’’」在区间-仁丄可积,下面两类函数在区间 上…-可积,(1)」在区间-LL■- - 上连续,则■' J'-在可积。(2)-’八在区间-‘丄-上有界且只有有限个间断点,则在--"-■ 上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所 3.

高等数学(上册)教案22定积分的概念与性质

高等数学(上册)教案22定积分的概念与性 质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例5.1.1 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示).下面来求该曲边 梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间 [,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间 [,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于 y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边图5-1 图5-2

梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个 与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边 梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积 (如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩 形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . (1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x -- , 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点 1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的 面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ, 将其作为曲边梯形面积的近似值,即 11()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ (max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值, 即 01lim ()n i i i A f x λξ→==?∑. 5.1.1 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插 入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的 乘积),,2,1()(n i x f i i =?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i =, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区

小结定积分的性质

小结定积分的性质 定积分内容是研究曲边梯形、变速行程等问题的有力工具,在对定义加深理解的基础上,我们还应了解一些定积分的基本性质.(由于这些性质的证明联系到大学《数学分析》的一些内容,所以对证明过程不作要求.) 一、定积分基本性质 假设下面所涉及的定积分都是存在的,则有 性质1 函数代数和(差)的定积分等于它们的定积分的代数和(差).即 [()()]()b b b a a a f x g x d x f x d x g x d x ±=±???. 这个性质可推广到有限多个函数代数和的情形. 性质2 被积函数的常数因子可以提到积分号前,即()()b b a a kf x dx k f x dx =? ?(k 为常 数). 性质3 不论a b c ,,三点的相互位置如何,恒有()()()b c b a a c f x dx f x dx f x dx =+? ??. 这性质表明定积分对于积分区间具有可加性. 性质4 若在区间[]a b ,上,()0f x ≥,则 ()0b a f x dx ? ≥. 推论1 若在区间[]a b ,上,()()f x g x ≤,则()()b b a a f x dx g x dx ? ?≤. 推论2 ()()b b a a f x dx f x dx ? ?≤. 性质5 (估值定理)设函数()f x 在区间[]a b ,上的最小值与最大值分别为m 与M ,则 ()b b b a a a mdx f x dx Mdx ? ??≤≤. 证明:因为()m f x M ≤≤,由推论1得()b b b a a a mdx f x dx Mdx ? ??≤≤. 即()b b b a a a m dx f x dx M dx ? ??≤≤. 故()()()b a m b a f x dx M b a --? ≤ ≤. 利用这个性质,由被积函数在积分区间上的最小值及最大值,可以估计出积分值的大致范围. 二、定积分性质的应用 例1 比较定积分 2 e x dx -? 和2 xdx -?的大小. 解:令()e x f x x =-,[20]x ∈-, , 则()0f x >, 故 2 ()0f x dx ->? ,即0 2 (e )0x x dx -->?.

5.1 定积分的概念与性质-习题

1.利用定积分的定义计算下列积分: ⑴ b a xdx ? (a b <); 【解】第一步:分割 在区间[,]a b 中插入1n -个等分点:k b a x k n -=,(1,2,,1k n =-),将区间[,]a b 分为n 个等长的小区间[(1),]b a b a a k a k n n --+-+, (1,2,,k n =),每个小区间的长度均为k b a n -?=, 取每个小区间的右端点k b a x a k n -=+, (1,2,,k n =), 第二步:求和 对于函数()f x x =,构造和式 1 ()n n k k k S f x ==??∑1 n k k k x ==??∑1 ()n k b a b a a k n n =--=+ ?∑ 1()n k b a b a a k n n =--=+∑1 ()n k b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1) []2 b a b a n n na n n ---=+? ^ 1()[(1)]2b a b a a n -=-+ ?-1 ()()22b a b a b a a n --=-+-? 1 ()()22b a b a b a n +-=--? 第三步:取极限 令n →∞求极限 1 lim lim ()n n k k n n k S f x →∞ →∞ ==??∑1 lim()( )22n b a b a b a n →∞ +-=--? ()(0)22 b a b a b a +-=--?()2b a b a +=-222b a -=, 即得 b a xdx ? 22 2 b a -=。

定积分的概念与性质练习

第一节 定积分的概念与性质 一、选择题 1. A ; 2. C . 二、填空题 1. (1)1; (2)0; (3)4 π. 2. (1)1 2 x dx ? > 1 30 x dx ? , (2)2 1ln xdx ? > () 2 2 1ln x dx ?, (3) 20 xdx π ? < 20 sin xdx π ? , (4)4 3 ln xdx ? < () 4 2 3ln x dx ?. 三、 解 由于()3f x x =在[]0,1上连续,故积分2 21 x dx -? 是存在的,且它与分法无关,同 时也与点的取法无关. 将区间[]0,1n 等分,得1 i x n = ,取() 1,2,, i i i n n ξ== 作和 ()2 3 2 1 1 13 344 0001114 n n n n i i i i i n n i S x i n n n n ξ---===+??==== ???∑∑∑ 于是 1 lim 4n n S →∞= 即 13 014 x dx =?. 四、 细棒的质量()0 l x dx ρ?. 五、 1 13 x e dx -+? 311 x e dx +-=-?. 设()()1 1,0x x f x e f x e ++'==>,所以()f x 在[]1,3-内单调增加, 从而 ()()()13f f x f -≤≤,即1 41x e e +≤≤. 于是 3 141 44x e dx e +-≤≤? 从而 1 4 13 44x e e dx -+-≤ ≤-? . 六、 设()()2 21,41f x x x f x x '=-+=-,令()0,f x '=得驻点1 4 x = . ()17101,,1482f f f ???? === ? ????? .所以 min ()f x =1, max ()f x =78. 1≤≤ 由定积分性质,得 1 2012≤≤ ?.

定积分概念与性质(Concept

第五章 定积分 Chapter 5 Definite Integrals 5.1 定积分的概念和性质(Concept of Definite Integral and its Properties ) 一、定积分问题举例(Examples of Definite Integral ) 设在()y f x =区间[],a b 上非负、连续,由x a =,x b =,0y =以及曲线() y f x =所围成的图形称为曲边梯形,其中曲线弧称为曲边。 Let ()f x be continuous and nonnegative on the closed interval [],a b . Then the region bounded by the graph of ()f x , the x -axis, the vertical lines x a =, and x b = is called the trapezoid with curved edge. 黎曼和的定义(Definition of Riemann Sum ) 设()f x 是定义在闭区间[],a b 上的函数,?是[],a b 的任意一个分割, 011n n a x x x x b -=<<<<=, 其中i x ?是第i 个小区间的长度,i c 是第i 个小区间的任意一点,那么和 ()1 n i i i f c x =?∑,1 i i i x c x -≤≤ 称为黎曼和。 Let ()f x be defined on the closed interval [],a b , and let ? be an arbitrary partition of [],a b ,011n n a x x x x b -=<< <<=, where i x ? is the width of the i th subinterval. If i c is any point in the i th subinterval, then the sum ()1 n i i i f c x =?∑,1 i i i x c x -≤≤, Is called a Riemann sum for the partition ?. 二、定积分的定义(Definition of Definite Integral ) 定义 定积分(Definite Integral ) 设函数()f x 在区间[],a b 上有界,在[],a b 中任意插入若干个分点 011n n a x x x x b -=<< <<=,把区间[],a b 分成n 个小区间: [][][]01121,,,,,,,n n x x x x x x - 各个小区间的长度依次为110x x x ?=-,221x x x ?=-,…,1n n n x x x -?=-。在每个小区

浅析反常积分与定积分的定义与性质

浅析反常积分与定积分的定义与性质 浅析反常积分与定积分的定义与性质 浅析反常积分与定积分的定义与性质 刘汉兵1,刘树兵2 (1.中国地质大学(武汉)数理学院,湖北武汉430074;2.湖北省鄂州市第二中学,湖北鄂州436001) 摘要:积分学是微积分理论中的一个重要部分。一元函数的积分学主要包括定积分和反常积分两大类。这两类积分各自具备一些性质,而这些性质常常被拿来相互比较。本文将从定义出发,结合一些反例,深入剖析定积分和反常积分的性质差异及其原因。 关键词:反常积分与定积分;性质差异;定义 作者简介:刘汉兵(1985-),男(汉族),湖北鄂州人,博士,讲师,研究方向:微分方程的最优控制理论;刘树兵(1982-),男(汉族),湖北鄂州人,本科,高中教师,研究方向:数学教学教育。 积分学是微积分理论中的一个重要组成部分。一元函数的积分学主要包括定积分和反常积分两大类,反常积分又包含了无穷积分与瑕积分,它们可以看作是定积分的推广,是定积分的某种意义下的极限形式。粗略来看,反常积分是更为一般的积分,定积分作为更为特殊的积分,应该具备反常积分所具备的性质。但

是在这部分内容的学习过程中,可以看到反常积分与定积分的一些性质有所区别,甚至从表面上看,反常积分的一些性质,定积分并不具备。本文将从定义出发,剖析这些性质的差异及其原因,以更加准确深刻的理解定积分和反常积分的异同。 一、无穷积分与定积分的定义与性质 我们知道对于无穷积分,有如下的一个重要性质。 这显然是不合情理的,因为无穷积分是定积分的推广,定积分是更为特殊的积分。仔细分析会发现,上述两个命题中第二个命题即为定理2的结论,是真命题,而命题一看似定理1的结论,但是它与定理1的描述相比,去掉了一个非常重要的条件:“f在任何有限区间[a,u]上可积”,所以命题一是错误的。实际上,我们上述定义的函数E(x)可以更直接的说明命题一是不对从定理的证明我们也可以进一步认识到A、B两部分内容的差异对定理结论的影响。定理1的两个证明都是围绕积分上限趋于正无穷时,变上限积分极限的存在性展开的,而定理2的证明则是依赖于有限区间上的可积性定理,即证明当划分足够细时,Daboux大和与Daboux小和收敛到同一个极限,这是完全不同的两个对象。另一方面,我们从证明里面看到,定理1确实是依赖于条件A的。在定理1的证明里,我们用到了f(x)在任一有限区间上的定积分,如果没有条件A,这些定积分是不存在的,这也说明了为什么不能运用定理1的证明方法得到定积分的类似性质。

最新定积分的概念与性质

定积分的概念与性质

第五章定积分 第一节定积分的概念与性质 教学目的:理解定积分的定义,掌握定积分的性质,特别是中值定理. 教学重点:连续变量的累积,熟练运用性质. 教学难点:连续变量的累积,中值定理. 教学内容: 一、定积分的定义 1.曲边梯形的面积 设?Skip Record If...?在?Skip Record If...?上非负,连续,由直线?Skip Record If...?,?Skip Record If...?,?Skip Record If...?及曲线?Skip Record If...? 所围成的图形,称为曲边梯形. 求面积: 在区间?Skip Record If...?中任意插入若干个分点 ?Skip Record If...?, 把?Skip Record If...?分成?Skip Record If...?个小区间[?Skip Record If...?],[?Skip Record If...?], … [?Skip Record If...?],它们的长度依次为: ?Skip Record If...? 经过每一个分点作平行于?Skip Record If...?轴的直线段,把曲边梯形分成?Skip Record If...?个窄曲边梯形,在每个小区间[?Skip Record If...?]上任取一点?Skip Record If...?,以[?Skip Record If...?]为底,?Skip Record If...?为高的窄边矩形近似替代第?Skip Record If...?个窄边梯形?Skip Record If...?,把这样得到的

相关文档
最新文档