Target-Triggered NIR Emission with a Large Stokes Shift for the Detection and Imaging of Cysteine

Target-Triggered NIR Emission with a Large Stokes Shift for the Detection and Imaging of Cysteine
Target-Triggered NIR Emission with a Large Stokes Shift for the Detection and Imaging of Cysteine

DOI:10.1002/asia.201402043

Target-Triggered NIR Emission with a Large Stokes Shift for the Detection

and Imaging of Cysteine in Living Cells

Chunchang Zhao,*Xiuai Li,and Feiyi Wang [a]

Abstract:Background autofluorescence from biological sys-tems generally reduces the sensitivity of a fluorescent probe for imaging biological targets.Addressing this challenge re-quires the development of fluorescent probes that produce emission in the near-infrared region.Herein,we report the design and synthesis of a fluorescent probe that generates an NIR emission with a large Stokes shift upon the selective response to Cys over Hcy and GSH.The probe is designed to consist of two Cys-sensing sites,an acrylate ester and an aldehyde installed ortho to each other.The reaction of the probe with Cys triggers an excited state intramolecular proton transfer process upon photo-excitation,thereby pro-ducing an NIR emission with a large Stokes shift.Accord-ingly,this probe hold great promise for the selective detec-tion of Cys in biological systems.We further demonstrate the capacity of this probe for Cys imaging in living cells.

Fluorometric detection of thiol-containing species has re-ceived intense attention due to their vital roles in biological systems.[1]Targets of particular interest are cysteine (Cys),homocysteine (Hcy),and glutathione (GSH).Deregulation of these biothiols is well known to be directly associated with cancer,Alzheimer s disease,neurotoxicity,retarded growth rate,hair depigmentation,liver damage,cardiovascu-lar diseases,and coronary heart disease.[2–4]The ability to monitor specific thiols in living cells has therefore great im-plications for the detection of disease states and screening of potential therapeutic agents.

So far,a number of fluorescent probes have been devel-oped for selective detection and applications in vitro and/or in vivo.[5–9]Most of the existing probes generally employ the strong nucleophilicity of the thiol group toward the func-tional moiety appended to the fluorophore as the sensing mechanism,which includes the Michael addition,[5]cycliza-tion reaction with an aldehyde,[6]cleavage of disulfide and sulfonamide,[7]and others.[8]However,most of them have

one major limitation with regard to the fluorescence re-sponse in biological systems,namely,interference from background autofluorescence by biomolecules.Addressing this challenge demands the development of fluorescent probes that produce emission at NIR range where autofluor-escence is significantly minimized.Although a few selective NIR sensors have been devised for the detection of biothiols in cellular processes,[9]the emission of these probes is gener-ally characterized by a small Stokes shift.A small Stokes shift can generally cause crosstalk between the excitation light and the resulting fluorescence signals,thus rendering measurements prone to error owing to the excitation light and scattered light,which interferes with the detection sensi-tivity to a great extent.[10]Thus,another important require-ment for decreasing the interference from autofluorescence by biomolecules,in addition to the NIR fluorescence,is the use of a dye that emits in the NIR region with a large Stokes shift.To the best of our knowledge,the construction of a NIR probe with a large Stokes shift for imaging the dis-tribution of biothiols in cellular processes has not been re-ported yet.

In this contribution,we report on the probe PCys-B that selectively responds to Cys over Hcy and GSH and emits in the NIR region with a large Stokes shift.Our design strategy was based on the considerations:1)Choosing a reaction as a suitable trigger for selective detection.Because of the sim-ilar structure and reactivity of thiol-containing molecules,it is still a challenge to construct probes that can discriminate one biothiol against other biothiols.Recently,a conjugated addition and cyclization reaction sequence has been ration-ally designed for the selective detection of Cys over Hcy and GSH.[8a,9c]Inspired by these elegant results,in this study,we therefore chose an acrylate group,generated by masking the phenolic hydroxy group in a BODIPY deriva-tive (Scheme 1)with an a ,b -unsaturated carbonyl moiety,as the sensing site to furnish such a reaction sequence and thus achieve the discrimination between thiols;2)Identifying a suitable fluorophore platform that meets the need of mini-mizing the background autofluorescence.It is well known that dyes exhibiting excited state intramolecular proton transfer (ESIPT)processes generally produce an emission with large Stokes shifts.[11]ESIPT can be observed in a varie-ty of molecules that contain both a hydrogen donor (usually the phenolic OH)and an acceptor (usually a heteroatom such as a nitrogen of a heterocycle)in close proximity to form intramolecular hydrogen bonds (H-bonds).Here,6-hy-[a]Prof.C.Zhao,X.Li,F.Wang

Key Laboratory for Advanced Materials and Institute of Fine Chemicals

East China University of Science&Technology Shanghai 200237(P .R.China)E-mail:

zhaocchang@https://www.360docs.net/doc/c919018541.html,

Supporting information for this article is available on the WWW under https://www.360docs.net/doc/c919018541.html,/10.1002/asia.201402043.

COMMUNICATION

droxyindole-based BODIPY was exploited as the fluores-cence scaffold to construct the sensing platform,as this dye has been reported to produce NIR emission around 650nm when it is in the phenolate form.[12]If a hydrogen acceptor is installed in close proximity to the phenolic hydroxy function of 6-hydroxyindole-based BODIPY,then ESIPT should occur upon excitation,and a rapid photoinduced proton transfer would result in the phenolate form with NIR emis-sion characteristics.Based on the above considerations,an aldehyde reaction group toward Cys was also positioned in the ortho position to the acrylate ester function.It can be envisioned that the reaction of Cys with the acrylate moiety in PCys-B could trigger the unmasking of the hydroxy group,while the cyclization reaction with the aldehyde could produce a thiazolidine.Since the amino group (H-bond acceptor)of thiazolidine is in close proximity to the hydroxy group,an H-bonding interaction through a six-membered ring therefore exists between them,and thus an ESIPT process could occur upon photo-excitation (Scheme 1).Indeed,the ESIPT phototautomer produces an NIR emission with a large Stokes shift,making PCys-B a promising probe for the selective detection of Cys with minimal background autofluorescence.We further demon-strate that PCys-B is cell-permeable and can be used for Cys imaging in living cells.

The synthesis of PCys-B commenced with the preparation of the intermediate BODIPY 1,as described in Scheme 1.

Condensation of 2-benzoyl-3-methyl-6-methoxyindole with 2,4-dimethyl-3-ethylpyrrole followed by treatment with BF 3·OEt 2afforded 1in 66%yield.Treatment of 1with DMF/POCl 3in CH 2Cl 2through a Vilsmeier–Haack reaction led to the formation of 2.Conversion of the methoxyben-zene moiety in 2to the corresponding phenol moiety in 3was then carried out following a standard deprotection pro-tocol using the reagent BF 3·SEt 2.Finally,the phenol moiety of 3was functionalized with acryloyl chloride to provide the probe PCys-B with a yield of 55%.The chemical structures of all new compounds were verified by 1H NMR and 13

C NMR spectroscopy as well as high-resolution mass spec-trometry (HRMS).

The spectroscopic characteristics of PCys-B were first evaluated in organic solvents of varying polarity.The optical features show profiles similar to those of typical BODIPY fluorophores (Figure S1,Supporting Information).The main S 0-S 1absorption transition band of PCys-B is centered be-tween 501and 521nm in pure solvents and shows a small solvent-dependent variation.Similar to the absorption spec-tra,the emission spectra also show a small solvent-depen-dent shift.Upon excitation at l max under ambient conditions,PCys-B was found to emit in the range of 537–551nm with high fluorescence quantum yields.Spectroscopic evaluation of PCys-B was then performed in a series of aqueous buffer solutions with varying acetonitrile content (Figure S1,Sup-porting Information).As can be observed from Figure S1

in

Scheme 1.Synthesis of PCys-B and proposed NIR sensing mechanism for Cys.

the Supporting Information,PCys-B exhibits a strong ab-sorption band in the visible region centered at 495nm in acetonitrile.When the concentration of CH 3CN in aqueous solutions was decreased from 100%to 10%,a red-shift from 495nm to 530nm in the absorption spectra was ob-served.The fluorescence spectrum of PCys-B exhibits an emission band around 541nm in CH 3CN.Changes in the concentration of acetonitrile results in little changes in the maximum emission wavelength (l em ).However,the emission intensity displays a dramatic enhancement with increasing acetonitrile content.

The sensory response of probe PCys-B is exemplified by its reaction with Cys under physiological conditions (aceto-nitrile/PBS buffer,1:1,v/v,0.01m ,pH 7.2,378C).In the ab-sence of Cys,PCys-B displays a strong absorption band at 495nm and exhibits an emission peak at 541nm.Upon ad-dition of Cys (1m m )to a solution of PCys-B ,a decrease in the absorption band at 495nm accompanied with an in-crease of a new band at 538nm was observed,thus resulting in a color change from orange to rose red (Figure S2,Sup-porting Information).This process displays a distinct iso-sbestic point at 508nm.It is noted that the ratio of the ab-sorbance at 538and 495nm increases over 7-fold,which en-ables Cys to be detected with the naked eye.

The fluorescence responses of PCys-B toward Cys were also investigated in buffer solutions.As shown in Figure 1b,

with the addition of Cys (1m m ),PCys-B displayed a drastic change in the spectral profile from a single-peak to a dual-peak profile.The emission intensity at 541nm was noted to decrease with a concomitant buildup of emission peaks at 574nm and 650nm upon excitation at 527nm.Consequent-ly,the fluorescence color changed from yellow to red under illumination with a UV lamp (Figure S2,Supporting Infor-mation).The ratio of emission intensities at 650and 541nm (I 650/I 541)increased 17-fold,thus enabling more accurate measurements of Cys by using the ratiometric response of PCys-B .By monitoring the changes in the fluorescence in-tensity ratio at 650and 541nm (I 650/I 541),the observed rate constant was then determined to be 0.12min à1

under

pseudo-first-order conditions (Figure S3,Supporting Infor-mation).It is worth mentioning that PCys-B produced an NIR emission at 650nm upon excitation at 527nm in the presence of Cys,thereby exhibiting a large gap of 123nm between the excitation wavelength and the emission wave-length which can effectively diminish any measurement error caused by the excitation light and scattered light.Exci-tation at 538nm,the maximum absorption wavelength of the product generated by the reaction of PCys-B with Cys,could also elicit an NIR emission at 650nm (Figure S4,Sup-porting Information),thus exhibiting a large Stokes shift of 112nm.These data indicated that PCys-B could serve as a promising probe for the detection of Cys with minimal background autofluorescence.The above observed change in the emission profile was ascribed to the reaction of Cys with the two appended functional groups acrylate and alde-hyde in PCys-B .Cys triggered the unmasking of the acrylate ester,thus leading to the release of the phenolic hydroxy-based BODIPY which produced the emission at 574nm.The reaction between Cys and aldehyde introduced the for-mation of a thiazolidine.Since the amino group in the thia-zolidine is in proximity to the phenolic hydroxy function,an intramolecular H-bond formed through a six-membered ring.Then ESIPT occurred upon photo-excitation,resulting in the emission at 650nm with a large Stokes shift.The con-version of PCys-B to the corresponding product was also confirmed by HRMS characterization (Figure S5,Support-ing Information).The effect of pH on the response of PCys-B to Cys was also investigated (Figure S6,Supporting Informa-tion).A distinct enhancement of the I 650/I 541ratio could be ob-served when the pH was in-creased from 6to 8.This phe-nomenon could be attributed to increasing deprotonation under basic conditions,which results in the phenolate-based emission in the NIR region.Apparent-ly,PCys-B can serve as a prom-ising ratiometric probe for Cys within the physiological pH window.

We further examined the efficiency of PCys-B in the mea-surement of Cys at various concentrations.Figure 2shows a plot of the fluorescence intensity ratio of PCys-B as a func-tion of Cys concentration.Evidently,the ratio increased lin-early with increasing concentration of Cys up to 400m m (es-sentially covering the physiological levels of Cys between 240and 360m m ),thus demonstrating that PCys-B could

detect Cys both qualitatively and quantitatively.The detec-tion limit was determined to be 2.33 10à7m ,which is com-parable to that of previously reported probes.PCys-B showed a good selectivity for Cys over other reac-tive sulfur species and other biologically relevant amino

acids.The specificity of the probe was examined by measur-ing the response after incubation with various related

spe-Figure 1.(a)Absorption and (b)emission spectra of PCys-B (10m m )after incubation with Cys (100equiv)in

acetonitrile/PBS buffer (1:1,v/v,0.01m ,pH 7.2)at 378C for 0,1,2,3,4,5,6,8,10,15,20,25,30,and 40min.

l ex =527nm.

cies in buffer solution.In the case of Hcy and GSH,two structurally related amino acids,no dual-peak emission spec-tra profile could be observed,although these amino acids caused a small red-shift in the emission of PCys-B .By con-trast,Cys introduced a remarkable change in the profile of the spectra from a single-peak to a dual-peak profile (Fig-ure 3a).Furthermore,the dramatic change in the fluores-cence intensity ratio of I 650/I 541over time could only be ob-served in the presence of Cys (Figure 3b).Other related amino acids triggered no obvious changes in the emission spectra,as shown in Figure S7in the Supporting Informa-tion.Therefore,PCys-B is a highly selective probe and can monitor Cys with minimum interference from other relevant analytes.

We further examined the potential usefulness of PCys-B for live cell imaging of Cys.As shown in Figure 4,MKN-45cells incubated with PCys-B for 20min at 378C showed a strong fluorescence in the NIR region (650–700nm)as a result of the ESIPT process,whereas a faint fluorescence signal from the unreacted original probe could also be ob-

served in the green channel at 500–550nm.The ratio of the emission intensity in the green channel to that in the red channel was around 0.3.By contrast,MKN-45cells that had been successively pretreated with N -methylmaleimide (a trapping reagent of thiols)for 20min and then incubated with PCys-B for 20min resulted in reduced NIR fluores-cence (650–700nm)within cells,whereas strong fluores-cence signals were collected from the cells in the channel of 500–550nm due to the unreacted probe,thus resulting in an increase of the emission ratio to around 1.0.These results imply that PCys-B is a specific probe for Cys and amenable for live cell imaging.

In summary,we designed in this study a fluorescent probe for the detection of Cys with minimal background autofluor-escence,in which two reaction functions,an acrylate ester and an aldehyde,are installed ortho to each other.The reac-tion between the probe and Cys triggers a drastic change of the profile of the fluorescence spectra from a single-peak to a dual-peak profile,which is ascribed to the existence of an excited state intramolecular proton transfer process upon

photo-excitation.As no dual-peak emission spectra profile could be introduced by other related amino acids,we con-clude that PCys-B is a highly selective probe and can monitor Cys with minimum interference from other relevant analytes.More importantly,the ESIPT phototautomer produces an NIR emission with a large Stokes shift,making this probe promising for the selective de-tection of Cys in biological sys-tems by minimizing background

autofluorescence.We further demonstrate that this probe is cell-permeable and can be

used Figure 2.Plot of the fluorescence intensity ratio at 650and 541nm (I 650/I 541)as a function of Cys concentration.R t and R 0represent the fluores-cence intensity ratio I 650/I 541in the presence of different amounts of Cys and in the absence of Cys,respectively.The slope k of the linear regres-sion curve was determined to be 0.257.The standard deviation was deter-mined to be s =2.0 10à3.The detection limit,calculated by the formula (3s /k ),was 2.33 10à7m

.

Figure 3.(a)Fluorescence response of PCys-B (10m m )toward Cys,Hcy,and GSH (100equiv each)after incu-bation at 378C for 20min in acetonitrile/PBS buffer (1:1,v/v,0.01m ,pH 7.2);l ex =527nm.(b)Plots of the

fluorescence intensity ratio (I 650/I 541)of PCys-B (10m m )as a function of time in the presence of Cys,Hcy,and

GSH (100equiv each),respectively;l ex =527

nm.

Figure 4.Fluorescent confocal images of MKN-45cells.(a–d)Cells incu-bated with PCys-B (10m m )for 20min,(a)green fluorescence channel at 500–550nm,(b)red fluorescence channel at 650–700nm,(c)ratio of the images shown in (a)and (b),(d)bright-field image.e–h)Cells pretreated with N -methylmaleimide for 20min prior to incubation with PCys-B (10m m )for 20min,(e)green fluorescence channel at 500–550nm,(f)red fluorescence channel at 650–700nm,(g)ratio of the images shown in (e)and (f),(h)bright-field image.

for Cys imaging in living cells.We anticipate that the strat-egy reported here could be used for designing new specific probes for studying biothiols in complex biological systems.

Experimental Section

Synthesis of PCys-B

Acryloyl chloride(28m L in4mL of CH2Cl2)was added to a solution of3 (100mg,0.23mmol)and Et3N(65m L)in anhydrous CH2Cl2(10mL)at 08C.After stirring for90min at08C,the mixture was warmed to room temperature and further stirred overnight.The solution was then diluted with CH2Cl2(50mL),washed with H2O,and dried over anhydrous Na2SO4.The solvent was removed in vacuo to furnish a crude mixture, which was purified using column chromatography(silica gel,EtOAc/pe-troleum ether1:8)to afford PCys-B(61mg,55%).1H NMR(400MHz, CDCl3):d=1.07(t,3H,),1.45(s,3H),1.68(s,3H),2.37–2.42(q,2H,), 2.74(s,3H),6.10(d,1H),6.40–6.47(m,1H),6.70(d,1H),7.36–7.38(m, 2H),7.55(s,1H),7.59–7.61(m,3H),8.09(s,1H),10.04ppm(s,1H); 13C NMR(100MHz,CDCl

3

):d=188.5,167.5,164.6,150.8,146.3,143.7, 141.7,139.1,137.8,134.4,133.1,131.5,129.7,129.6,128.1,127.5,126.1, 122.4,108.4,30.2,25.1,17.2,13.9,12.4,11.1ppm;HRMS(ESI):calcd for C28H25BF2N2NaO3:509.1824;found:509.1826[M+Na]+.

Acknowledgements

We gratefully acknowledge the financial support by the National Science Foundation of China(grant no.:21172071,21190033,21372083),and the Fundamental Research Funds for the Central Universities.

Keywords:biosensors·biothiols·excited state intramolecular proton transfer·fluorescent probes·imaging agents·NIR emission

[1]a)X.Chen,Y.Zhou,X.Peng,J.Yoon,Chem.Soc.Rev.2010,39,

2120–2135;b)Y.Zhou,J.Yoon,Chem.Soc.Rev.2012,41,52–67;

c)H.S.Jung,X.Chen,J.S.Kim,J.Yoon,Chem.Soc.Rev.2013,42,

6019–6031;d)C.Yin, F.Huo,J.Zhang,R.Martínez-Mμn?z,Y.

Yang,H.Lv,S.Li,Chem.Soc.Rev.2013,42,6032–6059;e)M.H.

Lee,Z.Yang,C.W.Lim,Y.H.Lee,D.Sun,C.Kang,J.S.Kim, Chem.Rev.2013,113,5071–5109;f)Y.Yang,Q.Zhao,W.Feng,F.

Li,Chem.Rev.2013,113,192–270.

[2]a)S.Shahrokhian,Anal.Chem.2001,73,5972–5978;b)X.F.Wang,

M.S.Cynader,J.Neurosci.2001,21,3322–3331.

[3]a)H.Refsum,P.M.Ueland,O.Nyg?rd,S.E.Vollset,Annu.Rev.

Med.1998,49,31–62;b)S.Seshadri,A.Beiser,J.Selhub,P.F.Jac-ques,I.H.Rosenberg,R.B.D’Agostino,P.W.F.Wilson,P.A.Wolf, N.Engl.J.Med.2002,346,476–483;c)J.A.McMahon,T.J.Green,

C.M.Skeaff,R.G.Knight,J.I.Mann,S.M.Williams,N.Engl.J.

Med.2006,354,2764–2772.

[4]a)C.Hwang,A.J.Sinskey,H.F.Lodish,Science1992,257,1496–

1502;b)A.Meister,J.Biol.Chem.1988,263,17205–17208;c)T.P.

Akerboom,M.Bilzer,H.Sies,J.Biol.Chem.1982,257,4248–4252.

[5]a)L.Yuan,W.Lin,Y.Yang,https://www.360docs.net/doc/c919018541.html,mun.2011,47,6275–6277;

b)W.Jiang,Q.Fu,H.Fan,J.Ho,W.Wang,Angew.Chem.Int.Ed.

2007,46,8445–8448;Angew.Chem.2007,119,8597–8600;c)J.

Guy,K.Caron,S.Dufresne,S.W.Michnick,W.G.Skene,J.W.Keil-lor,J.Am.Chem.Soc.2007,129,11969–11977;d)H.S.Jung,K.C.

Ko,G.-H.Kim,A.-R.Lee,Y.-C.Na,C.Kang,J.Y.Lee,J.S.Kim, Org.Lett.2011,13,1498–1501;e)H.Kwon,K.Lee,H.-J.Kim, https://www.360docs.net/doc/c919018541.html,mun.2011,47,1773–1775;f)Y.Liu,Y.Yu,J.W.Y.

Lam,Y.Hong,M.Faisal,W.Z.Yuan,B.Z.Tang,Chem.Eur.J.

2010,16,8433–8438;g)X.Chen,S.-K.Ko,M.J.Kim,I.Shin,J.

Yoon,https://www.360docs.net/doc/c919018541.html,mun.2010,46,2751–2753;h)W.Lin,L.Yuan,Z.

Cao,Y.Feng,L.Long,Chem.Eur.J.2009,15,5096–5103;i)V.

Hong,A.Kislukhin,M.G.Finn,J.Am.Chem.Soc.2009,131,9986–9994;j)L.Yi,H.Li,L.Sun,L.Liu,C.Zhang,Z.Xi,Angew.Chem.

Int.Ed.2009,48,4034–4037;Angew.Chem.2009,121,4094–4097.

[6]a)H.L.Li,J.L.Fan,J.Y.Wang,M.Z.Tian,J.J.Du,S.G.Sun,P.P.

Sun,X.J.Peng,https://www.360docs.net/doc/c919018541.html,mun.2009,5904–5906;b)H.L.Chen, Q.Zhao,Y.B.Wu,F.Y.Li,H.Yang,T.Yi,C.H.Huang,Inorg.

Chem.2007,46,11075–11081;c)O.Rusin,N.N.S.Luce,R.A.Ag-baria,J.O.Escobedo,S.Jiang,I.M.Warner,F.B.Dawan,K.Lian, R.M.Strongin,J.Am.Chem.Soc.2004,126,438–439;d)W.H.

Wang,O.Rusin,X.Y.Xu,K.K.Kim,J.O.Escobedo,S.O.Fa-kayode,K.A.Fletcher,M.Lowry,C.M.Schowalter,https://www.360docs.net/doc/c919018541.html,w-rence,F.R.Fronczek,I.M.Warner,R.M.Strongin,J.Am.Chem.

Soc.2005,127,15949–15958;e)K.-S.Lee,T.-K.Kim,J.H.Lee,H.-J.Kim,J.-I.Hong,https://www.360docs.net/doc/c919018541.html,mun.2008,6173–6175;f)W.Lin,L.

Long,L.Yuan,Z.Cao,B.Chen,W.Tan,Org.Lett.2008,10,5577–5580;g)X.Zhang,X.Ren,Q.Xu,K.P.Loh,Z.Chen,Org.Lett.

2009,11,1257–1260.

[7]a)M.H.Lee,J.H.Han,P.-S.Kwon,S.Bhuniya,J.Y.Kim,J.L.Sess-

ler,C.Kang,J.S.Kim,J.Am.Chem.Soc.2012,134,1316–1322;

b)B.Tang,Y.Xing,P.Li,N.Zhang,F.Yu,G.Yang,J.Am.Chem.

Soc.2007,129,11666–11667;c)C.S.Lim,G.Masanta,H.J.Kim, J.H.Han,H.M.Kim, B.R.Cho,J.Am.Chem.Soc.2011,133, 11132–11135;d)J.H.Lee,C.S.Lim,Y.S.Tian,J.H.Han,B.R.

Cho,J.Am.Chem.Soc.2010,132,1216–1217;e)L.Long,W.Lin,

B.Chen,W.Gao,L.Yuan,https://www.360docs.net/doc/c919018541.html,mun.2011,47,893–895;f)B.

Zhu,X.Zhang,Y.Li,P.Wang,H.Zhang,X.Zhuang,Chem.

Commun.2010,46,5710–5712;g)C.Zhao,Y.Zhou,Q.Lin,L.

Zhu,P.Feng,Y.Zhang,J.Cao,J.Phys.Chem.B2011,115,642–647;h)J.Shao,H.Sun,H.Guo,S.Ji,J.Zhao,W.Wu,X.Yuan,C.

Zhang,T.D.James,Chem.Sci.2012,3,1049–1061.

[8]a)X.Yang,Y.Guo,R.M.Strongin,Angew.Chem.Int.Ed.2011,50,

10690–10693;Angew.Chem.2011,123,10878–10881;b)L.-Y.Niu, Y.-S.Guan,Y.-Z.Chen,L.-Z.Wu,C.-H.Tung,Q.-Z.Yang,J.Am.

Chem.Soc.2012,134,18928–18931;c)L.-Y.Niu,Y.-S.Guan,Y.-Z.

Chen,L.-Z.Wu,C.-H.Tung,Q.-Z.Yang,https://www.360docs.net/doc/c919018541.html,mun.2013,49, 1294–1296;d)M.Zhang,M.Yu,F.Li,M.Zhu,M.Li,Y.Gao,L.

Li,Z.Liu,J.Zhang,D.Zhang,T.Yi,C.Huang,J.Am.Chem.Soc.

2007,129,10322–10323;e)H.-Y.Shiu,H.-C.Chong,Y.-C.Leung, M.-K.Wong,C.-M.Che,Chem.Eur.J.2010,16,3308–3313;f)Y.-S.

Guan,L.-Y.Niu,Y.-Z.Chen,L.-Z.Wu,C.-H.Tung,Q.-Z.Yang, RSC Adv.2014,4,8360–8364;g)L.-Y.Niu,H.-R.Zheng,Y.-Z.

Chen,L.-Z.Wu,C.-H.Tung,Q.-Z.Yang,Analyst2014,139,1389–1395;h)J.Liu,Y.-Q.Sun,Y.Huo,H.Zhang,L.Wang,P.Zhang,D.

Song,Y.Shi,W.Guo,J.Am.Chem.Soc.2014,136,574–577.

[9]a)H.S.Hewage,E.V.Anslyn,J.Am.Chem.Soc.2009,131,13099–

13106;b)S.Sreejith,K.P.Divya,A.Ajayaghosh,Angew.Chem.Int.

Ed.2008,47,7883–7887;Angew.Chem.2008,120,8001–8005;c)Z.

Guo,S.W.Nam,S.Park,J.Yoon,Chem.Sci.2012,3,2760–2765.

[10]a)Z.Zhang,S.Achilefu,Org.Lett.2004,6,2067–2070;b)X.Peng,

F.Song,E.Lu,Y.Wang,W.Zhou,J.Fan,Y.Gao,J.Am.Chem.

Soc.2005,127,4170–4171.

[11]a)C.-C.Hsieh,P.-T.Chou,C.-W.Shih,W.-T.Chuang,M.-W.Chung,

J.Lee,T.Joo,J.Am.Chem.Soc.2011,133,2932–2943;b)K.-C.

Tang,M.-J.Chang,T.-Y.Lin,H.-A.Pan,T.-C.Fang,K.-Y.Chen,W.-Y.Hung,Y.-H.Hsu,P.-T.Chou,J.Am.Chem.Soc.2011,133, 17738–17745;c)M.H.V.Huynh,T.J.Meyer,Chem.Rev.2007,107, 5004–5064;d)C.-C.Hsieh,C.-M.Jiang,P.-T.Chou,Acc.Chem.Res.

2010,43,1364–1374.

[12]C.Zhao,P.Feng,J.Cao,Y.Zhang,X.Wang,Y.Yang,Y.Zhang,J.

Zhang,Org.Biomol.Chem.2012,10,267–272.

Received:February11,2014

Published online:May7,2014

轧钢生产必备英语词汇

轧钢生产必备英语词汇整理版 4-high finishing mill 四辊精轧机 abrasive耐磨性 abscess气孔 abscissa横坐标 AC frequency converter 交流变频器accommodating容纳、收纳 Accumulator 蓄能器 Active curve 实际曲线 AGC: automatic gauge control 自动压下控制Aging 时效处理 air ejection空气喷射 air motor气动电机 AJC=automatic jumping control自动踏步控制Alarm 报警 Alignment 对中 alignment排成直线、列队、对中 align定中心、对中 Alloy Construction Steel合金结构钢 Alloy Tool Steel合金工具钢 alternate交替、轮流 amperage电流量 Anchoring bolt 地脚螺栓 anchor锚固、地脚 annealed退火的 Annealing 退火 Annual 一年的 annual一年一次的 applicable能应用的、适用的、适合的application应用 appreciate增多,重视 approach接近、进给 appropriate适合的、特有的 apron裙板 arrest相变 assembly装配、组装、配件 assignment分配 austenite rolling奥氏体轧制 Austenite 奥氏体 austenite奥氏体 austenitic奥氏体的 Automatic model 自动模式 auxiliary hydraulic辅助液压

(完整版)数据库重要术语(中英文)

单词汇总(数据库专业一点的词汇其实主要就是每章后面review items的内容,在这里简单列一下,如果你实在没时间看书,至少这些单词要认识。): 1.数据库系统:database system(DS),database management system(DBMS) 2.数据库系统(DS),数据库管理系统(DBMS) 3.关系和关系数据库table= relation,column = attribute属性,domain, atomic domain, row= tuple, relational database, relation schema, relation instance, database schema, database instance; 4.表=关系,列=属性属性,域,原子域,排=元组,关系型数据库,关系模式,关系实例,数 据库模式,数据库实例; 1.key们: super key, candidate key, primary key, foreign key, referencing relation, referenced relation; 2.超码,候选码,主码,外码,参照关系,被参照关系 5.关系代数(relational algebra):selection, project, natural join, Cartesian product, set operations, union, intersect, set difference ( except\minus), Rename, assignment, outer join, grouping, tuple relation calculus 6.(关系代数):选择,项目,自然连接,笛卡尔积,集合运算,集,交集,集合差(除\负), 重命名,分配,外连接,分组,元组关系演算 7. sql组成: DDL:数据库模式定义语言,关键字:create DML:数据操纵语言,关键字:Insert、delete、update DCL:数据库控制语言,关键字:grant、remove DQL:数据库查询语言,关键字:select 8. 3.SQL语言:DDL,DML,DCL,QL,sql query structure, aggregate functions, nested subqueries, exists(as an operator), unique(as an operator), scalar subquery, assertion, index(indices), catalogs, authorization, all privileges, granting, revoking, grant option, trigger, stored procedure, stored function 4.SQL语言:DDL,DML,DCL,QL,SQL查询结构,聚合函数,嵌套子查询,存在(如运 营商),独特的(如运营商),标量子查询,断言指数(指数),目录,授权,所有权限,授予,撤销,GRANT OPTION,触发器,存储过程,存储函数 9.表结构相关:Integrity constraints, domain constraints, referential integrity constraints 10.完整性约束,域名约束,参照完整性约束 5.数据库设计(ER 模型):Entity-Relationship data model, ER diagram, composite attribute, single-valued and multivalued attribute, derived attribute,binary relationship set, degree of relationship set, mapping cardinality,1-1, 1-m, m-n relationship set (one to one, one to many, many to many), participation, partial or total participation, weak entity sets, discriminator attributes, specialization and generalization 6.实体关系数据模型,ER图,复合属性,单值和多值属性,派生属性,二元关系集,关系集, 映射基数的程度,1-1,1-米,MN关系集合(一对一,一对多,多对多),参与部分或全部参与,弱实体集,分辨符属性,特化和概化 11.函数依赖理论:functional dependence, normalization, lossless join (or lossless) decomposition, First Normal Form (1NF), the third normal form (3NF), Boyce-codd normal form (BCNF), R satisfies F, F holds on R, Dependency preservation保持依赖, Trivial, closure of a set of functional dependencies函数依赖集的闭包, closure of a set of attributes属性集闭包,

动设备操作及维护安全注意事项

运转设备操作及维护的安全注意事项为规范运转设备操作及维护,保证员工安全,公司特制订运转设备操作及维护的安全注意事项: 1.设备维护人员劳保齐全,穿戴规范(衣服下摆、扣子和袖口扣子扣紧,防止卷入);禁止带手套进行运转设备的擦洗。 2.女员工要求短发或将长发盘在安全帽内,禁止梳辫子或披散在背部;禁止带项链、手镯进行转动设备的操作和维护。清理设备卫生首先要查看清楚设备是否运转,设备或附属管线包含介质,温度等,防止发生烫伤等危害,禁止戴深紫色眼镜清理设备卫生。 3.清理运转设备不能用纱布,擦洗布要完整,不能有拖拉线头之类。擦洗布不能缠在手上清理。 4.进行操作维护前,应将随身携带的易掉落物品取出,泵座上不准放置维修工具和任何物体。保持电机接地线完好,清扫时注意不要将水喷洒在电机上。 5.操作维护时,严禁用棉纱、毛巾擦拭设备转动部位周围100mm 以内的区域(基本以轴承压盖外缘为界,各运行部安排用油漆标画黄色警戒线)。电机防护罩端部为吸风口,为防止毛巾等吸入,要求用毛刷等工具进行维护。擦拭设备时,毛巾要团紧,避免线头被卷进转动部位,造成设备事故或人身伤害。 6.操作维护带联锁设备前,必须与装置管理人员和内操进行确

认,摘除联锁后,才能进行作业,对于不能摘除联锁的运转设备禁止维护清理;清理设备操作柱时,应远离操作开关。 7.严禁用水冲洗电机部位;未经批准严禁使用溶剂油、汽油等油品擦洗设备;清理运转设备时,头部禁止正对转动部位,禁止打开防护罩清理。 8.设备及其附属设备(附属管线、阀门,驱动设备主体,设备台座、联轴器护罩、油杯、视窗等)不能存在油污、积垢、积灰;设备基础周围2米内不能有积水、污物、杂物,设备平台上不能有污物、杂物、油污等。 9.停用、备用设备的驱动电机进风口不能存在油污、积垢、积灰。 10.设备周围地沟保持清洁、地漏畅通、地漏篦子齐全并且放到位。 11.设备检修后卫生应由维修单位清理干净,属地人员负责监督清理。 各运行部根据属地内设备、人员情况对公司要求进行细化,制定运行部内部管理办法,并对员工进行宣贯、培训。

精神分裂症的病因及发病机理

精神分裂症的病因及发病机理 精神分裂症病因:尚未明,近百年来的研究结果也仅发现一些可能的致病因素。(一)生物学因素1.遗传遗传因素是精神分裂症最可能的一种素质因素。国内家系调查资料表明:精神分裂症患者亲属中的患病率比一般居民高6.2倍,血缘关系愈近,患病率也愈高。双生子研究表明:遗传信息几乎相同的单卵双生子的同病率远较遗传信息不完全相同 的双卵双生子为高,综合近年来11项研究资料:单卵双生子同病率(56.7%),是双卵双生子同病率(12.7%)的4.5倍,是一般人口患难与共病率的35-60倍。说明遗传因素在本病发生中具有重要作用,寄养子研究也证明遗传因素是本症发病的主要因素,而环境因素的重要性较小。以往的研究证明疾病并不按类型进行遗传,目前认为多基因遗传方式的可能性最大,也有人认为是常染色体单基因遗传或多源性遗传。Shields发现病情愈轻,病因愈复杂,愈属多源性遗传。高发家系的前瞻性研究与分子遗传的研究相结合,可能阐明一些问题。国内有报道用人类原癌基因Ha-ras-1为探针,对精神病患者基因组进行限止性片段长度多态性的分析,结果提示11号染色体上可能存在着精神分裂症与双相情感性精神病有关的DNA序列。2.性格特征:约40%患者的病前性格具有孤僻、冷淡、敏感、多疑、富于幻想等特征,即内向

型性格。3.其它:精神分裂症发病与年龄有一定关系,多发生于青壮年,约1/2患者于20~30岁发病。发病年龄与临床类型有关,偏执型发病较晚,有资料提示偏执型平均发病年龄为35岁,其它型为23岁。80年代国内12地区调查资料:女性总患病率(7.07%。)与时点患病率(5.91%。)明显高于男性(4.33%。与3.68%。)。Kretschmer在描述性格与精神分裂症关系时指出:61%患者为瘦长型和运动家型,12.8%为肥胖型,11.3%发育不良型。在躯体疾病或分娩之后发生精神分裂症是很常见的现象,可能是心理性生理性应激的非特异性影响。部分患者在脑外伤后或感染性疾病后发病;有报告在精神分裂症患者的脑脊液中发现病毒性物质;月经期内病情加重等躯体因素都可能是诱发因素,但在精神分裂症发病机理中的价值有待进一步证实。(二)心理社会因素1.环境因素①家庭中父母的性格,言行、举止和教育方式(如放纵、溺爱、过严)等都会影响子女的心身健康或导致个性偏离常态。②家庭成员间的关系及其精神交流的紊乱。③生活不安定、居住拥挤、职业不固定、人际关系不良、噪音干扰、环境污染等均对发病有一定作用。农村精神分裂症发病率明显低于城市。2.心理因素一般认为生活事件可发诱发精神分裂症。诸如失学、失恋、学习紧张、家庭纠纷、夫妻不和、意处事故等均对发病有一定影响,但这些事件的性质均无特殊性。因此,心理因素也仅属诱发因

电子生产术语中英文对照表

电子生产术语中英文对照表

生产术语中英文对照表 PRODUCTION FLOOR TECHNICAL TERMINOLOGY TRAINIG 中文名称英文名称中文名 称 英文名称 部门: SMT&REF LOW-SOL DERING 箱子Bins 锡膏Solder paste IC脚 共面 coplanarity 锡膏印刷机Solder paste printer 激光传 感器 Laser sensor 钢网Stencil 监视器Monitor 冰箱Refridgera tor 印刷板Printed circuit board(PCB) 手工印刷Manual printing 印刷板Printed wiring board(PWB) 自动印刷Automatic 印制板PCB

printing 装配assembly(PC BA) 钢网清洁Stencil-clea ning 印制板 装配 Printed wiring assembly 加锡膏Solder paste top-up 氮气回 流炉 N2 reflow 刮刀Squeegee 水准测 试 leveling 刮刀压力Squeegee pressure 锡膏搅 拌器 Solder paste mixer 刮刀角度Squeegee angle 线形贴 片机 Linear mounter 刮刀Spatula 旋转形贴片机Turret-type mounter 罐子Jar 热电偶Thermocoupl e 管子Tube 锡膏厚度测量Solder paste height measurement 红胶水Epoxy adhensive 贴装过程Pick&

计算机编程常用术语英语词汇汇总

计算机编程及常用术语英语词汇大全cover覆盖、涵盖 create/creation创建、生成 crosstab query交叉表查询(for database) CRTP (curiously recurring template pattern) CTS (common type system)通用类型系统 cube多维数据集(for database) cursor光标 cursor游标(for database) custom定制、自定义 data数据 data connection数据连接(for database) Data Control Language (DCL)数据控制语言(DCL) (for database) Data Definition Language (DDL)数据定义语言(DDL) (for database) data dictionary数据字典(for database) data dictionary view数据字典视图(for database) data file数据文件(for database)

data integrity数据完整性(for database) data manipulation language (DML)数据操作语言(DML) (for database) data mart数据集市(for database) data pump数据抽取(for database) data scrubbing数据清理(for database) data source数据源(for database) Data source name (DSN)数据源名称(DSN) (for database) data warehouse数据仓库(for database) dataset数据集(for database) database 数据库 (for database) database catalog数据库目录(for database) database diagram数据关系图(for database) database file数据库文件(for database) database object数据库对象(for database) database owner数据库所有者(for database) database project数据库工程(for database) database role数据库角色(for database)

设备操作注意事项与常见问题的处理

设备操作规程 是指对操作工人正确操作设备的有关规定和程序。各类设备的结构不同,操作设备的要求也会有所不同,编制设备操作规程时,应该以制造厂提供的设备说明书的内容要求为主要依据。设备操作规程是为保障仪器设备安全运行和保持良好的工作状态操作人员需要掌握操作技能的技术性规范。设备操作规程的内容是根据设备的结构运行特点,以及安全运行等要求,对操作人员在全部操作过程中必须遵守的事项、程序及动作等作出规定。一般包括以下内容 1.操作设备前对现场清理和设备状态检查的内容和要求; 2.操作设备必须使用的工器具; 3.设备运行的主要参数; 4.常见故障的原因及排队方法; 5.开始的操作程序和注意事项; 6.润滑的方式和要求;7.点检、维护的具体要求;8.停止的程序和注意事项;9.安全防护装置的使用和调整要求;10.交、接班的具体工作和记录内容。。操作人员应该认真执行设备操作规程,可保证设备正常运转,减少故障,防止事故发生 颚式破碎机的操作规程 1、遵守铸造设备通用*作规程。 2、检查三角皮带(或平皮带)的松紧度及磨损情况,如过紧过松,或磨损严重,应及时调整或更换皮带。 3、检查两侧护板的磨损情况,如磨损严重,应予更换。 4、按工艺要求的块度,调整腭板的开口尺寸。 5、如没有防护罩,或防护罩不完好,就不得开车,以免出现人身事故。 6、用手盘动飞轮或拉动皮带,确认设备转动灵活,才可空载试车。 7、颚式破碎机设备空运转正常后,才允许加料破碎。加料要均匀,不允许加入其它的料块。 8、经常注意鄂式破碎机出料情况,如有堵塞,要及时疏通。 9、停车前,必须将颚式破碎机颚板间的料块全部破碎后,才可停车。 颚式破碎机的安装、试车 1、颚式破碎机需要安装在避雨的地方,不可露天放置。 2、颚式破碎机电机需安装在鄂式破碎机的后方,旋转方向必须要按要求所做,不得反向。 3、机器应牢固定在混凝土地上,地基要留出排矿槽,其斜度不小于50度。基础性时刻有用户根据料机和运输设备而定。 4、在调整鄂式碎石机派料口前,应松开拉紧弹簧,待调整好后,在适当调整弹簧的紧张程度,弹簧的紧张程度以能够消除肘板与肘板垫间的噪音和肘板在工作时不易脱落为宜。 5、颚式破碎机与其他破碎设备的配合及管理,需有利于生产,有利于流水线作业,保证工作面而不拥塞。 6、为了原料成品的方便运输,进出料最好采用机械化运输设备。 7、颚式破碎机试车前拧紧螺钉和联接零件,检查润滑情况。

制造业工厂常用英文与缩写词汇大全

一:常用术语 Hon Hai 鸿海 CMM Component module move 机动元件整合 CEM Contract Manu faction service 合约委托代工 IBSC Internet Business Solution Center 国际互联网应用中心 PCEG Personal Computer Enclosure group 个人计算机外设事业群(FOXTEQ)CCBG Connector& cable business group CPBG Competition business group ESBG Enterprise system business group 鸿富锦事业群 SABG system assembly business group 系统组装事业群 NWE Net Work Enclosure NSE Network system enclosure NSG Network system group NFE Network flexible enclosure Foxcavity = HZ = Hong Zhun 鸿准 Stamping tool shop I 冲模一厂 Stamping tool shop II 冲模二厂 Prototype workshop 样品中心 Steel factory 裁剪厂 PCE molding tooling workshop PCE塑模厂 Hua Nan test and measurement center 华南检测中心 MPE mobile phone enclosure MPE MBE mobile phone and notebook enclosure 明塑厂 MGE Alloy magnesium alloy enclosure 镁合金 Engineer standard 工标 Document center (database center)资料中心 Design Center 设计中心 Painting 烤漆(厂) Assembly组装(厂) Stamping 冲压(厂) Education and Training教育训练 proposal improvement/creative suggestion提案改善 Technological exchange and study 技术交流研习会 Technology and Development Committee 技术发展委员会 BS Brain Storming 脑力激荡 QCC Quality Control Circle 质量圈 PDCA Plan Do Check Action 计划执行检查总结 DCC delivery control center 交货管制中心 3C Computer 计算机类产品 Consumer electronics 消费性电子产品 Communication 通讯类产品 Core value(核心价值) Love 爱心

设备操作注意事项

设备名称滚揉机型号 维修人责任人 生产厂家瑞帮机械工程有限公司售后电话 操作中的注意事项: 1、开盖出料前必须先使桶内恢复常压; 2、透视闷盖及料嘴均由薄壁件构成,使用时要求轻拿轻放,防止磕碰或 随地摔扔,以免构件变形无法安装。 3、不可在机器上放置工具、衣物或茶具等杂物,以免被卷带至滚筒下引 发事故。 4、机器运转时严禁将手伸入滚筒与机器之间,以免发生危险; 5、检修机器内部时须先关闭电源。 维护与保养: 1、减速机每运行一年需更换减速机内的润滑油(长城工业齿轮油220或320)。 2、每月向传动部件的滚子链条上涂以润滑脂,防止干摩擦。 3、每半年应更换滚揉筒主轴承内及拖轮轴承内的润滑脂。 4、当环境温度低于0℃时,滚揉机停止工作后,应打开水环真空泵下部的球阀将泵内的积水放净,以防密封件或泵体冻裂。 5、真空泵::每月检查是否漏油及油的油位及颜色;每半年清洗风扇引擎罩、风扇轮、通风格栅、冷却翅片及进气过滤器;每年更换排气过滤器。 1-02

设备名称真空定量灌装机型号 维修人责任人 生产厂家售后电话 操作中的注意事项: 维护与保养: 1、减速机每运行一年需更换减速机内的润滑油(长城工业齿轮油220或320)。 2、真空泵:每月检查排气过滤器压力、是否漏油及油的油位及颜色;每半年清洗风扇引擎罩、风扇轮、通风格栅、冷却翅片及进气过滤器;每年更换排气过滤器。 3、肉泵:每月向肉泵泵轴加注润滑油(两滴即可)。 4、打扭动力部分装有滚动轴承并已加满润滑脂在正常情况下运转3000-5000小时应拆开清洗加润滑脂; 5、电气控制部分要随时保持箱体清洁。在对箱体清洁时请不要直接用水流清洗。

精神分裂症的发病原因是什么

精神分裂症的发病原因是什么 精神分裂症是一种精神病,对于我们的影响是很大的,如果不幸患上就要及时做好治疗,不然后果会很严重,无法进行正常的工作和生活,是一件很尴尬的事情。因此为了避免患上这样的疾病,我们就要做好预防,今天我们就请广州协佳的专家张可斌来介绍一下精神分裂症的发病原因。 精神分裂症是严重影响人们身体健康的一种疾病,这种疾病会让我们整体看起来不正常,会出现胡言乱语的情况,甚至还会出现幻想幻听,可见精神分裂症这种病的危害程度。 (1)精神刺激:人的心理与社会因素密切相关,个人与社会环境不相适应,就产生了精神刺激,精神刺激导致大脑功能紊乱,出现精神障碍。不管是令人愉快的良性刺激,还是使人痛苦的恶性刺激,超过一定的限度都会对人的心理造成影响。 (2)遗传因素:精神病中如精神分裂症、情感性精神障碍,家族中精神病的患病率明显高于一般普通人群,而且血缘关系愈近,发病机会愈高。此外,精神发育迟滞、癫痫性精神障碍的遗传性在发病因素中也占相当的比重。这也是精神病的病因之一。 (3)自身:在同样的环境中,承受同样的精神刺激,那些心理素质差、对精神刺激耐受力低的人易发病。通常情况下,性格内向、心胸狭窄、过分自尊的人,不与人交往、孤僻懒散的人受挫折后容易出现精神异常。 (4)躯体因素:感染、中毒、颅脑外伤、肿瘤、内分泌、代谢及营养障碍等均可导致精神障碍,。但应注意,精神障碍伴有的躯体因素,并不完全与精神症状直接相关,有些是由躯体因素直接引起的,有些则是以躯体因素只作为一种诱因而存在。 孕期感染。如果在怀孕期间,孕妇感染了某种病毒,病毒也传染给了胎儿的话,那么,胎儿出生长大后患上精神分裂症的可能性是极其的大。所以怀孕中的女性朋友要注意卫生,尽量不要接触病毒源。 上述就是关于精神分裂症的发病原因,想必大家都已经知道了吧。患上精神分裂症之后,大家也不必过于伤心,现在我国的医疗水平是足以让大家快速恢复过来的,所以说一定要保持良好的情绪。

精益生产常用语英文翻译

精益生产常用语英文翻译 精益生产的概念和基本原则The concept and principle of lean production 六西格玛品质论坛精益生产的历史:TPS及其演变The history of lean production: TPS and its changing 精益生产的原则The principle of lean production: 价值和浪费;快速响应客户Value and Muda, quick response 精益生产的思想Lean production thinking 追求完美和持续改善Seek perfect and continuous improvement 七大浪费 7-Muda 精益生产的基础The fundamental of lean production 5S的含义The meaning of 5S:整理、整顿、清扫、清洁、素养SEIRI, SEITON, SEISO, SEIKETSU, and SEITSUKE 5S的推行方法The implement methods for 5S 5S的实务技巧 5S implement skills 5S实施过程的优化 5S implement process optimizing 流线化生产Flow production 流线化生产的八个条件 8-condition for flow production 单元设计Cellular layout 流线化生产的设备选择Equipment selecting for flow production 看板管理Kanban managemento 什么是看板What is Kanban 看板的实施方法The implement methods for Kanban 实施看板管理的限制条件The limited condition of Kanban management implement 快速换线SMED 快速换线的理念 The idea of SMED 内部作业与外部作业的分离Separate the-operation between outside and inside 将内部作业转化为外部作业Turn the inside-operation to outside operation 作业的优化Operation optimizing 精益生产的设备管理Equipment management in lean production TPM TPM的概念和发展The concept and development of TPM TPM的设备基础管理Equipment essential management of TPM 六西格玛品质论坛TPM的八大支柱8 columns of TPM 六西格玛品质论坛TPM实施的十三步骤13 phases for TPM implementing 案例分析Case studyo 工厂5S分析(根据现场拍摄照片)Workshop 5S analysis (depends on photos taken from on-site) 工厂生产线设置分析Production line layout analysis 快速换线案例分析Case study for SMED 内部作业与外部作业的分离Separate the operation between outside and inside 六西格玛品质论坛将内部作业转化为外部作业Turn the inside operation to

计算机编程常用术语英语词汇汇总

计算机编程常用术语英 语词汇汇总 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

计算机编程及常用术语英语词汇大全 cover覆盖、涵盖 create/creation创建、生成 crosstabquery交叉表查询(fordatabase) CRTP(curiouslyrecurringtemplatepattern) CTS(commontypesystem)通用类型系统 cube多维数据集(fordatabase) cursor光标 cursor游标(fordatabase) custom定制、自定义 data数据 dataconnection数据连接(fordatabase) DataControlLanguage(DCL)数据控制语言(DCL)(fordatabase) DataDefinitionLanguage(DDL)数据定义语言(DDL)(fordatabase) datadictionary数据字典(fordatabase) datadictionaryview数据字典视图(fordatabase) datafile数据文件(fordatabase) dataintegrity数据完整性(fordatabase) datamanipulationlanguage(DML)数据操作语言(DML)(fordatabase) datamart数据集市(fordatabase) datapump数据抽取(fordatabase) datascrubbing数据清理(fordatabase) datasource数据源(fordatabase) Datasourcename(DSN)数据源名称(DSN)(fordatabase) datawarehouse数据仓库(fordatabase) dataset数据集(fordatabase) database数据库(fordatabase) databasecatalog数据库目录(fordatabase) databasediagram数据关系图(fordatabase) databasefile数据库文件(fordatabase) databaseobject数据库对象(fordatabase) databaseowner数据库所有者(fordatabase) databaseproject数据库工程(fordatabase) databaserole数据库角色(fordatabase) databaseschema数据库模式、数据库架构(fordatabase) databasescrīpt数据库脚本(fordatabase) data-bound数据绑定(fordatabase) data-awarecontrol数据感知控件(fordatabase) datamember数据成员、成员变量 dataset数据集(fordatabase) datasource数据源(fordatabase) datastructure数据结构

设备操作安全注意事项

编号:SY-AQ-00646 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 设备操作安全注意事项 Safety precautions for equipment operation

设备操作安全注意事项 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 1.一开机首先起动冰却泵,起动后检查冰却水是否循环正常,保证挤压机油50°以下方可正常开机生产; 2.热剪炉加温时,先打开炉门起动循环风机抽空炉内空气。才能关好炉门点燃油枪进行加温,加温时必须半小时检查升温情况,防止设备温控故障造成熔棒; 3.模具上机生产,预先备好当班生产产品的专用垫与通用垫具,无专用垫必须找适合铝材的垫具。不能过大,也不能过小。过大模具易变形,烂模;过小易塞模。影响生产进度。 4.在三温工作准备好时,一定先起动挤压油泵。空机运作2-3次,检查各个动作是否正常,各个电扭是否正常,方可挤压; 5.正常挤压中断前,先检查中断锯滑动柱,锯片牙齿是否完好。各个部位滑滑及辅助工具到位情况。以免设备故障影响操作进度; 6.调直前,先检查电路,油路运作是否正常。钳口以及各个操作电路

是否同步正常。注意调好一铺料,人离开要及时关掉电机。防止电机运转时间过长,电机受损与浪费资源; 7.锯切成品时一定要检查锯床润滑降温(乳化油)及喷油系统是否正常工作。防止无油,不喷油损坏锯片。 备注:以上每位操作员工要认真执行,遵守以上的各项事项。 这里填写您的公司名字 Fill In Your Business Name Here

精神分裂症的病因是什么

精神分裂症的病因是什么 精神分裂症是一种精神方面的疾病,青壮年发生的概率高,一般 在16~40岁间,没有正常器官的疾病出现,为一种功能性精神病。 精神分裂症大部分的患者是由于在日常的生活和工作当中受到的压力 过大,而患者没有一个良好的疏导的方式所导致。患者在出现该情况 不仅影响本人的正常社会生活,且对家庭和社会也造成很严重的影响。 精神分裂症常见的致病因素: 1、环境因素:工作环境比如经济水平低低收入人群、无职业的人群中,精神分裂症的患病率明显高于经济水平高的职业人群的患病率。还有实际的生活环境生活中的不如意不开心也会诱发该病。 2、心理因素:生活工作中的不开心不满意,导致情绪上的失控,心里长期受到压抑没有办法和没有正确的途径去发泄,如恋爱失败, 婚姻破裂,学习、工作中不愉快都会成为本病的原因。 3、遗传因素:家族中长辈或者亲属中曾经有过这样的病人,后代会出现精神分裂症的机会比正常人要高。 4、精神影响:人的心里与社会要各个方面都有着不可缺少的联系,对社会环境不适应,自己无法融入到社会中去,自己与社会环境不相

适应,精神和心情就会受到一定的影响,大脑控制着人的精神世界, 有可能促发精神分裂症。 5、身体方面:细菌感染、出现中毒情况、大脑外伤、肿瘤、身体的代谢及营养不良等均可能导致使精神分裂症,身体受到外界环境的 影响受到一定程度的伤害,心里受到打击,无法承受伤害造成的痛苦,可能会出现精神的问题。 对于精神分裂症一定要配合治疗,接受全面正确的治疗,最好的 疗法就是中医疗法加心理疗法。早发现并及时治疗并且科学合理的治疗,不要相信迷信,要去正规的医院接受合理的治疗,接受正确的治 疗按照医生的要求对症下药,配合医生和家人,给病人创造一个良好 的治疗环境,对于该病的康复和痊愈会起到意想不到的效果。

生产相关英语术语

(一)日常用语: 1.Good morning早上好 2.How are you? 怎么样? I’m fine, thank you.我很好,谢谢! 3.What’s the problem? 出现什么问题? It’s a machine problem.是设备的问题。 4.Why?为什么? Because…因为。。。 5.Who is the team leader?谁是班长? ***is the team leader.***是班长 6.Thank you.谢谢 You’re welcome.不客气。 (二)术语: 1.BOM: 材料清单 2.Control Plan:控制计划 3.FMEA: 潜在失效模式分析 4.FDPR:全日式生产 https://www.360docs.net/doc/c919018541.html,estone: 里程碑 6.process:工艺 produce:产品 project: 项目 production:生产 7.prototype:样件 8.Team:团队 9.warehouse:库房 10.WI: 操作指导书 11.WIP:在置品 12.supplier:供应商 customer:客户13.assembly line:装配线 14.parts:零件 15.machine:机器 https://www.360docs.net/doc/c919018541.html,b:实验室 17.operator:操作工 18. team leader:班长 19. supervisor:主管 20.manager:经理 21. problem:问题 22.analysis:分析 23.trainee:实习生 24. training:培训 25. compressor:压缩机 26.solve:解决 27. quality:质量 28. logistics:物流 29. maintenance:维修 30. 6.CPK:过程能力指数 7.FTA: 原因树分析 8.PDCA:计划、做、检查、标准化 9.PO: 采购订单 10.SQA:供应商质量保证 11.PQA: 产品质量保证 12.SMED:快速换模 13.SOP: 全面生产 14.TPM:全员生产维护 15.Kaizen: 改善 16.Genba:现场 17.TRP:设备有效利用率 18.LLC:经验学习卡 19.APT: 自主生产班组 20.APZ: 自主生产区域 21.DLI: 直接劳动成本指数 22.TRS:设备利用率 23.DPM: 客户交付及时率 24.FIFO:先进先出 25.VSA:价值流分析 26.Muda:浪费 27.Takt time:客户需求节拍 28.Sequencer:排序器 29.MPS:主生产计划 30.Total Line Rejects:一次交检不合格率1.APU: 自主生产单元 2.VPS:法雷奥生产体系

IT常用英文词汇

第一部分、计算机算法常用术语中英对照 Data Structures 基本数据结构 Dictionaries 字典 Priority Queues 堆 Graph Data Structures 图 Set Data Structures 集合 Kd-Trees 线段树 Numerical Problems 数值问题 Solving Linear Equations 线性方程组 Bandwidth Reduction 带宽压缩 Matrix Multiplication 矩阵乘法 Determinants and Permanents 行列式Constrained and Unconstrained Optimization 最值问题 Linear Programming 线性规划 Random Number Generation 随机数生成Factoring and Primality T esting 因子分解/质数判定Arbitrary Precision Arithmetic 高精度计算Knapsack Problem 背包问题 Discrete Fourier Transform 离散Fourier变换Combinatorial Problems 组合问题 Sorting 排序 Searching 查找 Median and Selection 中位数 Generating Permutations 排列生成 Generating Subsets 子集生成 Generating Partitions 划分生成 Generating Graphs 图的生成 Calendrical Calculations 日期 Job Scheduling 工程安排 Satisfiability 可满足性 Graph Problems -- polynomial 图论-多项式算法Connected Components 连通分支 Topological Sorting 拓扑排序 Minimum Spanning Tree 最小生成树 Shortest Path 最短路径 Transitive Closure and Reduction 传递闭包Matching 匹配 Eulerian Cycle / Chinese Postman Euler回路/中国邮路 Edge and Vertex Connectivity 割边/割点Network Flow 网络流 Drawing Graphs Nicely 图的描绘 Drawing Trees 树的描绘Planarity Detection and Embedding 平面性检测和嵌入 Graph Problems -- hard 图论-NP问题 Clique 最大团 Independent Set 独立集 Vertex Cover 点覆盖 Traveling Salesman Problem 旅行商问题Hamiltonian Cycle Hamilton回路 Graph Partition 图的划分 Vertex Coloring 点染色 Edge Coloring 边染色 Graph Isomorphism 同构 Steiner Tree Steiner树 Feedback Edge/Vertex Set 最大无环子图Computational Geometry 计算几何 Convex Hull 凸包 Triangulation 三角剖分 Voronoi Diagrams Voronoi图 Nearest Neighbor Search 最近点对查询 Range Search 范围查询 Point Location 位置查询 Intersection Detection 碰撞测试 Bin Packing 装箱问题 Medial-Axis Transformation 中轴变换 Polygon Partitioning 多边形分割 Simplifying Polygons 多边形化简 Shape Similarity 相似多边形 Motion Planning 运动规划 Maintaining Line Arrangements 平面分割Minkowski Sum Minkowski和 Set and String Problems 集合与串的问题 Set Cover 集合覆盖 Set Packing 集合配置 String Matching 模式匹配 Approximate String Matching 模糊匹配 Text Compression 压缩 Cryptography 密码 Finite State Machine Minimization 有穷自动机简化Longest Common Substring 最长公共子串Shortest Common Superstring 最短公共父串DP——Dynamic Programming——动态规划recursion ——递归 第二部分、编程词汇

相关文档
最新文档