同角三角函数的基本关系 知识点与题型归纳

同角三角函数的基本关系 知识点与题型归纳
同角三角函数的基本关系 知识点与题型归纳

1

●高考明方向

1.理解同角三角函数的基本关系式:

sin 2α+cos 2α=1,sin α

cos α

=tan α.

2.能利用单位圆中的三角函数线

推导出π

2

±α,π±α的正弦、余弦、正切的诱导公式.

★备考知考情

同角关系式和诱导公式中的π±α,π

2

±α是高考的热点,

题型既有选择题、填空题,又有解答题,难度为中低档题,主要是诱导公式在三角式求值、化简的过程中与同角三角函数的关系式、和差角公式及倍角公式的综合应用,一般不单独命题,在考查基本运算的同时,注重考查等价转化的思想方法.

2

一、知识梳理《名师一号》P47

知识点一 同角三角函数的基本关系 平方关系:;1cos sin 22=+αα

商数关系:sin tan cos =α

αα

注意:

《名师一号》P50 问题探究 问题1

在利用同角三角函数的基本关系中应注意哪些技巧?

利用同角三角函数基本关系式化简求值时,

涉及两个同角基本关系sin 2α+cos 2α=1和tan α=sin α

cos α

它们揭示同一角α的各三角函数间的关系, 需要在复习中通过解题、理解、掌握.

尤其是利用sin 2α+cos 2α=1及变形形式sin 2α=1-cos 2α或cos 2α=1-sin 2α进行开方运算时,要注意符号判断.

知识点二 诱导公式

记忆口诀:奇变偶不变,符号看象限!

注意:

《名师一号》P50 问题探究问题2

诱导公式的记忆口诀“奇变偶不变,

符号看象限”中的“符号”是否与α的大小有关?

无关,只是把α从形式上看作锐角,

从而2kπ+α(k∈Z),π+α,-α,π-α,π

2-α,

π

2+α

分别是第一、三、四,二、一、二象限角.

二、例题分析:

(一)求值

例1.(1)《名师一号》P50 对点自测 4

3

4

(09全国卷Ⅰ文)o 585sin 的值为

(A) 2-

(B)2

(C)-

答案:A

例1.(补充)(2)17cos 3??

-π ???的值为

答案:

12

例1.(补充)(3)()tan 1665?-的值为

答案:1-

注意:(补充)

求任意角的三角函数值:

负化正→正化主[)0,2π→主化锐

例1.(4)《名师一号》P51 高频考点 例2(1)

5

(2014·安徽卷)设函数f (x )(x ∈R)满足f (x +π)=f (x )

+sin x .当0≤x <π时,f (x )=0,则f ? ??

??

23π6=( )

A.12

B.32 C .0 D .-12

解:(1)由题意得f ? ????23π6=f ? ????

17π6+sin 17π6

=f ? ????

11π6+sin 11π6+sin 17π6=f ? ????5π6+sin 5π6+sin 11π6 +sin 17π6=0+12-12+12=12

.

练习:(补充)(2009重庆卷文)下列关系式中正确的是( )

A .000sin11cos10sin168<<

B .000sin168sin11cos10<<

C .000sin11sin168cos10<<

D .000sin168cos10sin11<<

【答案】C

sin168sin(18012)sin12,cos10cos(9080)sin80????????

=-==-=

6

由于正弦函数sin y x =在区间[0,90]??上为递增函数,因此

sin11sin12sin80???<<,即sin11sin168cos10???<<。

练习:如图所示的程序框图,运行后输出结果为(

)

A .1

B .2680

C .2010

D .1340 答案: C

例2.(1)《名师一号》P51 高频考点 例1(1)

7

已知α∈? ?

?

??π,3π2,tan α=2,则cos α=________.

解:依题意得?????

tan α=sin αcos α=2,sin 2α+cos 2α=1,

由此解得cos 2α=1

5;

又α∈? ????π,3π2,因此cos α=-55

.

法二:?

利用直角三角形求解

注意:(补充)

三角函数求值中直角三角形的运用 先根据所给三角函数值,把角看成锐角构造相应的直角三角形,求出该锐角的各三角函数值,再添上符号即可.

变式1: 已知α是第三象限角,tan α=2,则cos α=_____.

变式2:已知tanα=2,则cosα=_____.

注意:(补充)

利用同角关系由正弦、余弦、正切三个中知一求二关注角终边所在位置对三角函数值符号的影响

练习:已知

12

cos

13

α=,求sinα和tanα。

【答案】当α是第一象限时,

55 sin,tan

1312αα

==

当α是第四象限时,

55 sin,tan

1312αα

=-=-

例2.(2)《名师一号》P51 高频考点例3(1)

(1)记cos(-80°)=k,那么tan100°等于()

A.1-k2

k B.-

1-k2

k C.

k

1-k2

D.-

k

1-k2

解析因为cos(-80°)=cos80°=k,

8

9

所以sin80°=

1-cos 280°=1-k 2,

所以tan100°=-tan80°=-sin80°

cos80°

=-

1-k 2

k .

例3.(1)《名师一号》P51 高频考点 例2(2)

已知tan ? ????π6-α=33,则tan ? ??

??

56π+α=________.

例3.(2)(补充)已知cos ? ?

???α-π4=14

,则sin2α=( )

A .- 78 B. 78 C .- 3132 D. 31

32

答案:A

注意:(补充)关注已知角α与待求角β是否满足

()2

k k Z π

αβ±=∈或是倍半关系。

10

练习1:

已知cos 63??-=

???π

α 则25cos sin 66????+--= ? ?????

ππαα

答案:

练习2:已知cos(5π12+α)=13,且-π<α<-π

2

则cos(π

12-α)=________.

答案:3

-

练习3: 已知sin ? ????π6-α=14,则sin ? ??

??

π6+2α=______.

[答案] 7

8

[解析] sin ? ????π6+2α=cos ? ????

π2-π6-2α

=cos ? ????π3-2α=1-2sin 2? ????π6-α=78

.

11

练习4:对任意的a ∈(-∞,0),总存在x 0使得a cos x +a ≥0

成立,则sin(2x 0-π

6

)的值为________.

答案:12

例4.《名师一号》P52 特色专题

【典例】 (1)已知sin αcos α=18,且5π4<α<3π

2

则cos α-sin α的值为( )

A .-32 B.32 C .-34 D.3

4

【规范解答】 (1)∵

5π4<α<3π2

; ∴cos α<0,sin α<0且|cos α|<|sin α|. ∴cos α-sin α>0. 又(cos α-sin α)2=1-2sin αcos α=1-2×18=3

4

∴cos α-sin α=3

2

.

12

(2)已知sin(π-α)-cos(π+α)=

23(π

2

<α<π), 则sin α-cos α=________.

【规范解答】

(2)由sin(π-α)-cos(π+α)=23

. 得sin α+cos α=

2

3

,① 将①两边平方得1+2sin αcos α=2

9

故2sin αcos α=-7

9.

∴(sin α-cos α)2

=1-2sin αcos α

=1-? ????-79=169.

又∵π

2

<α<π,∴sin α>0,cos α<0.

∴sin α-cos α=4

3

.

【名师点评】

解决此类问题的关键是等式(sin α±cos α)2=1±2sin αcos α.但要特别注意对sin α+cos α,sinα-cos α,

sinαcosα符号的关注.

数学思想系列之(三)

sinα±cosα及sinαcosα间的方程思想对于sinα+cosα,sinα-cosα,sinαcosα这三个式子,已知其中的一个式子的值,可利用公式(sinα±cosα)2=1±2sinαcosα,求其余两式的值,体现了方程思想的应用.

6月19日15班讲解至此

例5.(补充)(2)

已知sin cos

-=

αα

1

tan

tan

+=

α

α

答案:8

-

注意:(补充)(1)()2

sin cos12sin cos

αααα

±=±

(2)利用

sin

tan

cos

=

α

α

α

,进行切化弦

涉及sin cos,sin cos,sin cos

αααααα

+-?的问题

常采用平方法求解

例4.(3)《名师一号》P51 高频考点例3(2)

13

14

已知sin ? ?

?

??α-π5=a (a ≠±1,a ≠0).

求cos ? ????α+14π5·tan ? ?

???α-11π5+tan ?

????α+9π5cos ? ??

??

26π5-α的值.

解 cos ? ????α+14π5·tan ? ?

???α-11π5+tan

? ?

???α+9π5cos ? ????

26π5-α

=-cos ? ????α-π5·tan ? ?

???α-π5+tan ? ?

??

?α-π5-cos ? ??

?

?

π5-α

=-sin ? ?

???α-π5-sin ? ????α-π5cos 2? ???

?α-π5=-a -a 1-a 2=a 3-2a 1-a 2.

练习:已知1

0,sin cos 25

x x x -

<<+=π

①求sin cos x x -的值;

②求2sin 22sin 1tan x x x

+-的值

15

答案:①75- ②24

175

-

练习:已知s i n ,c o s

θθ是方程244210x m x m -+-=的两个根,322π

θπ<<,求角θ.

答案:m =

或m =(舍去)

5

3

=θπ

法二:()()212210x x m --+= 11,22x x m ==-

例5.(1)《名师一号》P50 对点自测2

若tan α=2,则sin α-cos α

sin α+cos α

的值为( )

A.-1

3B.-

5

3 C.

1

3 D.

5

3

解析sinα-cosα

sinα+cosα

tanα-1

tanα+1

2-1

2+1

1

3.

例5.(1)《名师一号》P51 高频考点例1(2)

已知sinα+3cosα

3cosα-sinα

=5,则sin2α-sinαcosα的值是() A.

2

5B.-

2

5C.-2 D.2

解:由

sinα+3cosα

3cosα-sinα

=5,得

tanα+3

3-tanα

=5,即tanα=2. 所以sin2α-sinαcosα=

sin2α-sinαcosα

sin2α+cos2α

tan2α-tanα

tan2α+1

2

5.

16

17

注意:(补充)

知tan α的值,求关于sin cos αα、

齐次式的值 (1)利用;1cos sin 22=+αα

将关于sin cos αα、

齐次整式化为 关于sin cos αα、齐次分式,如sin cos sin cos a b c d αα

αα

++等。

(2)利用sin tan cos =α

αα

,进行弦化切,

即将关于sin cos αα、齐次分式的分子、分母 同除以2

cos cos

αα、等转化为关于tan α的表达式求解。

周练15-16(2)

16、(本小题满分12分)已知tan 2α=.

()1求tan 4πα??+ ??

?的值;

()2求2sin 2sin sin cos cos 21α

αααα+--的值.

(二) 化简

例1. (补充) 化简:

? ????1+sin α

1-sin α

-1-sin α1+sin α·? ????1+cosα1-cos α-

1-cosα1+cosα

18

分析:“脱”去根号是我们的目标,这就希望根号下能成为完全平方式,注意到同角三角函数的平方关系式,利用分式的性质可以达到目标.

解析:

原式=?

????

?

(1+sin α)2cos 2α-(1-sin α)2cos 2

α· ?

?

????(1+cosα)2sin 2α-(1-cos α)2sin 2

α =? ?????1+sin α|cos α|

-1-sin α|cos α|? ????

?

1+cos α|sin α|-1-cos α|sin α| =

2sin α|cos α|·2cos α

|sin α|

19

注意:《名师一号》P48 高频考点 例2 规律方法

注意:《名师一号》P51 问题探究 问题3 三角函数值求值与化简有哪些常用方法? (1)弦切互化法:

主要利用公式tan α=sin α

cos α

化成正、余弦.

(2)和积转换法: 利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (3)巧用“1”的变换:

1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π

4

=….

课后作业

计时双基练P243 基础1-11、培优1-4

课本P51变式思考1、2、3; 对应训练1、2 预习 第三章 第三节

两角和与差的正弦、余弦、正切公式

高中文科数学三角函数知识点总结

三角函数知识点 一.考纲要求 考试内容3 要求层次 A B C 三角函数、 三角恒等 变换、 解三角形 三角函数 任意角的概念和弧度制 √ △ 弧度与角度的互化◇ √ 任意角的正弦、余弦、正切的定义 √ 用单位圆中的三角函数线表示正弦、余弦和正切 √ 诱导公式 √ △ 同角三角函数的基本关系式 √ 周期函数的定义、三角函数的周期性 √ 函数sin y x =,cos y x =,tan y x =的图象 和性质 √ 函数sin()y A x ω?=+的图象 √ 用三角函数解决一些简单的实际问题◇ √ 三角 恒等 变换 两角和与差的正弦、余弦、正切公式 √ 二倍角的正弦、余弦、正切公式 √ 简单的恒等变换 √ 解三角形 正弦定理、余弦定理 √ △ 解三角形 √ △ 二.知识点 1.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π 180°≈57.30°=57°18ˊ. 1°= 180 π≈0.01745(rad ) 2.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 3.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x +

(1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: sin α cos α tan α 4、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. 5.同角三角函数的基本关系: (1)平方关系:sin 2α+ cos 2α=1。 (2)商数关系: ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式:奇变偶不变,符号看象限 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2παα??+= ???,cos sin 2παα??+=- ??? . x y +O — — + x y O — + + — + y O — + + — (3) 若 o|cosx| |cosx|>|sinx| |cosx|>|sinx| |sinx|>|cosx| sinx>cosx cosx>sinx 16. 几个重要结论:O O x y x y T M A O P x y

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是 。 2.若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ??? ?上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

高一三角函数题型总结

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2. 2. 3. 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) 33 (D)± 3 3.) 4. ) 5.) * 6.)

三角函数诱导公式 诱导公式可概括为把 απ ±?k 2 的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数, α相当锐角) 口诀“奇变偶不变,符号看象限。”其中奇偶是指2 π 的奇数倍还是偶数倍,变与不变指函数名称的变化。 公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

三角函数诱导公式练习题 1.若(),2,5 3 cos παππα<≤= +则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5 4 - 2.sin (-6 π 19)的值是( ) A 3 6 )= . 10.α是第四象限角,,则αsin 等于________. 13 12 cos =α

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案) 阳光老师:祝你学业有成 一、选择题(本大题共30小题,共150.0分) 1.点在函数的图象上,则m等于 A. 0 B. 1 C. D. 2 【答案】C 【解析】 【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值. 【解答】解:由题意知, 所以, 所以. 2.用五点法画,的图象时,下列哪个点不是关键点 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的作法,属于基础题. 熟练掌握五点法作图即可. 【解答】 解:用“五点法”画,的简图时, 横坐标分别为, 纵坐标分别为0,1,0,,0, 故选A. 3.函数y x,x的大致图象是

A. B. C. D. 【答案】B 【解析】 【分析】 本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案. 【解答】 解:“五点法”作图: x0 0100 10121 故选B. 4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关 键点的是 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的画法以及余弦函数的性质,属于基础题. 分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案. 【解答】 解:,分别令,,,,得,3,4,3,2,

所以五个关键点为,,,,, 可知A不属于. 故选A. 5.已知函数的图象与直线 恰有四个公共点,,,,其中,则 A. B. 0 C. 1 D. 【答案】A 【解析】 【分析】 本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题. 由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解. 【解答】 解:由 得 其图象如图所示,

初中三角函数知识点总结(中考复习)

初中三角函数知识点总结(中考复习)

锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余 A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A C

切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:2 2 2 c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例:

(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度 (坡比)。用字 母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α==。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 反比例函数知识点整理 一、 反比例函数的概念 :i h l =h l α

三角函数基础题型归类(一)

2 - α , 例 1. (1)求值: cos600 ; (2)化简: cos 2( π 精品资料 欢迎下载 三角函数基础题型归类(一) 1、运用诱导公式化简与求值: 要求:掌握 2k π + α , π + α , -α , π - α , π π 2 + α 等诱导公式. 记忆口诀:奇变偶不变,符号看象限. π -α )+cos 2( +α ) 4 4 1 3π 练 1 (1)若 cos(π +α )= - , 2 2 <α <2π , 则 sin(2π -α )等于 . (2)若 f (cos x) = cos3 x ,那么 f (sin30 ?) 的值为 . 17 (3)sin( - π )的值为 . 6 (4) 2、运用同角关系化简与求值: sin α 要求:掌握同角二式( s in 2 α + cos 2 α = 1 , tan α = ),并能灵活运用. 方法:平方法、切弦互化. cos α 例 2 (1)化简 sin x 1 + sin x 1 - ; (2)已知 sinx+cosx = , 且 0

初中三角函数知识点题型总结+课后练习

锐角三角函数知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4 5、0 锐角三角函数题型训练 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90== ?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.已知A ∠是锐角,17 8 sin = A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:

1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B . 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则 tan EFC ∠的值为 ( ) A.34 B.43 C.35 D. 4 5 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若1tan 5 DBA ∠= ,则AD 的长为( )A .2 C .1 D .4. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD = 3 16求∠ B 的度数及边B C 、AB 的长. 例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,?=3 sin A (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B . 例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5. 求:sin ∠ABC 的值. 对应训练 1.(2012?重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号) 2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形 对应练习: 1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 特殊角的三角函数值 例1.求下列各式的值 ?-?+?30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0- 3 3 tan30°-tan45°= 0 30tan 2345sin 60cos 221 ??? ? ???-?+?+= ?-?+?60tan 45sin 230cos 2 tan 45sin 301cos 60?+? -? = B

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化: ,23600π= ,1800 π= 1rad =π 180°≈57.30°=57°18ˊ 1°= 180 π≈0.01745(rad ) 3.弧长及扇形面积公式 (1)弧长公式:r l .α= α----是圆心角且为弧度制 (2)扇形面积公式:S=r l .2 1 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: 记忆口诀:一全正,二正弦,三两切,四余弦

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1 (2)商数关系:ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式: 记忆口诀:把2 k π α±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. x y O — + + — + y O — + + —

三角函数题型分类总结

专题 三角函数题型分类总结 三角函数公式一览表 ............................................................................................................... 错误!未定义书签。 一 求值问题 ........................................................................................................................................................... - 1 - 练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 - 练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 - 练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 - 练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 - 练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 - 练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 - 练习 ................................................................................................................................................................. - 9 - 一 求值问题 类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4 s i n 5 θ=,θ是第二象限角,求cos ,tan θθ 类型2 给值求值 例1 已知2tan =θ,求(1) θ θθθsin cos sin cos -+;(2)θθθθ2 2cos 2cos .sin sin +-的值. 练习 1、sin 330?= tan 690° = o 585sin = 2、(1)α是第四象限角,12 cos 13 α=,则sin α= (2)若4 sin ,tan 05 θθ=- >,则cos θ= . (3)已知△ABC 中,12 cot 5 A =-,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) 已知5 sin ,5 α= 则44sin cos αα-= .

(精心整理)同角三角函数基本关系式练习题

任意角的三角函数 1.已知sin α=45 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)4 3 (D)4 3- 2.若θ是第三象限角,且02 cos <θ,则2 θ是 ( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限 3.设是第二象限角,则sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ=3 1,π<θ<32 π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5 若α 是三角形的一个内角,且sin α+cos α=3 2 ,则三角形为 ( ) (A) 钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形 6.已知α的终边经过P (ππ6 5cos ,6 5sin ),则α可能是 ( ) A .π6 5 B . 6 π C .3 π- D .3 π 7.如果).cos(|cos |π+-=x x 则x 的取值范围是 ( ) A .)(] 22 ,22 [Z k k k ∈++-ππππ B .)() 22 3,22 (Z k k k ∈++ππππ C .)(] 22 3,22 [Z k k k ∈++ππππ D .)()2,2(Z k k k ∈++-ππππ 8.1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( ) A .5 B .-5 C .6 D .-6 9. 扇形的周期是16,圆心角是2弧度,则扇形面积是______________

高一三角函数知识点梳理总结

高一三角函数知识 §1.1任意角和弧度制 ?? ? ??零角负角:顺时针防线旋转正角:逆时针方向旋转 任意角..1 2.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.. ①与α(0°≤α<360°)终边相同的角的集合:{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{ } Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对 的弧长为l ,则其弧度数的绝对值|r l = α,其中r 是圆的半径。 5. 弧度与角度互换公式: 1rad =(π 180)°≈57.30° 1°=180 π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:? ?? ? ??∈+<

三角函数知识点归纳

三角函数 一、任意角、弧度制及任意角的三角函数 1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角. ?? ??? 正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 ②按终边位置不同分为象限角和轴线角. 角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

高考三角函数重要题型总结

1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]122ππ -上的值域。 2.已知函数2()sin sin()(0)2f x x x x πωωωω=+f 的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求函数f (x )在区间[0,23 π]上的取值范围. 3.(本小题满分12分)已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n =g (Ⅰ)求tan A 的值; (Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. 4..(本小题满分13分)已知函数()sin()(00π)f x A x A ??=+><<,,x ∈R 的最 大值是1,其图像经过点π1 32M ?? ???,. (1)求()f x 的解析式; (2)已知π02αβ??∈ ??? ,,,且3()5f α=,12()13f β= ,求()f αβ-的值. 5. 已知函数2()sin cos cos 2.222 x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω???π++>>∈的形式,并指出()f x 的周期; (Ⅱ)求函数17()[, ]12 f x ππ在上的最大值和最小值 6..已知函数x x x x f sin 2 sin 2cos )(22+-=. (I )求函数)(x f 的最小正周期; (II )当)4,0(0π ∈x 且524)(0=x f 时,求)6 (0π+x f 的值。 7.已知1tan 3 α=-,cos β=,(0,)αβπ∈ (1)求tan()αβ+的值; (2)求函数())cos()f x x x αβ=-++的最大值. 8.已知函数())cos()f x x x ω?ω?=+-+(0π?<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2 . (Ⅰ)求π8f ?? ???的值; (Ⅱ)将函数()y f x =的图象向右平移π 6 个单位后,得到函数()y g x =的图象,

同角三角函数的基本关系教案

同角三角函数的基本关系 东宁县绥阳中学 教学目的: 知识目标:1.能根据三角函数的定义导出同角三角函数的基本关 系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函 数值的方法。 能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用 于解题,提高学生分析、解决三角的思维能力; 教学重点:同角三角函数的基本关系式 教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 教学过程: 一、复习引入: 1.任意角的三角函数定义: 设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为 (0)r r ==>,那么:sin y r α=,cos x r α=,tan y x α=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3.背景:如果5 3sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系? 二、讲解新课: (一)同角三角函数的基本关系式:

(板书课题:同角的三角函数的基本关系) 1. 由三角函数的定义,我们可以得到以下关系: (1)商数关系:α ααcon sin tan = (2)平方关系:1sin 22=+ααcon 说明: ①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如 tan cot 1(,)2 k k Z πααα?=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、 变形用),如: cos α= 22sin 1cos αα=-, sin cos tan ααα =等。 2.例题分析: 一、求值问题 例1.(1)已知12sin 13α= ,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4 cos 5α=-,求sin ,tan αα. 解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313 αα=-=-= 又∵α是第二象限角, ∴cos 0α<,即有5cos 13 α=- ,从而 sin 12tan cos 5ααα==-, 15cot tan 12αα==- (2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=, 又∵4cos 05α=-<, ∴α在第二或三象限角。 当α在第二象限时,即有sin 0α>,从而3sin 5 α=,sin 3tan cos 4 ααα==-; 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==. 总结: 1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。 2. 解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。 例2.已知tan α为非零实数,用tan α表示sin ,cos αα.

高中三角函数知识点总结(人教版)

高中三角函数总结 1.任意角的三角函数定义: 设α为任意一个角,点),(y x P 是该角终边上的任意一点(异于原点),),(y x P 到原点的距离为22y x r += ,则: )(tan ),(cos ),(sin y x x y x r x y r y ?=== 正负看正负看正负看ααα 2.特殊角三角函数值: 3.同角三角函数公式: αααααααααα αtan 1 cot ,sin 1csc ,cos 1sec 1cos sin ,cos sin tan 22= ===+= 4.三角函数诱导公式: (1))(;tan )2tan(,cos )2cos( ,sin )2sin(Z k k k k ∈=+=+=+απααπααπα (2);tan )tan(,cos )cos(,sin )sin(απααπααπα=+-=+-=+ (3);tan )tan(,cos )cos(,sin )sin(αααααα-=-=--=- (函数名称不变,符号看象限) (4);cot )2 tan(,sin )2cos(,cos )2sin(απ ααπααπ α-=+-=+=+ (5);cot )2 tan(,sin )2cos(,cos )2sin( ααπ ααπααπ =-=-=- (正余互换,符号看象限) 注意:tan 的值,总为sin/cos ,便于记忆; 5.三角函数两角诱导公式:

(1)和差公式 βαβαβαsin cos cos sin )sin(±=±βαβαβαsin sin cos cos )cos( =± β αβ αβαtan tan 1tan tan )tan( ±= ± (2)倍角公式 令上面的βα=可得:αααcos sin 2)2sin(= α αααα2222sin 211cos 2sin cos )2cos(-=-=-= α α α2tan 1tan 2)2tan(-= 6.正弦定理: △ABC 中三边分别为c b a ,,,外接圆半径为R ,则有: R C c B b A a 2sin sin sin === 7.余弦定理: △ABC 中三边分别为c b a ,,,则有:ab c b a C 2cos 2 22-+= 8.面积公式: △ABC 中三边分别为c b a ,,,面积为S ,则有:)(sin 2 1 两边与夹角正弦值C ab S = 9.三角函数图象:

相关文档
最新文档