CUDA安装配置方法

CUDA安装配置方法

如果电脑上没有gpu想用cpu模拟运行,安装cudatoolkit_2.3_win_32和cudasdk_2.3_win_32这两个东西就可以了。

一:

在vs中找到.cu文件右键在自定义生成步骤-常规命令行中输入

具体选择哪个模式看情况,无gpu要使用模拟环境则用EmuRelease或者EmuDebug模式。

Release 模式:

"$(CUDA_BIN_PATH)/nvcc.exe" -ccbin "$(VCInstallDir)bin" -c -DWIN32 -D_CONSOLE -D_MBCS

-Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MT -I"$(CUDA_INC_PATH)" -o $(ConfigurationName)/$(InputName).obj $(InputFileName)

Debug 模式:

"$(CUDA_BIN_PATH)/nvcc.exe" -ccbin "$(VCInstallDir)bin" -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MTd -I"$(CUDA_INC_PATH)" -o $(ConfigurationName)/$(InputName).obj $(InputFileName)

EmuRelease模式:

"$(CUDA_BIN_PATH)/nvcc.exe" -ccbin "$(VCInstallDir)bin" -deviceemu -c -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MT -I"$(CUDA_INC_PATH)" -o $(ConfigurationName)/$(InputName).obj $(InputFileName)

EmuDebug模式:

"$(CUDA_BIN_PATH)/nvcc.exe" -ccbin "$(VCInstallDir)bin" -deviceemu -c -D_DEBUG -DWIN32

-D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MTd

-I"$(CUDA_INC_PATH)" -o $(ConfigurationName)/$(InputName).obj $(InputFileName)

输出:

$(ConfigurationName)\$(InputName).obj

二:工具-选项-vc++目录-包含文件,加入D:\Program Files\CUDA\include,D:\Program

Files\NVIDIA Corporation\NVIDIA GPU Computing SDK\C\common\inc,库文件,加入D:\Program Files\CUDA\lib,D:\Program Files\NVIDIA Corporation\NVIDIA GPU Computing DK\C\common\lib

配置和安装cuda开发环境

在windows下安装cuda 硬件环境:cuda支持目前NV的市面上的绝大多数显卡,包括Tesla、Quadro、GeForce,只有少数早期的旧型号显卡不支持cuda。 详见https://www.360docs.net/doc/cc18662777.html,/object/cuda_learn_products_cn.html 软件环境:cuda可以在Windows(32/64)、Mac OS、Linux(32/64)中的大多数版本中安装。 在windows下,目前cuda只支持在 Visual Studio 7.x 系列、Visual Studio 8以及免费的 Visual Studio C++ 2005 Express。所以需要预先安装以上软件中的任意一种。 下面我们以Visual Studio 2005 为例演示cuda的安装。 1、cuda安装包 cuda是免费使用的,各种操作系统下的cuda安装包均可以在https://www.360docs.net/doc/cc18662777.html,/object/cuda_get_cn.html上免费下载。 Cuda提供3个安装包,分别是:SDK, Toolkit和Display。SDK包括许多例子程序和函数库。Toolkit包括cuda的基本工具。Display包括了NV显卡的驱动程序。Toolkit是核心。 2、安装cuda 2.1 安装cuda toolkit 双击NVIDIA_CUDA_toolkit_2.0_win32.exe安装,安装完成后在安装目录下出现6个文件夹,分别是: Bin :工具程序和动态链接库 Doc :相关文档 Include : header头文件包 Lib :静态库 Open64 :基于open64的cuda compiler Src :部分原始代码 安装过程中toolkit自动设定了3个环境变量:CUDA_BIN_PATH、CUDA_INC_PATH和CUDA_LIB_PATH分别对应工具程序库、头文件库和程序库,预设路径为当前安装文件夹下的bin、include 和lib三个文件夹。并将bin文件夹目录加入环境变量path中。 2.2 安装CUDA SDK SDK可以根据需要选择安装(推荐安装,因为SDK中的许多例子程序和函数库非常有用)。 2.3 安装 CUDA Display 对于没有安装NV显卡的计算机,不需要安装Display安装包,程序也可以在模拟模式下运行。 3、在Visual Studio中使用cuda CUDA的主要工具是nvcc,它会执行所需要的程序,将CUDA程序编译并执行。下面介绍了三种配置cuda nvcc的方法。这里推荐使用第三种方法。

什么是哈希函数

什么是哈希函数 哈希(Hash)函数在中文中有很多译名,有些人根据Hash的英文原意译为“散列函数”或“杂凑函数”,有些人干脆把它音译为“哈希函数”,还有些人根据Hash函数的功能译为“压缩函数”、“消息摘要函数”、“指纹函数”、“单向散列函数”等等。 1、Hash算法是把任意长度的输入数据经过算法压缩,输出一个尺寸小了很多的固定长度的数据,即哈希值。哈希值也称为输入数据的数字指纹(Digital Fingerprint)或消息摘要(Message Digest)等。Hash函数具备以下的性质: 2、给定输入数据,很容易计算出它的哈希值; 3、反过来,给定哈希值,倒推出输入数据则很难,计算上不可行。这就是哈希函数的单向性,在技术上称为抗原像攻击性; 4、给定哈希值,想要找出能够产生同样的哈希值的两个不同的输入数据,(这种情况称为碰撞,Collision),这很难,计算上不可行,在技术上称为抗碰撞攻击性; 5、哈希值不表达任何关于输入数据的信息。 哈希函数在实际中有多种应用,在信息安全领域中更受到重视。从哈希函数的特性,我们不难想象,我们可以在某些场合下,让哈希值来“代表”信息本身。例如,检验哈希值是否发生改变,借以判断信息本身是否发生了改变。` 怎样构建数字签名 好了,有了Hash函数,我们可以来构建真正实用的数字签名了。 发信者在发信前使用哈希算法求出待发信息的数字摘要,然后用私钥对这个数字摘要,而不是待发信息本身,进行加密而形成一段信息,这段信息称为数字签名。发信时将这个数字签名信息附在待发信息后面,一起发送过去。收信者收到信息后,一方面用发信者的公钥对数字签名解密,得到一个摘要H;另一方面把收到的信息本身用哈希算法求出另一个摘要H’,再把H和H’相比较,看看两者是否相同。根据哈希函数的特性,我们可以让简短的摘要来“代表”信息本身,如果两个摘要H和H’完全符合,证明信息是完整的;如果不符合,就说明信息被人篡改了。 数字签名也可以用在非通信,即离线的场合,同样具有以上功能和特性。 由于摘要一般只有128位或160位比特,比信息本身要短许多倍,USB Key或IC卡中的微处理器对摘要进行加密就变得很容易,数字签名的过程一般在一秒钟内即可完成。

数据库常用函数汇总统计

实验二(续):利用SQL语句查询 三、常用库函数及统计汇总查询 1、求学号为 S1学生的总分和平均分; select sum(score) as TotalScore,avg(score)as AveScore from sc where sno='S1' 2、求选修 C1号课程的最高分、最低分及之间相差的分数; select max(score)as MaxScore, min(score)as MinScore, max(score)- min(score)as diff from sc where cno='C1' 3、求选修 C1号课程的学生人数和最高分; select count(distinct sno),max(score) from sc where cno='C 1' 4、求计算机系学生的总数; select count(sno) from s where dept=' 计算机 ' 5、求学校中共有多少个系; select count(distinct dept) as DeptNum from s 6、统计有成绩同学的人数; select count(score) from sc 7、利用特殊函数 COUNT(*)求计算机系学生的总数; select count(*) from s where dept=' 计算机 '

8、利用特殊函数 COUNT(*)求女学生总数和平均年龄;select count(*),avg(age) from s where sex=' 女 ' 9、利用特殊函数 COUNT(*)求计算机系女教师的总数。select count(*) from t where dept=' 计算机 'and sex=' 女 ' 四、分组查询及排序 1、查询各个教师的教师号及其任课门数; select tno,count(*)as c_num from tc group by tno 2、按系统计女教师的人数; select dept,count(tno) from t where sex=' 女 ' group by dept 3、查询选修两门以上课程的学生的学号和选课门数;select sno,count(*)as sc_num from sc group by sno having count(*)>2 4、查询平均成绩大于 70分的课程号和平均成绩; select cno,avg(score) from sc group by cno having avg(score)>70 5、查询选修 C1的学生学号和成绩,并按成绩降序排列;select sno,score

最小完美哈希函数(深入搜索引擎)

最小完美哈希函数 哈希函数h是一个能够将n个键值x j的集合映射到一个整数集合的函数h(x i),其值域范围是0≤h(x j)≤m-l,允许重复。哈希是一个具有查找表功能并且提供平均情况下快速访问的标准方法。例如,当数 据包含n个整数键值。某常用哈希函数采用h(x)=x mod m,其中m 是一个较小的值,且满足m>n/a。a是装载因子,表示记录数和可用地址数的比例关系。m一般选择一个素数,因此如果要求提供一个对1000个整数键值进行哈希的函数,一个程序员可能会建议写出如下函数形式:,h(x)=x mod 1399。并且提供一个装载因子为。a=0.7的表,该表声明能够存放1399个地址。 a越小,两个不同键值在相同哈希值相互冲突的可能性就越小,然而冲突总是不可避免。第1次考虑这个问题时,事实可能让人吃惊,最好的例子莫过于著名的生日悖论(birthday paradox)。假定一年有365天,那么要组合多少个人,才能使得出现生日相同的人这一概率超过0.5呢?换句话说,给定一个365个哈希槽(hashslot)。随机选择多少个键值才能够使得出现冲突的概率超过0.5?当首次面对这样一个问题时,一般的反应肯定是认为需要很多人才行。事实上,答案是只需区区23人。找到一个能够满足现实大小要求且无冲突的哈希函数的几率小到几乎可以忽略25。例如,一个1000个键值和1399个随机选择的槽,完全没有冲突的概率为 2.35×10-217(概率的计算诱导公式将在下一节中给出,以公式4.1代入m=1399和n=1000得到),如何才能最好地处理这些不可避免冲突?这一话题将在本节中以大段篇幅展开,这里我们正是要找到其中万里挑一的能够避免所有冲突的哈 希函数。 25可以试图在一群人中做这样一个有趣的实验,笔者曾在讲述哈希表的课上和同学们做 过多次这样的实验。有一项很重要的事情往往被我们忽略,即参加者必须事先在纸上写下他们的生日(或者其他任意日子)。然后才能开始核对的工作,这样才能消除神奇的负反馈。在我们的实验中,除非这样做了,否则也许必须找到366个同学才能遇到第1次碰撞,也许这乜存在心理学悖论吧。

CUDA安装

CUDA3.1 X32 + Windows 7 32bit + Visual Studio 2005 + Visual assist安装指南收藏 1. 安装CUDA Driver,toolkit,SDK a) 建议driver,toolkit,SDK的顺序,默认路径安装 b) 如果笔记本用户,可以选择强行安装3.1的驱动包(选择对应台式机的型号),但是会有部分游戏随机花屏等问题。可以装2.2就有笔记本驱动 2. 安装Visual studio 2005 3. 安装wizard x32版 4. 环境配置 a) 将 i. C:\Documents and Settings\All Users\Application Data\NVIDIA Corporation\NVIDIA GPU Computing SDK\C\bin\win32\Debug; ii. C:\Documents and Settings\All Users\Application Data\NVIDIA Corporation\NVIDIA GPU Computing SDK\C\bin\win32\emudebug; iii. C:\Documents and Settings\All Users\Application Data\NVIDIA Corporation\NVIDIA GPU Computing SDK\C\bin\win32\release; 添加到path中 b) 打开vs2005,工具,选项,项目和解决方案,VC++目录, 库文件中添加 C:\Documents and Settings\All Users\Application Data\NVIDIA Corporation\NVIDIA GPU Computing SDK\C\common\lib C:\CUDA\lib 包含文件中添加 C:\CUDA\include C:\Documents and Settings\All Users\Application Data\NVIDIA Corporation\NVIDIA GPU Computing SDK\C\common\inc 源文件中添加 C:\Documents and Settings\All Users\Application Data\NVIDIA Corporation\NVIDIA GPU Computing SDK\C\common\src

哈 希 常 见 算 法 及 原 理

数据结构与算法-基础算法篇-哈希算法 1. 哈希算法 如何防止数据库中的用户信息被脱库? 你会如何存储用户密码这么重要的数据吗?仅仅 MD5 加密一下存储就够了吗? 在实际开发中,我们应该如何用哈希算法解决问题? 1. 什么是哈希算法? 将任意长度的二进制值串映射成固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。 2. 如何设计一个优秀的哈希算法? 单向哈希: 从哈希值不能反向推导出哈希值(所以哈希算法也叫单向哈希算法)。 篡改无效: 对输入敏感,哪怕原始数据只修改一个Bit,最后得到的哈希值也大不相同。 散列冲突: 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小。 执行效率: 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速计算哈

希值。 2. 哈希算法的常见应用有哪些? 7个常见应用:安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。 1. 安全加密 常用于加密的哈希算法: MD5:MD5 Message-Digest Algorithm,MD5消息摘要算法 SHA:Secure Hash Algorithm,安全散列算法 DES:Data Encryption Standard,数据加密标准 AES:Advanced Encryption Standard,高级加密标准 对用于加密的哈希算法,有两点格外重要,第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要小。 在实际开发中要权衡破解难度和计算时间来决定究竟使用哪种加密算法。 2. 唯一标识 通过哈希算法计算出数据的唯一标识,从而用于高效检索数据。 3. 数据校验 利用哈希算法对输入数据敏感的特点,可以对数据取哈希值,从而高效校验数据是否被篡改过。 4. 散列函数 1.如何防止数据库中的用户信息被脱库?你会如何存储用户密码这么重要的数据吗?

哈 希 常 见 算 法 及 原 理

计算与数据结构篇 - 哈希算法 (Hash) 计算与数据结构篇 - 哈希算法 (Hash) 哈希算法的定义和原理非常简单,基本上一句话就可以概括了。将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。 构成哈希算法的条件: 从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法)对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同; 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小; 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。 哈希算法的应用(上篇) 安全加密 说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。 除了这两个之外,当然还有很多其他加密算法,比如 DES(Data Encryption Standard,数据加密标准)、AES(Advanced Encryption Standard,高级加密标准)。

前面我讲到的哈希算法四点要求,对用于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。 不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2^128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1-2^128。 如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资-源下,哈希算法还是被很难破解的。 对于加密知识点的补充,md5这个算法固然安全可靠,但网络上也有针对MD5中出现的彩虹表,最常见的思路是在密码后面添加一组盐码(salt), 比如可以使用md5(1234567.'2019@STARK-%$#-idje-789'),2019@STARK-%$#-idje-789 作为盐码起到了一定的保护和安全的作用。 唯一标识(uuid) 我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。

常用函数大全

常用函数大全 mysql_affected_rows
mysql_affected_rows — 取得前一次 MySQL 操作所影响的记录行数 mysql_fetch_array —从结果集中取得一行作为关联数组或数字数组或二者兼 有:
mysql_fetch_array($result, MYSQL_NUM) , MYSQL_NUM 可用 MYSQL_BOTH 或
MYSQL_ASSOC 代替,也可以不写,默认为 MYSQL_BOTH
mysql_fetch_row — 从结果集中取得一行作为枚举数组: mysql_fetch_row($result); mysql_fetch_assoc($result)
mysql_fetch_row()从和指定的结果标识关联的结果集中取得一行数据并作为数组返回。每个结果 的列储存在一个数组的单元中,偏移量从 0 开始。 依次调用 mysql_fetch_row()将返回结果集中的下一行,如果没有更多行则返回 FALSE。 mysql_fetch_assoc — 从结果集中取得一行作为关联数组 :
mysql_fetch_assoc() 和用 mysql_fetch_array() 加上第二个可选参数 MYSQL_ASSOC 完全相同。它 仅仅返回关联数组。这也是 mysql_fetch_array()起初始的工作方式。如果在关联索引之外还需要数字 索引,用 mysql_fetch_array()。 如果结果中的两个或以上的列具有相同字段名,最后一列将优先。要访问同名的其它列,要么用 mysql_fetch_row()来取得数字索引或给该列起个别名。参见 mysql_fetch_array() 例子中有关别名说 明。 有一点很重要必须指出,用 mysql_fetch_assoc()并不明显 比用 mysql_fetch_row()慢,而且还提供了 明显更多的值。
mysql_query()
仅对 SELECT,SHOW,EXPLAIN 或 DESCRIBE 语句返回一个资源标识符,
如果查询执行不正确则返回 FALSE。对于其它类型的 SQL 语句,mysql_query()在执行成功时返回 TRUE,出错时返回 FALSE。非 FALSE 的返回值意味着查询是合法的并能够被服务器执行。这并不说明 任何有关影响到的或返回的行数。 很有可能一条查询执行成功了但并未影响到或并未返回任何行。

哈希的基本概念

6、8 哈希表及其查找★3◎4 哈希译自“hash"一词,也称为散列或杂凑。?哈希表查找得基本思想就是:根据当前待查找数据得特征,以记录关键字为自变量,设计一个哈希函数,依该函数按关键码计算元素得存储位置,并按此存放;查找时,由同一个函数对给定值key计算地址,将key与地址单元中元素关键码进行比较,确定查找就是否成功。哈希方法中使用得转换函数称为哈希函数(杂凑函数),按这个思想构造得表称为哈希表(杂凑表)。?对于n个数据元素得集合,总能找到关键码与存放地址一一对应得函数、若最大关键为m,可以分配m个数据元素存放单元,选取函数f(ke y)=key即可,但这样会造成存储空间得很大浪费,甚至不可能分配这么大得存储空间、通常关键码得集合比哈希地址集合大得多,因而经过哈希函数变换后,可能将不同得关键码映射到同一个哈希地址上,这种现象称为冲突(Collisio n)。映射到同一哈希地址上得关键码称为同义词。可以说,冲突不可能避免,只能尽可能减少。所以,哈希方法需要解决以下两个问题:?(1)构造好得哈希函数?①所选函数尽可能简单,以便提高转换速度。?②所选函数对关键码计算出得地址,应在哈希地址集中大致均匀分布,以减少空间浪费。 (2)制定解决冲突得方案 1.常用得哈希函数 (1)直接定址法 即取关键码得某个线性函数值为哈希地址,这类函数就是一一对应函数,不会产生冲突,但要求地址集合与关键码集合大小相同,因此,对于较大得关键码集合不适用。如关键码集合为{100,300,500,700,800,900},选取哈希函数为Ha

sh(key)=key/100,则存放如表6-3所示。 表6—3 直接定址法构造哈希表 (2)除留余数法 即取关键码除以p得余数作为哈希地址。使用除留余数法,选取合适得p很重要,若哈希表表长为m,则要求p≤m,且接近m或等于m。p一般选取质数,也可以就是不包含小于20质因子得合数、?(3)数字分析法 设关键码集合中,每个关键码均由m位组成,每位上可能有r种不同得符号、?数字分析法根据r种不同得符号及在各位上得分布情况,选取某几位,组合成哈希地址。所选得位应就是各种符号在该位上出现得频率大致相同。 (4)平方取中法?对关键码平方后,按哈希表大小,取中间得若干位作为哈希地址。?(5)折叠法(Folding)?此方法将关键码自左到右分成位数相等得几部分,最后一部分位数可以短些,然后将这几部分叠加求与,并按哈希表表长,取后几位作为哈希地址。这种方法称为折叠法。?有两种叠加方法:?①移位法-—将各部分得最后一位对齐相加。 ②间界叠加法—-从一端向另一端沿各部分分界来回折叠后,最后一位对齐相加。?如对关键码为key=25346358705,设哈希表长为3位数,则可对关键码每3位一部分来分割。关键码分割为如下4组: 253 463 58705 分别用上述方法计算哈希地址如图6—12所示、对于位数很多得关键码,且每一位上符号分布较均匀时,可采用此方法求得哈希地址。

c++常用函数大全

数学函数,所在函数库为math.h、stdlib.h、string.h、float.h int abs(int i) 返回整型参数i的绝对值 double cabs(struct complex znum) 返回复数znum的绝对值 double fabs(double x) 返回双精度参数x的绝对值 long labs(long n) 返回长整型参数n的绝对值 double exp(double x) 返回指数函数ex的值 double frexp(double value,int *eptr) 返回value=x*2n中x的值,n存贮在eptr中double ldexp(double value,int exp); 返回value*2exp的值 double log(double x) 返回logex的值 double log10(double x) 返回log10x的值 double pow(double x,double y) 返回xy的值 double pow10(int p) 返回10p的值 double sqrt(double x) 返回+√x的值 double acos(double x) 返回x的反余弦cos-1(x)值,x为弧度 double asin(double x) 返回x的反正弦sin-1(x)值,x为弧度 double atan(double x) 返回x的反正切tan-1(x)值,x为弧度 double atan2(double y,double x) 返回y/x的反正切tan-1(x)值,y的x为弧度double cos(double x) 返回x的余弦cos(x)值,x为弧度 double sin(double x) 返回x的正弦sin(x)值,x为弧度 double tan(double x) 返回x的正切tan(x)值,x为弧度 double cosh(double x) 返回x的双曲余弦cosh(x)值,x为弧度 double sinh(double x) 返回x的双曲正弦sinh(x)值,x为弧度 double tanh(double x) 返回x的双曲正切tanh(x)值,x为弧度 double hypot(double x,double y) 返回直角三角形斜边的长度(z), x和y为直角边的长度,z2=x2+y2 double ceil(double x) 返回不小于x的最小整数 double floor(double x) 返回不大于x的最大整数 void srand(unsigned seed) 初始化随机数发生器 int rand() 产生一个随机数并返回这个数 double poly(double x,int n,double c[])从参数产生一个多项式 double modf(double value,double *iptr)将双精度数value分解成尾数和阶 double fmod(double x,double y) 返回x/y的余数 double frexp(double value,int *eptr) 将双精度数value分成尾数和阶 double atof(char *nptr) 将字符串nptr转换成浮点数并返回这个浮点数 double atoi(char *nptr) 将字符串nptr转换成整数并返回这个整数 double atol(char *nptr) 将字符串nptr转换成长整数并返回这个整数 char *ecvt(double value,int ndigit,int *decpt,int *sign) 将浮点数value转换成字符串并返回该字符串

用宏表函数与公式

用宏表函数与公式 1. 首先:点CTRL+F3打开定义名称,再在上面输入“纵当页”,在下面引用位置处输入: =IF(ISNA(MATCH(ROW(),GET.DOCUMENT(64))),1,MATCH(ROW(),GET.DOCUMENT(64))+1) 2.然后再继续添加第二个名称:“横当页”,在下面引用位置处输入: =IF(ISNA(MATCH(column(),GET.DOCUMENT(65))),1,MATCH(column(),GET.DOCUMENT(65))+1) 3.再输入“总页”;引用位置处输入:(在MSoffice2007不管有多少页,都只显示共有1页,不知为什么) =GET.DOCUMENT(50)+RAND()*0 4.最后再定义“页眉”,引用位置: ="第"&IF(横当页=1,纵当页,横当页+纵当页)&"页/共"&总页&"页" 5.在函数栏使用应用即可得到需要的页码。 另外一般情况下,一般的表册都要求每页25行数据,同时每页还需要设置相同的表头,虽然上面的方法可以在任意单元格内计算所在页面的页码,但是如果公式太多的话,计算特别慢。如果每页行数是固定的(比如25行)话,就可以采用下面的笨方法。 1、设置顶端标题行,“页面设置”→“工作表”→“顶端标题行”中输入“$1:$4”(第1行到第4行) 2、在工作表中数据输入完毕后,设置好各种格式,除表头外,保证每页是25行数据。 3、在需要设置该行所在页面的页码的单元格内输入如下公式: =INT((ROW()-ROWS(Print_Titles)-1)/25)+1 (公式里面的Print_Titles就是前面第1步所设置的顶端标题行区域。) 4、通过拖动或者复制的方法复制上面的公式,即可得到页码。

哈 希 常 见 算 法 及 原 理 ( 2 0 2 0 )

哈希算法乱谈(摘自知乎) 最近【现场实战追-女孩教-学】初步了解了Hash算法的相关知识,一些人的见解让我能够迅速的了解相对不熟悉的知识,故想摘录下来,【QQ】供以后温故而知新。 HASH【⒈】算法是密码学的基础,比较常用的有MD5和SHA,最重要的两【О】条性质,就是不可逆和无冲突。 所谓不【1】可逆,就是当你知道x的HASH值,无法求出x; 所谓无【б】冲突,就是当你知道x,无法求出一个y,使x与y的HA【9】SH值相同。 这两条性【⒌】质在数学上都是不成立的。因为一个函数必然可逆,且【2】由于HASH函数的值域有限,理论上会有无穷多个不同的原始值【6】,它们的hash值都相同。MD5和SHA做到的,是求逆和求冲突在计算上不可能,也就是正向计算很容易,而反向计算即使穷尽人类所有的计算资-源都做不到。 顺便说一下,王小云教授曾经成功制造出MD5的碰撞,即md5(a) = md5(b)。这样的碰撞只能随机生成,并不能根据一个已知的a求出b(即并没有破坏MD5的无冲突特性)。但这已经让他声名大噪了。 HASH算法的另外一个很广泛的用途,就是很多程序员都会使用的在数据库中保存用户密码的算法,通常不会直接保存用户密码(这样DBA就能看到用户密码啦,好危险啊),而是保存密码的HASH值,验

证的时候,用相同的HASH函数计算用户输入的密码得到计算HASH值然后比对数据库中存储的HASH值是否一致,从而完成验证。由于用户的密码的一样的可能性是很高的,防止DBA猜测用户密码,我们还会用一种俗称“撒盐”的过程,就是计算密码的HASH值之前,把密码和另外一个会比较发散的数据拼接,通常我们会用用户创建时间的毫秒部分。这样计算的HASH值不大会都是一样的,会很发散。最后,作为一个老程序员,我会把用户的HASH值保存好,然后把我自己密码的HASH值保存到数据库里面,然后用我自己的密码和其他用户的用户名去登录,然后再改回来解决我看不到用户密码而又要“偷窥”用户的需要。最大的好处是,数据库泄露后,得到用户数据库的黑客看着一大堆HASH值会翻白眼。 哈希算法又称为摘要算法,它可以将任意数据通过一个函数转换成长度固定的数据串(通常用16进制的字符串表示),函数与数据串之间形成一一映射的关系。 举个粒子,我写了一篇小说,摘要是一个string:'关于甲状腺精灵的奇妙冒险',并附上这篇文章的摘要是'2d73d4f15c0db7f5ecb321b6a65e5d6d'。如果有人篡改了我的文章,并发表为'关于JOJO的奇妙冒险',我可以立即发现我的文章被篡改过,因为根据'关于JOJO的奇妙冒险'计算出的摘要不同于原始文章的摘要。 可见,摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡

Excel常用的函数计算公式大全

E x c e l常用的函数计算公 式大全 Prepared on 22 November 2020

EXCEL的常用计算公式大全 一、单组数据加减乘除运算: ①单组数据求加和公式:=(A1+B1) 举例:单元格A1:B1区域依次输入了数据10和5,计算:在C1中输入=A1+B1后点击键盘“Enter(确定)”键后,该单元格就自动显示10与5的和 15。 ②单组数据求减差公式:=(A1-B1) 举例:在C1中输入=A1-B1即求10与5的差值5,电脑操作方法同上; ③单组数据求乘法公式:=(A1*B1) 举例:在C1中输入=A1*B1即求10与5的积值50,电脑操作方法同上; ④单组数据求乘法公式:=(A1/B1) 举例:在C1中输入=A1/B1即求10与5的商值2,电脑操作方法同上; ⑤其它应用: 在D1中输入=A1^3即求5的立方(三次方); 在E1中输入=B1^(1/3)即求10的立方根 小结:在单元格输入的含等号的运算式,Excel中称之为公式,都是数学里面的基本运算,只不过在计算机上有的运算符号发生了改变——“×”与“*”同、“÷”与“/”同、“^”与“乘方”相同,开方作为乘方的逆运算,把乘方中和指数使用成分数就成了数的开方运算。这些符号是按住电脑键盘“Shift”键同时按住键盘第二排相对应的数字符号即可显示。如果同一列的其它单元格都需利用刚才的公式计算,只需要先用鼠标左键点击一下刚才已做好公式的单元格,将鼠标移至该单元格的右下角,带出现十字符号提示时,开始按住鼠标左键不动一直沿着该单元格依次往下拉到你需要的某行同一列的单元格下即可,即可完成公司自动复制,自动计算。 二、多组数据加减乘除运算: ①多组数据求加和公式:(常用) 举例说明:=SUM(A1:A10),表示同一列纵向从A1到A10的所有数据相加; =SUM(A1:J1),表示不同列横向从A1到J1的所有第一行数据相加; ②多组数据求乘积公式:(较常用) 举例说明:=PRODUCT(A1:J1)表示不同列从A1到J1的所有第一行数据相乘; =PRODUCT(A1:A10)表示同列从A1到A10的所有的该列数据相乘; ③多组数据求相减公式:(很少用) 举例说明:=A1-SUM(A2:A10)表示同一列纵向从A1到A10的所有该列数据相减; =A1-SUM(B1:J1)表示不同列横向从A1到J1的所有第一行数据相减; ④多组数据求除商公式:(极少用)

CUDA dll的创建与测试

CUDA dll的创建与测试创建dll 第一步新建一个win32dll项目。 选择dll

自动生成了dll相关的框架。库函数入口点DllMain:

第二步,添加CUDA函数相关的文件CUDAdll.cuh和CUDAdll.cu并设置框架属性。

为其设置生成属性:

CUDAdll.cuh文件 设置项目“生成自定义” 选择CUDA4.0并打钩

设置CUDAdll.cu文件的生成属性,选择CUDA C/C++。 此时如果编译该dll项目,会出现问题,报错如下: 1>Link: 1> 所有输出均为最新。 1> 正在创建库 D:\elec\mymfctest\VS2010p\GPUDemos\CUDAdlltest\Debug\CUDAdlltest.lib和对象D:\elec\mymfctest\VS2010p\GPUDemos\CUDAdlltest\Debug\CUDAdlltest.exp 1>CUDAdll.cu.obj : error LNK2019:无法解析的外部符号 ___cudaRegisterFatBinary@4,该符号在函数"void __cdecl __sti____cudaRegisterAll_42_tmpxft_00000e60_00000000_3_CUDAdll_cpp1_ii_564 e775d(void)" (?__sti____cudaRegisterAll_42_tmpxft_00000e60_00000000_3_CUDAdll_cpp1_ii_5 64e775d@@YAXXZ)中被引用 1>CUDAdll.cu.obj : error LNK2019:无法解析的外部符号 ___cudaUnregisterFatBinary@4,该符号在函数"void __cdecl __cudaUnregisterBinaryUtil(void)" (?__cudaUnregisterBinaryUtil@@YAXXZ)中被引用 1>D:\elec\mymfctest\VS2010p\GPUDemos\CUDAdlltest\Debug\CUDAdlltest.dll : fatal error LNK1120: 2个无法解析的外部命令 1>

基于Visual Studio 的CUDA开发平台搭建

基于Visual Studio 的CUDA开发平台搭建 1 软件准备 1.1 下载软件 首先确定PC机为NVIDIA显卡,并且支持CUDA。 下载相关软件,包括显卡驱动(如果已经安装,则不必安装),CUDA Toolkit,CUDA SDK。 这些软件可以到NVIDIA官方网站上下载,地址为: https://www.360docs.net/doc/cc18662777.html,/object/cuda_3_1_downloads.html 由于安装的是32位的Windows7系统,CUDA Toolkit 的软件名为 cudatoolkit_3.2.16_win_32.msi,软件大小80.8 MB;CUDA SDK 的软件名为:pucomputingsdk_3.1_win_32.exe,软件大小296 MB。 其他软件工具:VS助手(Visual Assist X),Openhero的CUDA_Wizard (CUDA_VS_Wizard_W32.2.2.exe)。 1.2安装软件 软件准备完全后,先安装显卡驱动。然后依次安装CUDA Toolkit和CUDA SDK。 在Windows 7 系统下,CUDA Toolkit 默认安装在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA目录下。CUDA SDK安装在C:\ProgramData\NVIDIA Corporation\NVIDIA GPU Computing SDK目录下。 一般来说安装完后,相应的环境变量都已设置好,包括CUDA_BIN_PATH,CUDA_INC_PATH,CUDA_LIB_PATH等。 安装Visual Assist X(如果已经安装过就不必装了);安装CUDA_VS_Wizard 。 2 配置Visual Studio环境 2.1 语法高亮 将C:\ProgramData\NVIDIA Corporation\NVIDIA GPU Computing SDK\C\doc\syntax_highlighting\visual_studio_8里面的usertype.dat文件copy到

Excel常用函数公式大全(实用)

Excel常用函数公式大全 1、查找重复内容公式:=IF(COUNTIF(A:A,A2)>1,"重复","")。 2、用出生年月来计算年龄公式:=TRUNC((DAYS360(H6,"2009/8/30",FALSE))/360,0)。 3、从输入的18位身份证号的出生年月计算公式: =CONCATENATE(MID(E2,7,4),"/",MID(E2,11,2),"/",MID(E2,13,2))。 4、从输入的身份证号码内让系统自动提取性别,可以输入以下公式: =IF(LEN(C2)=15,IF(MOD(MID(C2,15,1),2)=1,"男","女"),IF(MOD(MID(C2,17,1),2)=1,"男","女"))公式内的“C2”代表的是输入身份证号码的单元格。 1、求和:=SUM(K2:K56) ——对K2到K56这一区域进行求和; 2、平均数:=AVERAGE(K2:K56) ——对K2 K56这一区域求平均数; 3、排名:=RANK(K2,K$2:K$56) ——对55名学生的成绩进行排名; 4、等级:=IF(K2>=85,"优",IF(K2>=74,"良",IF(K2>=60,"及格","不及格"))) 5、学期总评:=K2*0.3+M2*0.3+N2*0.4 ——假设K列、M列和N列分别存放着学生的“平时总评”、“期中”、“期末”三项成绩; 6、最高分:=MAX(K2:K56) ——求K2到K56区域(55名学生)的最高分; 7、最低分:=MIN(K2:K56) ——求K2到K56区域(55名学生)的最低分; 8、分数段人数统计: (1)=COUNTIF(K2:K56,"100") ——求K2到K56区域100分的人数;假设把结果存放于K57单元格; (2)=COUNTIF(K2:K56,">=95")-K57 ——求K2到K56区域95~99.5分的人数;假设把结果存放于K58单元格; (3)=COUNTIF(K2:K56,">=90")-SUM(K57:K58) ——求K2到K56区域90~94.5分的人数;假设把结果存放于K59单元格; (4)=COUNTIF(K2:K56,">=85")-SUM(K57:K59) ——求K2到K56区域85~89.5分的人数;假设把结果存放于K60单元格;

HASH表

hashing定义了一种将字符组成的字符串转换为固定长度(一般是更短长度)的数值或索引值 的方法,称为散列法,也叫哈希法。由于通过更短的哈希值比用原始值进行数据库搜索更快,这种方法一般用来在数据库中建立索引并进行搜索,同时还用在各种解密算法中。 设所有可能出现的关键字集合记为u(简称全集)。实际发生(即实际存储)的关键字集合记为k(|k|比|u|小得多)。|k|是集合k中元素的个数。 散列方法是使用函数hash将u映射到表t[0..m-1]的下标上(m=o(|u|))。这样以u中关键字为自变量,以h为函数的运算结果就是相应结点的存储地址。从而达到在o(1)时间内就可完成查找。 其中: ①hash:u→{0,1,2,…,m-1} ,通常称h为散列函数(hash function)。散列函数h 的作用是压缩待处理的下标范围,使待处理的|u|个值减少到m个值,从而降低空间开销。 ②t为散列表(hash table)。 ③hash(ki)(ki∈u)是关键字为ki结点存储地址(亦称散列值或散列地址)。 ④将结点按其关键字的散列地址存储到散列表中的过程称为散列(hashing). 比如:有一组数据包括用户名字、电话、住址等,为了快速的检索,我们可以利用名字作为关键码,hash规则就是把名字中每一个字的拼音的第一个字母拿出来,把该字母在26个字母中的顺序值取出来加在一块作为改记录的地址。比如张三,就是z+s=26+19=45。就是把张三存在地址为45处。 但是这样存在一个问题,比如假如有个用户名字叫做:周四,那么计算它的地址时也是z+s=45,这样它与张三就有相同的地址,这就是冲突,也叫作碰撞! 冲突:两个不同的关键字,由于散列函数值相同,因而被映射到同一表位置上。该现象称为冲突(collision)或碰撞。发生冲突的两个关键字称为该散列函数的同义词(synonym)。 冲突基本上不可避免的,除非数据很少,我们只能采取措施尽量避免冲突,或者寻找解决冲突的办法。影响冲突的因素 冲突的频繁程度除了与h相关外,还与表的填满程度相关。 设m和n分别表示表长和表中填人的结点数,则将α=n/m定义为散列表的装填因子(load factor)。α越大,表越满,冲突的机会也越大。通常取α≤1。 散列函数的构造方法: 1、散列函数的选择有两条标准:简单和均匀。 简单指散列函数的计算简单快速; 均匀指对于关键字集合中的任一关键字,散列函数能以等概率将其映射到表空间的任何一个位置上。也就是说,散列函数能将子集k随机均匀地分布在表的地址集{0,1,…,m-1}上,以使冲突最小化。 2、常用散列函数 (1)直接定址法:比如在一个0~100岁的年龄统计表,我们就可以把年龄作为地址。 (2)平方取中法

相关文档
最新文档