三项半波有源逆变课程设计

三项半波有源逆变课程设计
三项半波有源逆变课程设计

三相半波有源逆变电路设计

姓名:吴兵

学号:111705225

学院:水利与能源动力工程学院

专业:建筑电气与智能化

指导教师:鲁玲

2013年1 2月

1 引言

1.1逆变的应用

随着科技的快速发展,逆变电路已经越来越多的出现在人们的生活中。目前,逆变电路的已经在很多领域应用到,比如电脑、电视、洗衣机、空调、家庭影院、电动砂轮、电动工具、缝纫机、录像机、按摩器、风扇、照明、交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。它的基本作用是在控制电路的控制下将中间直流电路输出的直流电源转换为频率和电压都任意可调的交流电源。。

1.2逆变的分类

逆变与整流相对应,是把直流电能经过直交变换,向交流电源反馈能量的变换电路。当交流侧接电网,称为有源逆变,当交流侧接负载,称为无源逆变。当直流侧是电压源,称为电压源型逆变电路,当直流侧是电流源,又称为电流源型逆变电路,电压型逆变电路输出电压是矩形波,电流型逆变电路输出电流是矩形波。全控整流电路既能工作在整流方式,又能工作在有源逆变方式,即电路在一定条件下,电能从AC—DC;在另外条件下,电能又可以从DC返回AC。

1.3 有源逆变产生的条件

(1)负载侧存在一个直流电源E,由它提供能量,其电势极性与变流器的整流电压相反,对晶闸管为正向偏置电压。

(2)变流器在其直流侧输出应有一个与原整流电压极性相反的逆变电压u,其平均值U

(3)晶闸管的控制角α>90 °,使输出电压为负值。

2 主电路设计及工作原理

2.1总体框架图

图1总体框架图

总体工作原理说明,交流电给主电路的晶闸管和触发电路供电,触发电路触发晶闸管导通,由于直流电源电压大于交流电源平均电压,故能量由直流电源侧流向交流电源侧。

2.2主体电路图(用protues绘制)

图2 主电路图

主电路分析,由3个相位依次相差120的交流电源组成三相交流电源,并分别于三个晶闸管相连,三个晶闸管共阴极连接,负载为电阻、电感、直流电源,直流电源与晶闸管正向导通方向一致。

2.3 工作原理

三相半波有源逆变电路带电阻电感负载时,负载直流电源对晶闸管正向偏置电压,电路触发脉冲控制角移相范围在之间,即逆变角范围是。在某时刻(本题)VT1触发导通,由于直流电源的作用,即使VA相电压为负,VT1仍能导通。接下来VT2,VT3依次落后导通。VT1、VT2、VT3依次导通,因为直流电源电压大于交流电源平均电压,电能由直流转换为交流,实现了有源逆变。

3 单元电路设计

3.1 触发电路

触发脉冲的宽度应保证晶闸管开关可靠导通(门极电流应大于擎柱电流),触发脉冲应有足够的幅度,不超过门极电压、电流和功率,且在可靠触发区域之内,应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。晶闸管可控整流电路,通过控制触发角a的大小即控制触发脉冲起始相位来

图3触发电路

控制输出电压大小。为保证相控电路正常工作,很重要的是应保证按触发角a的大小在正确的时刻向电路中的晶闸管施加有效的触发脉冲。

如上图为触发电路。由三片集成触发电路芯片KJ004和一片集成双脉冲发生器芯片KJ041形成六路脉冲,再由六个晶闸管进行脉冲放大,即构成完整的触发电路产生的触发信号用接插线与主电路各晶闸管链接。该电路可分为同步、锯齿波形成、移相、脉冲形成、脉冲分选及脉冲放大几个环节。

本题仿真时采用了synchronized 6-pluse generator作为题中的三个晶闸管的触发脉冲输入电路,初始触发脉冲设为150度角,选择1,3,5触发信号接入。芯片会自动给各个晶闸管提供所需要的触发脉冲,使晶闸管在需要导通的时候导通,以确保电路的正常运行。

3.2波形观察电路

在物理学上常用的观察波形的器件是示波器,在matlab软件中,也是使用虚拟的scope(示波器)作为电路的输出波形观察装置!

示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。

在软件中,将需要观察的物理量通过电压表或电流表进行量化,然后将电压表或电流表的输出段端接到示波器的输入端,通过运行,便可直观的看到所要测得的器件两端的物理量!

3.3设计电路图

图4原理图

4参数计算

实验电源选择(AC100V/25HZ)负载电阻R=2πf×L欧姆直流电动势E=120V,,即。

根据实验测得的波形可以求得如下参数:

输出平均电压:

Ud=1.17U2cosa=58.5V

输出平均电流:Id=(Ud-Em)/R=4.89A

晶闸管额定电流选取:

Ivt=Id/√3=2.83

Kf=Ivt/√3=1.63

It=KfId÷1.57=5,07

考虑晶闸管有2倍左右的电流储备,额定电流取10A

晶闸管额定电压选取:

晶闸管承受最大反向电压为, √6U2=245V

考虑晶闸管有2-3倍左右的电压储备,取。U=610V 5仿真波形图

(1)改变α角其他参数不变

α=60o时

α=90o时

α=120o时

分析:通过改变α角的大小,从图中可读出输出电压平均值减小,α=90o时,Ud=0,满足Ud=1.17U2cosa,且电流关系同样满足Ud=1.17U2cosa。(2)改变负载电阻大小,其他参数不变(α取60 o)

R=10Ω

R=100Ω

R=1000Ω

分析:通过改变负载电阻的大小,可以发现当电阻R增大时,输出平均电流Id减小,Ivt也随之减小,满足Id=(Ud-Em)/R Ivt=Id/√3

Kf=Ivt/√3

It=KfId÷1.57

(3)改变负载电容大小,其他参数不变(α取60 o)L=0.08L

L=0.8H

L=8H

数据分析:当负载电感变大时,输出电流曲线变得平缓,即当电感无穷大时,输出电流连续,所以电感对电流起缓冲作用。

6总结分析:根据上面的波形图,可以看出在输入电源的正弦波一个周期内,输出波有三个周期。由此可知,图形中的三个晶闸管分别各自轮流导通,导通时间是120°,关断时间240。并有3个触发脉冲。波形上输出电压在负半轴,与逆变结果相应。由于负载接大电感,输出电流波形近似直线。从图上读取为9V左右,与计算相近。从波形图上读取晶闸管承受的最大电压大约250V,与计算结果相近。

7 心得体会

通过此次课程设计,我从完全不懂到逐渐了解,再到基本学会使用Matlab 仿真,它是与我们专业密切联系的软件。其中掌握了用Matlab对电力电子电路进行仿真,观察波形,调整参数等操作。当然这次实验有遇到了不少的困难,也出现了不少的错误,反映出基础知识的某些地方还有薄弱的地方。通过自己查找资料,苦心探索实践,与同学讨论学习,使我进步了许多,学到了很多东西。不论是在基础理论上还是思维能力、动手能力上都有了比较大的提高。很高兴有这么一次课程设计的机会,我想它将对以后的学习和今后的工作带来一

定的好处。

电力电子技术既是一门技术基础课程,也是实用性很强的一门课程。因此,电力电子装置的应用是十分重要的。电力电子装置提供给负载的是各种不同的直流电源,恒频交流电源和变频交流电源,因此也可以说电力电子技术研究的也是电源技术。

参考文献

[1] 电力电子电路的计算机仿真陈建业编著北京清华大学出版社 2003

[2] 电路和系统的仿真实践张占松编著北京科技出版社2000

[3] 电子电路CAD—基于OrCAD9.2贾新章编著西安西安电子科技大学出版社 2002

[4] Pspice 8.0电路设计实例精粹高伟涛编著北京国防工业出版社 2001

[5] MATLAB 电子仿真与应用韩利竹编著北京国防工业出版社

[6] 开关电源的原理与设计张占松编著北京电子工业出版社 1999

逆变器的基础知识

逆变器的基础知识 一、逆变器种类的划分 主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。 同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载(详细解释见下条)。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。 针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。 总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。 二、何为感性负载 通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。 例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于逆变器所能承受的电压值,很容易引起逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。 三、准正弦波逆变器可以用于哪些电器 准正弦波也分为若干种,从与方波相差无几的方形波到比较接近正弦波的圆角梯形波。 我们这里仅讨论方形波,这也是目前大部分市售高频逆变器能够提供的波形。这类准正弦波逆变器可应用于笔记本电脑、电视机、组合式音响、摄像机、数码相机、打印机、各种充电器、掌电上脑、游戏机、影碟机、移动DVD、家用治疗仪等等,输出功率较大的逆变器还可以应用于小型电热器具如电吹风机、电热杯、厨房电器等等。 但对感性负载类电器如电冰箱、电钻等则不宜长时间使用准正弦波逆变器供电。否则,将可能对逆变器和相关电器产品造成损坏或缩短预期使用寿命。如果一定要使用感性负载,建议选用储备功率较大的准正弦波逆变器。

RC有源滤波器的课程设计报告

, 2011 ~ 2012学年第二学期 《RC有源滤波器的设计》课程设计报告 题目:RC有源滤波器的设计 专业:自动化 班级: 10自动化(2) 姓名:张乐夏安姚培郑雷 指导教师:江春红 电气工程系 2012年5月25日

1、任务书

摘要 随着计算机技术的发展,模拟电子技术已经成为一门应用范围极广,具有较强实践性的技术基础课程。电子电路分析与设计的方法也发生了重大的变革,为了培养学生的动手能力,更好的将理论与实践结合起来,以适应电子技术飞速的发展形势,我们必须通过对本次课程设计的理解,从而进一步提高我们的实际动手能力。 滤波器在日常生活中非常重要,运用非常广泛,在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的滤波器。随着集成电路的迅速发展,用集成电路可很方便地构成各种滤波器。用集成电路实现的滤波器与其他滤波器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。 滤波器在电路实验和设备检测中具有十分广泛的用途。现在我们通过对滤波器器的原理以及结构设计一个能够低通、高通、带宽、阻带等多种形式的滤波器。我们通过对电路的分析,参数的确定选择出一种最合适本课题的方案。在达到课题要求的前提下保证最经济、最方便、最优化的设计策略。按照设计的方案选择具体的元件,焊接出具体的实物,并在实验室对事物进行调试,观察效果是否与课题要求的性能指标作对比。最后分析出现误差的原因以及影响因素。

目录 第一章RC有源滤波器总方案设计 (5) 1.1 方案框图 (5) 1.2 子框图的作用 (5) 1.3 方案选择 (5) 第二章 RC低通有源滤波器的设计 (7) 2.1低通滤波器的电路设计 (7) 2.2低通滤波器的设计原理 (7) 2.3 参数选择 (7) 2.4 仿真 (7) 2.5 小结 (9) 第三章 RC高通有源滤波器的设计 (10) 3.1 高通滤波器的电路设计 (10) 3.2 高通滤波器的设计原理 (10) 3.3 高通滤波器的设计参数 (11) 3.4 仿真...... . (11) 3.5 小结 (12) 第四章 RC带通有源滤波器的设计 (14) 4.1RC有源带通滤波器的设计 (14) 4.2C有源带通滤波器的设计原理.. .............. . (14) 4.3 参数计算 (14) 4.4 仿真 (14) 4.5 小结 (16) 第五章 RC带阻有源滤波器的设计 (18) 5.1 有源带阻滤波电路的设计 (18) 5.2 有源带阻滤波电路的设计原理. (18) 5.3 参数计算 (18) 5.4 仿真 (18) 5.5 小结 (20) 总结与体会 (21) 参考文献 (21) 附录 (22) 答辩记录及评分表 (23)

三相全控桥式整流及有源逆变电路的设计

电力电子技术课程设计报告 有源逆变电路的设计 姓名 学号 年级20级 专业电气工程及其自动化 系(院) 指导教师 2012年12 月10 日 课程设计任务书

课程《电力电子技术》 题目 有源逆变电路的设计 引言 任务: 在已学的《电力电子技术》课程后,为了进一步加强对整流和有源逆变电路的认识。可设计一个三相全控桥式整流电路及有源逆变电路。分析两种电路的工作原理及相应的波形。通过电路接线的实验手段来进行调试,绘制相关波形图 要求: a. 要有设计思想及理论依据 b. 设计出电路图即整流和有源逆变电路的结构图 c. 计算晶闸管的选择和电路参数 d. 绘出整流和有源逆变电路的u d(t)、i d(t)、u VT(t)的波形图 e. 对控制角α和逆变β的最小值的要求

设计题目三相全控桥式整流及有源逆变电路的设计 一.设计目的 1.更近一步了解三相全控桥式整流电路的工作原理,研究全控桥式整流电路分别工作在电阻负载、电阻—电感负载下Ud, Id及Uvt的波形,初步 认识整流电路在实际中的应用。 2.研究三相全控桥式整流逆变电路的工作原理,并且验证全控桥式电路在有源逆变时的工作条件,了解逆变电路的用途。 二.设计理念与思路 晶闸管是一种三结四层的可控整流元件,要使晶闸管导通,除了要在阳极—阴极间加正向电压外,还必须在控制级加正向电压,它一旦导通后,控制级就失去控制作用,当阴极电流下降到小于维持电流,晶闸管回复阻断。因此,晶闸管的这一性能可以充分的应用到许多的可控变流技术中。 在实际生产中,直流电机的调速、同步电动机的励磁、电镀、电焊等往往需要电压可调的直流电源,利用晶闸管的单向可控导电性能,可以很方便的实现各种可控整流电路。当整流负载容量较大时,或要求直流电压脉冲较小时,应采用三相整流电路,其交流侧由三相电源提供。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最广泛的是三相桥式全控整流电路。三相半波可控电路只用三只晶闸管,接线简单,但晶闸管承受的正反向峰值电压较高,变压器二次绕组的导电角仅120°,变压器绕组利用率较低,并且电流是单向的,会导致变压器铁心直流磁化。而采用三相全控桥式整流电路,流过变压器绕组的电流是反向电流,避免了变压器铁芯的直流磁化,同时变压器绕组在一个周期的导电时间增加了一倍,利用率得到了提高。 逆变是把直流电变为交流电,它是整流的逆过程,而有源逆变是把直流电经过直-交变换,逆变成与交流电源同频率的交流电反送到电网上去。逆变在工农业生产、交通运输、航空航天、办公自动化等领域已得到广泛的应用,最多的是交流电机的变频调速。另外在感应加热电源、航空电源等方面也不乏逆变电路的身影。 在很多情况下,整流和逆变是有着密切的联系,同一套晶闸管电路即可做整流,有能做逆变,常称这一装置为“变流器”。 三.关键词

二阶带通滤波器课程设计.

一、制作一个1000Hz 的正弦波产生电路: 图1.1 正弦波产生电路 1.1 RC 桥式振荡电路 RC 桥式振荡电路如图(1.1)所示。这个电路由两部分组成,即放大电路和选频网络。其中,R1、C1和R2、C2为串、并联选频网络,接于运算放大器的输出与同相输入端之间,构成正反馈,以产生正弦自激振荡。R3、W R 及R4组成负反馈网络,调节W R 可改变负反馈的反馈系数,从而调节放大的电压增益,使电压增益满足振荡的幅度条件。RC 串并联网络与负反馈中的R3、W R 刚好组成一个四臂电桥,电桥的对角线顶点接到放大器A1的两个输入端,桥式振荡电路的名称即由此得来。 分析RC 串并联网络的选频特性,根椐正弦波振荡电路的振幅平衡条件,选择合适的放大指标,构成一个完整的振荡电路。 1.2 振荡电路的传递函数 由图(1.1)有 1111 Z R sC =+,2 2222 1Z 1R R C sC =+=2221R sC R + 其中,1Z 、2Z 分别为图1.1中RC 串、并联网络的阻值。 得到输入与输出的传递函数: F ν(s)= 21 2 1212221121()1 sR C R R C C s R C R C R C s ++++ =12 21122111212 11111()s R C s s R C R C R C R R C C ++++ (1.1) 由式(1.1)得 21212 R R 1 C C =ω 2 1210R R 1 C C = ?ω

取1R =2R =16k Ω,12C C ==0.01μF ,则有 1.3 振荡电路分析 就实际的频率而言,可用s j ω=替换,在0ωω=时,经RC 选频网络传输到运放同相端的电压与1o U 同相,这样,放大电路和由Z1和Z2组成的反馈网络刚好形成正反馈系统,可以满足相位平衡条件。 12 2 11221212 ()12v j C R F j j C R j C R C C R R ωωωωω= ++- (1.2) 令2 12101R R C C = ω,且R R R C C C ====2121,,则式(1.2)变为 ) (31 )(00ω ωωωω-+= j j F v (1.3) 由此可得RC 串并联选频网络的幅频响应 2 002)( 31ω ωωω-+= V F (1.4) 相频响应 3 )( arctan 0ω ωωω?--=f (1.5) 由此可知,当 2 12101R R C C = =ωω,或CR f f π21 0= = 时,幅频响应的幅度为最大,即 而相频响应的相位角为零,即 这说明,当2 12101R R C C = =ωω时,输出的电压的幅度最大(当输入电压的幅 度一定,而频率可调时),并且输出电压时输入电压的1/3,同时输出电压与输入

逆变器常见故障及处理方法

逆变器常见故障及处理方法在采用DC600V供电系统的旅客列车上每节车厢都设置一台三相逆变器将机车供给的DC600V的直流电逆变为380V/50HZ三相交流电给客车空调以及其它一些三相用电设备供电。 逆变器设两台互为独立的热备逆变器单元(硬卧车、行李车为一台无热备),逆变器容量:2*35KV A逆变器+隔离变压器(高寒车及餐车为15KV A、非高寒车为5KV A),当某一台逆变器发生故障造成停止输出时,另一台逆变器可通过转换向两路负载供电,以确保客车用电设备的正常工作。 一、逆变器的操作要求: 为了确保逆变器的可靠工作,必须按照逆变器的操作规程进行操作。上电的时候,先给110V控制电然后再给600V 的大电;断电的时候先断600V的大电,再断110V控制电,即遵行先弱电、后强电,先轻载,再重载的操作原则。为了确保检修人员和设备的安全,逆变器的检修必须在断电五分钟后进行。 一、逆变器常见故障的处理 1.正常工作时,逆变器报代码为“OO”,输入欠压时报 “O2”,除此之外,出现其它代码均为故障状态。 2.如果逆变器报“O5”,断开负载,看能否正常工作,如 正常,检查负载是否有问题,如仍有“O5”故障,则

更换驱动板或控制板,如仍有问题,更换输出电流传感器LT208。如减载后两路都报“O5”故障,是负载有问题,检查负载。 3.如果逆变器报“O7”,空载情况下,如果复位后能重启, 检查负载是否有问题(短路、断路、绝缘不良)。如果不能进行重启,车上四合一电气柜显示屏直接报“O7”,打开相关逆变单元的散热器,检查IGBT是否完好,如IGBT完好,则驱动板故障,更换驱动板。 4.如果逆变器报“OC”,用万用表测量熔断器,如果坏, 更换熔断器,然后,打开对应单元的散热器,测量IGBT 是否有损坏,有损坏则进行更换,同时检查驱动板是否正常,有问题更换。 5.如果逆变器报“OE”,检查相应单元的接触器触头和触 点是否异常,检查散热器箱内左侧的电源板插头是否有松动,如果接触器触头有粘连现象,要检查散热器上的IGBT是否有问题,同时检查驱动板。如都正常,测量相应单元的固态继电器,有问题则更换相应单元箱的固态继电器。 6.如果逆变器报“FE”,打开相应散热器,检查控制板是 否工作,不工作,更换控制板。 7.另外,还有三种故障现象,表现为逆变器上传的代码为 “OO”,但仍为故障的状态:第一种为逆Ⅰ或逆Ⅱ无输

有源滤波器设计报告书

广东工业大学课程设计任务书 题目名称有源滤波器设计 学院 专业班级 姓名 学号

摘要 滤波器(filter)是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到的纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。带通滤波器(band-pass filter)是指能通过某一频率范围内的频率分量,能将其他范围分量衰减的设备。一个理想滤波器应该有一个完全平坦的通带,例如在通带内没有增益或者衰减,并且在通带之外所有频率都被完全衰减掉。另外,通带外的转换在技校的频率范围完成。实际上,并不存在理想的带通滤波器,因为并不能将期望频率范围外的所有频率完全衰减掉,尤其是在索要

的通带外还有一个被衰减但是没有被隔离的范围,这通常被称为滤波器的滚降现象,使用每十倍频的衰减幅度dB来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而随着滚降范围越来越小,通常就变得不再平坦-开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应被称为吉布斯现象。 带通滤波器能够广泛应用在电子学和信号处理领域,本文重点介绍了带通滤波器的工作原理以及设计方法,介绍了带通滤波器的工作原理并设计了一个带通滤波电路,并给出了系统的电路设计方法和主要模块的原理分析。由实验结果可知,该滤波器具有良好的滤波效果,并能稳定运行。 关键词:带通滤波器 multisim 设计 目录 前言 (4) 第一章二阶带通滤波器设计的内容和要求 (5) 第二章电路设计 (6) 一、正弦波产生电路设计 (6)

二阶带通滤波器课程设计

目录 1 课程设计的目的与作用 (1) 2 设计任务及所用multisim软件环境介绍 (1) 2.1 设计任务 (1) 2.2 Multisim软件环境介绍 (1) 3 电路模型的建立 (2) 4 理论分析及计算 (3) 5 仿真结果分析 (4) 6 设计总结和体会 (4) 7 参考文献 (5)

1 课程设计的目的与作用 目的:根据设计任务完成对二阶带通滤波器的设计,进一步加强对模拟电子技术的理解。了解二阶带通滤波器的工作原理,掌握对二阶带通滤波器频率特性的测试方法。 带通滤波器:其作用是允许某一段频带范围内的信号通过,而将此频带以外的信号阻断。常用于抗干扰设备中,以便接收某一段频带范围内的有效信号,而消除高频段和低频段的干扰和噪声。 2 设计任务及所用multisim软件环境介绍 2.1 设计任务 学会使用Multisim10软件设计二阶带通滤波器的电路,使学生初步了解和掌握二阶带通滤波器的设计、调试过程及其频率特性的测试方法,能进一步巩固课堂上学到的理论知识,了解带通滤波器的工作原理。 2.2 Multisim软件环境介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim 提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。

逆变器技术要求

逆变器技术要求 1、可靠性指标 逆变器设计正常持续使用寿命应≥12年; 2、外观 逆变器的前后面板、外壳及其他外露部分应具备防护涂层,具备绝缘及三防特性,涂镀层应表面平整光滑、色泽一致和牢固; 3、端口及标志 输入端口正、负极、通信端口、输出端、保护性接地端和告警指示等应有明显的标志;4、产品型号和编码 逆变器产品型号命名和编制方法应遵循YD/T 638.3的规定执行; 5、结构及规格 逆变器应采用立式机柜安装方式,应采用先进工艺制成,体积小、重量轻。 逆变器规格尺寸应不大于:长x宽x高=700(mm)*700(mm)*1200(mm)。 逆变器应能够设置可靠的安装固定装置及减振紧固装置,满足车载要求。 6、环境条件 a)环境温度:-10℃~50℃;相对湿度:≤90%(40℃±2℃); b)贮存温度:-40℃~70℃;贮存相对湿度:≤90%(40℃±2℃); c)大气压力:70~106kPa d)工作环境应无导电爆炸尘埃,应无腐蚀金属和破坏绝缘的气体与蒸汽,应通风良好并远离热源; 7、输入电压额定值 逆变器输入直流电压额定值:51.2V;允许变化范围:43.2V~57.6V;

8、输出电压额定值及稳定精度 交流输出电压额定值:~380VAC;稳定精度<±1%; 9、输入电流额定值 逆变器输入直流电流额定值:195.3A/10KVA;允许变化范围:173.6A~231.5A/10KVA; 10、输出频率 逆变器的输出频率变化范围应不超过额定值50Hz的±1%; 11、输出功率额定值 单机输出功率额定值为10KVA; 12、额定输出效率 当输入额定电压,负载率40%~90%时,单机转换效率应≥90%; 13、产品输出要求 同规格单机逆变器应具备高效滤波同步电路,能够并联冗余输出和管理,负载不均衡度<5%; 14、功率模块要求 宜选用IGBT功率模块的PWM逆变器,正弦波输出; 15、负载等级 在允许工作电流下,逆变器连续可靠工作时间应≥12h,在125%额定电流下,逆变器连续可靠工作时间应大于或等于5min;在150%额定电流下,逆变器连续可靠工作时间应大于或等于60s; 16、空载损耗 在输入电压为额定值,负载为零时,逆变器空载损耗应不超过额定容量的3%,并具备休眠功能; 17、保护功能

有源低通滤波器的课程设计-四阶巴特沃斯滤波器复习过程

电气工程学院 有源低通滤波器课程设计 设计题目:有源低通滤波器设计 学号: 姓名: 同组人: 指导教师: 设计时间:2012年11月20号 设计地点:电气学院实验中心

姓名学号 课程设计题目:有源低通滤波器设计 课程设计答辩或提问记录: 成绩评定依据: 课程设计预习报告及方案设计情况(30%): 课程设计考勤情况(15%): 课程设计调试情况(30%): 课程设计总结报告与答辩情况(25%): 最终评定成绩(以优、良、中、及格、不及格评定) 指导教师签字: 年月日

学生姓名:指导教师: 一、课程设计题目: 有源低通滤波器设计 二、课程设计要求 1. 根据具体设计课题的技术指标和给定条件,独立进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真; 3. 完成预习报告,报告中要有设计方案,设计电路图,还要有仿真结果; 4. 进实验室进行电路调试,边调试边修正方案; 5. 撰写课程设计报告——最终的电路图、调试过程中遇到的问题和解决问题的方法。 三、进度安排 1.时间安排 序号内容学时安排(天) 1 方案论证和系统设计 1 2 完成电路仿真,写预习报告 1 3 电路调试 2 4 写设计总结报告与答辩 1 合计 5 设计调试地点:电气楼410 2.执行要求 课程设计共5个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的详细电路(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告雷同。

摘要 滤波器用于对信号的频率具有选择性的电路,它的功能是使特定频率范围内的信号通过,有源滤波器被广泛用于信息处理、数据传送等电路中。在对二阶有源低通滤波器的原理进行分析的基础上,采用2个2阶低通滤波电路级联的方案,设计了基于巴特沃斯逼近的4阶有源低通滤波器。在Multisim软件中使用虚拟示波器、波特图示仪等设备,对设计的滤波器的交流特性进行仿真,并对仿真结果进行了分析,其交流特性符合理论设计,具有一定的参考价值。 关键词:滤波器,有源低通,巴特沃斯,multisim Abstract Abstract:Filter is the circuit which has a selective for the frequency of signals,its function is to make a specific range offrequency through.Source filter is widely used for information processing and data transmission circuit.Based on the analysis of principle of 2nd Source low passed filter,by using the Scheme of cascading two 2nd source low-passed filter and themethod of examining the table,the 4nd source low-passed filter based on Butterworth is designed.By using the oscilloscopeand Bode plotter in Multisim ,the AC Features of this Filter was Simulated,and the sim ulation results were analyzed,it SAC features met with theory design and has certain reference value. Key words: Source low—passed filter,Butterworth,Multisim

实验四 三相全桥逆变电路

实验四三相全桥有源逆变电路 一、实验目的 1.加深理解三相桥式有源逆变电路的工作原理 2.研究三相桥式有源逆变电路逆变的全过程 3.掌握三相全桥有源逆变电路MATLAB的仿真方法,会设置各模块的参数。 二、预习内容要点 三相全桥有源逆变电路带阻感性负载在α所取不同角度下的运行情况。 三、实验仿真模型 三相全桥有源逆变电路 四、实验内容及步骤 对三相全桥有源逆变电路带阻感性负载在在α所取不同角

度下的运行情况进行仿真并记录分析改变脉冲频率时的波形。 (1)器件的查找 以下器件均是在MATLAB R2014a环境下查找的,其他版本类似。有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找 (2)三相对称正弦交流电源要求设置参数 Um=50V、f=50Hz初相位依次为0°、-120°、-240°。选择阻感性负载,R=2Ω,L=0.01H,C=inf 仿真波形及分析 α=30度时的波形 α=60度时的波形

α=90度时的波形 α=120度时的波形

α=150度时的波形 仿真波形图 从仿真结果可以看到α=30°和α=60°时,电路工作在整流状态,负载电压为正值,变流电路输出电压波形正面积大于负面积,平均电压大于零。当α=120°和α=150°时,负载电压为正值,输出电压波形正面积大于负面积,平均电压为负,电路工作在逆变状态;α=90°时,电路工作在中间态平均电压为0。 五、实验总结 采用Matlab/Simulink对三相半波有源逆变电路进行仿真分析,避免了常规分析方法中繁琐的绘图和计算过程,使

IIR数字带通滤波器设计

课 程 设 计 报 告 课程名称: 数字带通滤波器设计 学生姓名: 学 号: 专业班级: 指导教师: 完成时间: 报告成绩: IIR 数字带通滤波器的设计

1课程设计目的 1掌握冲激响应不变法IIR 低通滤波器的设计。 2 通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法,掌握利用数字滤波器对信号进行滤波的方法,掌握数字滤波器的计算机仿真方法,并能够对设计结果加以分析。 2.课程设计要求 采用双线性变换法设计一IIR 数字带通滤波器,抽样频率为 1s f kH z =,性能 要求为:通带范围从250Hz 到400Hz ,在此两频率处衰减不大于3dB , 在150Hz 和480Hz 频率处衰减不小于20dB ,采用巴特沃思型滤波器 3.设计原理 3.1用双线性变换法设计IIR 数字滤波器 脉冲响应不变法的主要缺点是产生频率响应的混叠失真。这是因为从S 平面到Z平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T ~π/T 之间,再用st e z =转 换到Z 平面上。也就是说,第一步先将整个S 平面压缩映射到S 1平面的-π/T ~π/T 一条横带里;第二步再通过标准变换关系z =e s 1T 将此横带变换到整个Z 平面上去。这样就使S 平面与Z 平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1-3所示。 图1双线性变换的映射关系 为了将s 平面的整个虚轴 Ω j 压缩到1s 平面1Ωj 轴上的-π/T 到π/T 段上, Z 平面 S 1 平面 S 平面

电子课程设计---二阶有源高通滤波器

长沙学院 电子技术 课程设计说明书 题目有源高通滤波器设计系(部) 电子信息与电气工程系专业(班级) 光电2班 姓名 学号2013041216 指导教师 起止日期2015.6.1-2015.6.5

模拟电子技术课程设计任务书

长沙学院课程设计鉴定表

目录 一、有源高通滤波器的广泛应用 (5) 二、 LM741EN芯片引脚功能及其应用 (5) LM741芯片引脚和工作说明: (5) 三、有源高通滤波电路介绍及其工作原理 (6) 1.滤波电路 (6) 2.集成运放电路和反馈电路 (6) 3.二阶有源高通电路框架图: (7) 四、有源高通滤波电路的设计 (8) (1)设计方案 (8) (2)元器件参数计算和选择(截止频率的选定) (8) (3)对设计的电路进行仿真调试 (9) ①仿真电路 (9) ②波特图幅频特性 (10) ③波特图相频特性 (10) ④输入波形与输出波形比较(红色为输入波形,蓝色为输出波形) (11) 五、有源高通滤波电路的扩展和改良 (13) 四阶有源高通滤波电路 (13) 利用记录仪观察波形数据 (13) 六、实训总结 (14) 七、参考文献 (14)

一、有源高通滤波器的广泛应用 滤波器是减少或消除谐波对电力系统影响的电气部件,广泛应用于电力系统、通信发射机与接收机等电子设备中,它能减弱或消除谐波的危害,对无用信号尽可能大的衰减,让有用信号尽可能无衰减的通过,从而纠正信号波形畸变。所以,无论信号的获取、传输,还是信号的处理和交换都离不开滤波技术。 在近代电信设备和各类控制系统中,滤波器应用极为广泛,尤其是有源高通滤波器。它在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用,有源高通滤波器的优劣直接决定产品的优劣。所以研究滤波器,具有重大意义。 二、LM741EN芯片引脚功能及其应用 LM741EN是一种应用非常广泛的通用型运算放大器。这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。由于采用了有源负载,所以只要两级放大就可以达到很高的电压增益和很宽的共模及差模输入电压范围。电路采用内部补偿,电路比较简单不易自激,工作点稳定,使用方便,而且设计了完善的保护电路,不易损坏。可广泛应用于各种数字仪表及工业自动控制设备中。 LM741EN引脚图 LM741芯片引脚和工作说明: 1和5为偏置(调零端) 2为正向输入端 3为反向输入端 4接地 6为输出 7接电源 8空脚

三相半波有源逆变电路

a V 1 b V 2c V 3 u d R i d L M +- +-E D T 0u d α u a u b u c u a ωt 0 i d ωt i V1 i V2 i V3 i V1 (a)0 u d αu a 0i d ω i V3 三相半波有源逆变电路仿真 一、电路图及工作原理 当ɑ>90°时I d 的方向如图所示,E m 的极性与晶闸管的导通方向一致,且│E m │>│U d │,此时的U d 极性为负,电流由直流侧送到交流侧,电网吸收功率,实现逆变 三相半波有源逆变器(电阻负载)原理图 二、模型参数设置 1、电压源 三相交流电源通过三个频率为50Hz 、幅值为220V 、相位两两相差120°,A 相的设置如右图所示,另外两相设置为B

相相位滞后A相120°,Phase设置为-120°,C相相位超前A 相120°,Phase设置为120°,测量“measurements”三相都要选Voltage,以便使用万用表测量电压 2、电压电流测量 由于同步6脉冲触发器的AB,BC,CA端为同步线电压输入端,而三相电源提供的是相电压所以要通过三个电压表进行转换,其他电流电压测量无需设置直接使用 3、常量 本系统使用两个常量模块,一个提供触发角ɑ的值,一个设置为0连接同步6脉冲触发器的使能端Block,使其能

正常工作。如下图所示: 4、分路器和多路选择器 分路器输出Numbers of outputs选3 多路选择器输入Numbers of inputs选3 如图所示 5、同步6脉冲触发器 频率设置为50Hz,脉冲用宽脉冲设置为10°。 如图所示:

三相桥式全控整流

实验一三相桥式全控整流 一、实验目的 (1)加深理解三相桥式全控整流及有源逆变电路的工作原理 (2)了解KC系列集成触发器的调整方法和各点的波形 (3)掌握三相桥式全控整流电路MA TLAB的仿真方法,会设置各模块的参数。 二、实验原理 实验电路如图所示。主电路由三相全控整流电路及作为逆变直流电源的三相不可控整流电路组成,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。 途中的R p用滑线变阻器,接成并联形式,电感L b选用700mH。在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不可控整流机心式变压器可在实验装置上获得,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端A m、B m、C m,返回电网的电压从高压端A、B、C输出,变压器接成Y/Y接法。 三相桥式全控整流电路的计算公式如下: U d=2.34U2cosα(0~60°) U d=2.34U2[1+cos(α+π)](60°~120°) 三相桥式有缘逆变电路计算公式如下: U d=2.34U2cos(180°-β) 三、实验内容 (1)三相桥式全控整流电路了 (2)三相桥式有缘逆变电路 (3)在整流或有源逆变状态下,当触发电路出现故障(认为模拟)时观测主电路的各电压波形。 四、实验仿真 带电阻性负载的仿真 三相桥式全控整流系统模型图

启动MATLAB,进入SIMULINK后新建文档,绘制三相桥式全控整流系统模型,如图所示。双击各模块,在出现的对话框设置相应的参数。 (1)交流电压源的参数设置:三相电源的相位互差120°,设置交流峰值相电压为100V、频率为60Hz (2)负载的参数设置:R=45Ω,L=0H,C=inf (3)通用变换器桥参数设置:本例中设置桥的结构为三相,缓冲电阻R s,为了消除模块中的缓冲电路,可以缓冲电阻R s的参数设定为inf。缓冲电容Cs,单位为F,为了消除模块中的缓冲电路,可将缓冲电容C s的参数设定为inf。电力电子器件选择通用变换器桥中使用的电力电子的类型。内电阻R on单位为Ω,通用变换器中使用的是功率电子元件的内电阻,R on=1e-3(1×10-3)。内电感L on,单位为H,变换桥中使用的是二极管、晶闸管、MOSFET灯功率电子元件的内电感。 (4)同步6脉冲触发器的参数设置:设置同步电压频率为60Hz,脉冲宽度为60°。 (5)常熟模块参数设置:该模块只有一个输出端,在本例中只要改变参数对话框的数值大小,即改变了触发信号的控制角。 打开仿真/参数窗,选择ode23tb算法,将相误差设置为1e-3(1×10-3),开始仿真时间为0,停止时间设置为0.02. 设置好各模块参数后,单击仿真按钮,得到仿真结果。改变触发角α,得到不同的仿真结果。

基于MATLAB的数字带通滤波器课程设计报告.doc

基于MATLAB的数字带通滤波器课程设计报告1 西安文理学院机械电子工程系 课程设计报告 专业班级08级电子信息工程1班 题目基于MATLAB的数字带通滤波器 学号 学生姓名 指导教师 2011 年12 月 西安文理学院机械电子工程系 课程设计任务书 学生姓名_______专业班级________ 学号______ 指导教师______ 职称副教授教研室电子信息工程课程数字信号处理题目 基于MATLAB 的数字带通滤波器设计任务与要求 设计任务:

要求设计一个IIR 带通滤波器,其中通带的中心频率为πω5.0=po ,通 带的截止频率πω4.01=p ,πω6.02=p ,通带最大衰减dB p 3=α;阻带最小 衰减dB s 15=α,阻带截止频率πω3.01=s ,πω7.02=s 。 设计要求: 1. 根据设计任务要求给出实现方案及实现过程。 2. 给出所实现的滤波器幅频特性及相频特性曲线并加以分析。 3. 论文要求思路清晰,结构合理,语言流畅,书写格式符合要求。 开始日期2011.12.19 完成日期2011.12.30 2011年12月18 日 一、设计任务 设计一数字带通滤波器,用IIR 来实现,其主要技术指标: 通带边缘频率:wp 1=0.4π,wp2=0.6π 通带最大衰减:Ap=3dB 阻带边缘频率:ws 1=0.3π,ws2=0.7π 阻带最小衰减:As=15dB 设计总体要求:用MATLAB 语言编程进行设计,给出IIR 数字滤波器 的参数,给出幅度和相位响应曲线,对IIR 实现形式和特点等方面进行讨

论。 二、设计方法 IIR 数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配,所以 IIR 滤波器的设计可以采取在模拟滤波器设计的基础上进一步变换的方法。比较常用的原型滤波器有巴特沃什滤波器(Butterworth )、切比雪夫滤波 器(Chebyshev )、椭圆滤波器(Ellipse )和贝塞尔滤波器(Bessel )等。他们有各自的特点,巴特沃什滤波器具有单调下降的幅频特性;切比雪夫 滤波器的幅频特性在通带和阻带里有波动,可以提高选择性;贝塞尔滤波 器通带内有较好的线性相位特性;椭圆滤波器的选择性最好。本设计IIR 数字滤波器采用巴特沃什滤波器[3]。 设计巴特沃什数字滤波器时,首先应根据参数要求设计出相应的模拟 滤波器,其步骤如下: (1)由模拟滤波器的设计指标wp ,ws ,Ap ,As 和式(1)确定滤波器 阶数N 。 )lg(2)110110lg(1.01.0w w s p As Ap N --≥ (1) (2)由式(2)确定wc 。

逆变器问题解答

逆变器问题解答

————————————————————————————————作者:————————————————————————————————日期:

目 录 一、有关逆变器的基本知识问答 1. 什么是逆变器,它起什么作用? 2. 按输出波形划分,逆变器分几类? 3. 何谓感性负载? 4. 准正弦波逆变器可以用于哪些电器? 5. 何谓逆变器的效率? 6. 什么是持续输出功率?什么是峰值输出功率? 7. 应该怎样连接逆变器与电源和负载? 8. 汽车点烟器插口能够输出多大功率的电能? 9. 在关闭汽车发动机的情况下可以使用车载逆变器吗? 10. 如果想较长时间地使用逆变器而不启动发动机,怎么办? 11. 使用逆变器有何危险性? 12. 如何知道蓄电池的容量? 13. 一般的家用轿车使用什么规格的蓄电池? 14. 如何为蓄电池配备合适的逆变器? 15. 使用车载逆变器须要注意些什么? 16. 为何使用普通万用表测量准正弦波逆变器的交流输出时,显示的电压比220伏低? 17. 如何挑选逆变器产品? 二、关于家庭备用电源的介绍 1. 什么是家庭备用电源? 2. 如何选购家庭备用电源系统中的逆变器? 3. 如何选购家庭备用电源系统中的蓄电池? 4. 如何选购家庭备用电源系统中的蓄电池充电器? 5. 怎样知道电视机的实际耗电量? 6. 为何使用备用电源系统时电视机的画面质量不如使用电网电? 7. 为何准正弦波逆变器时输出的交流电不能用来推动电扇和日光灯? 8. 使用家庭备用电源系统应注意什么? 9. 能否利用电动自行车的蓄电池作为家庭备用电源? 有关逆变器的基本知识问答 1. 问:什么是逆变器,它起什么作用? 答:简单地说,逆变器就是一种将低压(12-48伏)直流电转变为220伏交 流电的电子设备。因为 我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相

有源电力滤波器课程设计

目录 1 设计相关知识介绍[1] (1) 1.1 谐波基本概念 (1) 1.2 谐波主要危害 (1) 1.3抑制谐波方法 (1) 2 APF的基本工作原理[2] (2) 3 APF基本组成部分 (5) 3.1 主电路 (5) 3.1.1 P WM控制的基本原理[3] (5) 3.1.2主电路结构 (7) 3.2 指令电流运算部分[4] (8) 3.2.1瞬时无功理论定义 (8) 3.2.2基于瞬时无功理论检测法 (9) 3.3 电流跟踪控制部分[3] (11) 3.3.1电流滞环控制原理 (11) 3.3.2三相电流滞环控制原理 (12) (13) 图3-10 三相电流跟踪型PWM逆变电路输出波形 (13) 3.4 驱动电路[5] (13) 4 心得体会 (14) 参考文献 (15)

1 设计相关知识介绍[1] 1.1 谐波基本概念 1882年,法国数学家傅里叶指出,一个任意函数都可以分解为无穷多个不同频率正弦信号的和。基于此,国际电工标准定义谐波为:谐波分量为周期量的傅里叶级数中大于1的H次分量。把谐波次数的H定义为:以谐波频率和基波频率的之比的整数。电气和电子工程协会标准定义谐波为:谐波为一个周期波或量的正弦波分量,其频率为基波的整数倍。总结二者,目前国际普遍定义谐波为:谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍。 1.2 谐波主要危害 谐波研究与治理对于现代工业生产意义重大,这是因为谐波不仅降低电能的生产、传输和利用效率,而且给供、用电设备的正常运行带来严重危险。对于电力系统,谐波会放大系统局部并联谐振或串联谐振现象,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电气设备,谐波可以使电气设备产生振动和噪声,还可以产生过热现象,促使绝缘老化,缩短设备使用寿命,甚至发生故障或烧毁。 谐波对通信设备和电子设备会产生严重干扰。电力系统产生的谐波与普通电话线路传输的音频信号及人耳的音频敏感信号相比在信号频带上具有一定的重叠性,而且二者功率相差悬殊。对于通信的干扰,也是谐波的主要危害之一。 谐波污染是电力电子技术发展的重大障碍。电力电子技术是未来科学技术发展的重要支柱。有人预言,电力电子连同运动控制将和计算机技术一起成为21世纪最重要的两大技术。然而,电力电子装置所产生的谐波污染已成为阻碍电力电子技术发展的重大障碍,它迫使电力电子领域的研究人员必须对谐波问题进行更为有效研究。 因此,谐波治理已经成为电气工程领域迫切需要解决的问题。 1.3抑制谐波方法 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍的增长,对供电质量及供电可靠性的要求也越来越多,电能质量受到人们的日益重视。于是各国纷纷出台措施,制定相关标准。目前滤波是治理电网污染的有效方法,滤波就是将信号中特定的波段频率滤除的操作,是抑制和防止干扰的一项重要措施。它分为无源滤波和有源滤波。(1) 无源滤波

三相半波有源逆变实验二

实验二三相半波有源逆变电路实验 一、实验目的 1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。 2、观察逆变失败现象,并研究逆变失败产生原因及预防措施。 二、预习内容 1、什么是有源逆变和逆变角?有何分类? 2、实现有源逆变的条件是什么? 3、试画出β=30°,60°时逆变电压的波形。 三、实验所需设备及挂件 四、实验线路原理图及原理流程图 1)实验线路原理图:见图X-1

2)实验原理流程图:见X -2 图X -2实验原理流程图 五、注意事项 (1)参照三相半波可控整流实验的注意事项(1) (2)电阻调节要缓慢进行,以防主电路电流过大,损坏晶闸管. 六、实验内容 三相半波整流电路在有源逆变状态工作下带电阻电感性负载的研究。 七、实验方法及步骤 1、DJK02和DJK02-1上的“触发电路”调试(与整流电路步骤与方法相同略)。 2、三相半波有源逆变电路实验 。 ①)按图X-1接线。 a) 晶闸管选用DJK02 上的正桥组VT1、VT3、VT5采用共阴极接法. b) 电感用DJK02 上的Ld=700mH c) 电阻R 选用D42 三相可调电阻,将两个900Ω接成串联,且放在最大阻值。 注意:以上器件图片见“三相半波可控整流实验”。

d)直流电源用DJK01 上的励磁电源,其中DJK10 中的心式变压器用作升压变压器使用,变压器接成Y/Y 接法,逆变输出的电压接心式变压器的中压端Am 、Bm 、Cm,返回电网的电压从高压端A 、B 、C 输出。 e)直流电压、电流表用DJK01和DJK02 上的均可。见上图。 ②将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器Rp ,使触发角α=150°(即β=30°),实际调到βmin 即可。当初始触发角定下后,在以后的逆变调节中只调节给定电压Uct ,这样确保不进入整流状态。这点很重要。 ③按下“启动”按钮,此时三相半波处于逆变状态,用示波器观察电路输出电压U d 波形,缓慢调节给定电位器,升高输出给定电压。观察电压表的指示,其值由负的电压值向零靠近,当到零电压的时候,也就是α=90°(即β=90°),记录β=βmin 、45°、60°、75°、90°时的电压值以及波形。 计算公式:Ud=-1.17U2cos β 注意:本实验中的U2实际是多少? 八、实验报告 (1)画出实验所得的各特性曲线与波形图。 (2)对可控整流电路在整流状态与逆变状态的工作特点作比较。

相关文档
最新文档