十个利用矩阵乘法解决的经典题目

十个利用矩阵乘法解决的经典题目
十个利用矩阵乘法解决的经典题目

十个利用矩阵乘法解决的经典题目

好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。

不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m 个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1:

下面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵:

矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?废话,交换过来后两个矩阵有可能根本不能相乘。为什么它又满足结合律呢?仔细想想你会发现这也是废话。假设你有三个矩阵A、B、C,那么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。

经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转

这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。

经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。

由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n =

A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。

经典题目3 POJ3233 (感谢rmq)

题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。

这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有:

A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)

应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

经典题目4 VOJ1049

题目大意:顺次给出m个置换,反复使用这m个置换对初始序列进行操作,问k次置换后的序列。m<=10, k<2^31。

首先将这m个置换“合并”起来(算出这m个置换的乘积),然后接下来我们需要执行这个置换k/m次(取整,若有余数则剩下几步模拟即可)。注意任意一个置换都可以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:

置换k/m次就相当于在前面乘以k/m个这样的矩阵。我们可以二分计算出该矩阵的k/m次方,再乘以初始序列即可。做出来了别忙着高兴,得意之时就是你灭亡之日,别忘了最后可能还有几个置换需要模拟。

经典题目5 《算法艺术与信息学竞赛》207页(2.1代数方法和模型,[例题5]细菌,版次不同可能页码有偏差)

大家自己去看看吧,书上讲得很详细。解题方法和上一题类似,都是用矩阵来表示操作,然后二分求最终状态。

经典题目6 给定n和p,求第n个Fibonacci数mod p的值,n不超过2^31根据前面的一些思路,现在我们需要构造一个2 x 2的矩阵,使得它乘以(a,b)得到的结果是(b,a+b)。每多乘一次这个矩阵,这两个数就会多迭代一次。那么,我们把这个2 x 2的矩阵自乘n 次,再乘以(0,1)就可以得到第n个Fibonacci数了。不用多想,这个2 x 2的矩阵很容易构造出来:

经典题目7 VOJ1067

我们可以用上面的方法二分求出任何一个线性递推式的第n项,其对应矩阵的构造方法为:在右上角的(n-1)*(n-1)的小矩阵中的主对角线上填1,矩阵第n行填对应的系数,其它地方都填0。例如,我们可以用下面的矩阵乘法来二分计算f(n) = 4f(n-1) – 3f(n-2) + 2f(n-4)的第k项:

利用矩阵乘法求解线性递推关系的题目我能编出一卡车来。这里给出的例题是系数全为1的情况。

经典题目8 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p 的值

把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么

C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要求经过k步的路径数,我们只需要二分求出A^k即可。

经典题目9 用1 x 2的多米诺骨牌填满M x N的矩形有多少种方案,M<=5,N<2^31,输出答案mod p的结果

我们以M=3为例进行讲解。假设我们把这个矩形横着放在电脑屏幕上,从右往左一列一列地进行填充。其中前n-2列已经填满了,第n-1列参差不齐。现在我们要做的事情是把第n-1列也填满,将状态转移到第n列上去。由于第n-1列的状态不一样(有8种不同的状态),因此我们需要分情况进行讨论。在图中,我把转移前8种不同的状态放在左边,转移后8种不同的状态放在右边,左边的某种状态可以转移到右边的某种状态就在它们之间连一根线。注意为了保证方案不重复,状态转移时我们不允许在第n-1列竖着放一个多米诺骨牌(例如左边第2种状态不能转移到右边第4种状态),否则这将与另一种转移前的状态重复。把这8种状态的转移关系画成一个有向图,那么问题就变成了这样:从状态111出发,恰好经过n步回到这个状态有多少种方案。比如,n=2时有3种方案,111->011->111、

111->110->111和111->000->111,这与用多米诺骨牌覆盖3x2矩形的方案一一对应。这样这个题目就转化为了我们前面的例题8。

后面我写了一份此题的源代码。你可以再次看到位运算的相关应用。

经典题目10 POJ2778

题目大意是,检测所有可能的n位DNA串有多少个DNA串中不含有指定的病毒片段。合法的DNA只能由ACTG四个字符构成。题目将给出10个以内的病毒片段,每个片段长度不超过10。数据规模n<=2 000 000 000。

下面的讲解中我们以ATC,AAA,GGC,CT这四个病毒片段为例,说明怎样像上面的题一样通过构图将问题转化为例题8。我们找出所有病毒片段的前缀,把n位DNA分为以下7类:以AT结尾、以AA结尾、以GG结尾、以?A结尾、以?G结尾、以?C结尾和以??结尾。其中问号表示“其它情况”,它可以是任一字母,只要这个字母不会让它所在的串成为某个病毒的前缀。显然,这些分类是全集的一个划分(交集为空,并集为全集)。现在,假如我们已经知道了长度为n-1的各类DNA中符合要求的DNA个数,我们需要求出长度为n时各类DNA的个数。我们可以根据各类型间的转移构造一个边上带权的有向图。例如,从AT不能转移到AA,从AT转移到??有4种方法(后面加任一字母),从?A 转移到AA有1种方案(后面加个A),从?A转移到??有2种方案(后面加G或C),从GG到??有2种方案(后面加C将构成病毒片段,不合法,只能加A和T)等等。这个图的构造过程类似于用有限状态自动机做串匹配。然后,我们就把这个图转化成矩阵,让这个矩阵自乘n次即可。最后输出的是从??状态到所有其它状态的路径数总和。

题目中的数据规模保证前缀数不超过100,一次矩阵乘法是三方的,一共要乘log(n)次。因此这题总的复杂度是100^3 * log(n),AC了。

最后给出第9题的代码供大家参考(今天写的,熟悉了一下C++的类和运算符重载)。为了避免大家看代码看着看着就忘了,我把这句话放在前面来说:

Matrix67原创,转贴请注明出处。

矩阵分析实验报告

矩 阵 分 析 实 验 报 告 学院:电气学院 专业:控制工程 姓名:XXXXXXXX 学号:211208010001

矩阵分析实验报告 实验题目 利用幂法求矩阵的谱半径 实验目的与要求 1、 熟悉matlab 矩阵实验室的功能和作用; 2、 利用幂法求矩阵的谱半径; 3、 会用matlab 对矩阵分析运算。 实验原理 理念 谱半径定义:设n n A C ?∈,1λ,2λ,3λ, ,j λ, n λ是A 的n 个特征值,称 ()max ||j j A ρλ= 为关于A 的谱半径。 关于矩阵的谱半径有如下结论: 设n n A C ?∈,则 (1)[]()()k k A A ρρ=; (2)2 2()()()H H A A AA A ρρ==。 由于谱半径就是矩阵的主特征值,所以实验换为求矩阵的主特征值。 算法介绍 定义:如果1λ是矩阵A 的特征值,并且其绝对值比A 的任何其他特征值的绝对值大,则称它为主特征值。相应于主特征值的特征向量1V 称为主特征向量。 定义:如果特征向量中最大值的绝对值等于单位值(例如最大绝对值为1),则称其为是归一化的。

通过形成新的向量' 12=c n V (1/)[v v v ],其中c=v 且1max {},j i n i ≤≤=v v 可将特 征向量 '12n [v v v ]进行归一化。 设矩阵A 有一主特征值λ,而且对应于λ有唯一的归一化特征向量V 。通过下面这个称为幂法(power method )的迭代过程可求出特征对λ,V ,从下列向量开始: []' 0=111X (1) 用下面递归公式递归地生成序列{}k X : k k Y AX = k+11 1 k k X Y c += (2) 其中1k c +是k Y 绝对值最大的分量。序列{}k X 和{}k c 将分别收敛到V 和λ: 1lim k X V =和lim k c λ= (3) 注:如果0X 是一个特征向量且0X V ≠,则必须选择其他的初始向量。 幂法定理:设n ×n 矩阵A 有n 个不同的特征值λ1,λ2,···,,λn ,而且它们按绝对 值大小排列,即: 123n λλλλ≥≥≥???≥ (4) 如果选择适当的X 0,则通过下列递推公式可生成序列{[() ()( ) ]}12k k k k n X x x x '=???和 {}k c : k k Y AX = (5) 和: 11 1k k k X Y c ++= (6) 其中: () 1k k j c x +=且{} ()()1max k k j i i n x x ≤≤= (7) 这两个序列分别收敛到特征向量V 1和特征值λ1。即: 1lim k k X V →∞ =和1lim k k c λ→∞ = (8) 算法收敛性证明 证明:由于A 有n 个特征值,所以有对应的特征向量V j ,j=1,2,···n 。而且它们是

实现稀疏矩阵(采用三元组表示)的基本运算实验报告

实现稀疏矩阵(采用三元组表示)的基本运算实验报告 一实验题目: 实现稀疏矩阵(采用三元组表示)的基本运算二实验要求: (1)生成如下两个稀疏矩阵的三元组a 和b;(上机实验指导P92 )(2)输出a 转置矩阵的三元组; (3)输出a + b 的三元组; (4)输出a * b 的三元组; 三实验内容: 3.1 稀疏矩阵的抽象数据类型: ADT SparseMatrix { 数据对象:D={aij| i = 1,2,3,….,m; j =1,2,3,……,n; ai,j∈ElemSet,m和n分别称为矩阵的行数和列数 } 数据关系 : R={ Row , Col } Row ={ | 1≤ i≤m , 1≤ j≤ n-1} Col ={| 1≤i≤m-1,1≤j≤n} 基本操作: CreateSMatrix(&M)

操作结果:创建稀疏矩阵M PrintSMatrix(M) 初始条件:稀疏矩阵M已经存在 操作结果:打印矩阵M DestroySMatrix(&M) 初始条件:稀疏矩阵M已经存在 操作结果:销毁矩阵M CopySMatrix(M, &T) 初始条件:稀疏矩阵M已经存在 操作结果:复制矩阵M到T AddSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的和Q=M+N SubSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的差Q=M-N TransposeSMatrix(M, & T) 初始条件:稀疏矩阵M已经存在

操作结果:求矩阵M的转置T MultSMatrix(M, N, &Q) 初始条件:稀疏矩阵M已经存在 操作结果:求矩阵的积Q=M*N }ADT SparseMatrix 3.2存储结构的定义 #define N 4 typedef int ElemType; #define MaxSize 100 //矩阵中非零元素最多个数typedef struct { int r; //行号 int c; //列号 ElemType d; //元素值 } TupNode; //三元组定义 typedef struct { int rows; //行数值 int cols; //列数值 int nums; //非零元素个数

矩阵特征值实验报告

一、课题名称 Malab矩阵特征值 二、目的和意义 1、求矩阵的部分特征值问题具有重要实际意义,如求矩阵谱半径()Aρ=maxλ,稳定性问题往往归于求矩阵按模最小特征值; 2、进一步掌握冪法、反冪法及原点平移加速法的程序设计技巧; 3、问题中的题(5),反应了利用原点平移的反冪法可求矩阵的任何特征值及其特征向量。 三、实验要求 1、掌握冪法或反冪法求矩阵部分特征值的算法与程序设计; 2、会用原点平移法改进算法,加速收敛;对矩阵B=A-PI取不同的P值,试求其效果; 3、试取不同的初始向量,观察对结果的影响;()0υ 4、对矩阵特征值的其它分布,如如何计算。 四、问题描述 五、实验程序设计 幂法 function [lamdba,v]=power_menthod(a,x,epsilon,maxl)

k=0; y=a*x; while(k> a=[-1 2 1;2 -4 1;1 1 -6]; >> x=[1 1 1]'; >> epsilon=0.00005; >> maxl=20; >> power_menthod(a,x,epsilon,maxl) lambda = 6.4183 v = -0.0484 -0.3706 1.0000 方程组2结果 >> a=[4 -2 7 3 -1 8;-2 5 1 1 4 7;7 1 7 2 3 5;3 1 2 6 5 1;-1 4 3 5 3 2;8 7 5 1 2 4]; >> x=[1 0 1 0 0 1]'; >> epsilon=0.00005; >> maxl=20; >> power_menthod(a,x,epsilon,maxl) lambda = 21.3053 v = 0.8724 0.5401 0.9974 0.5644 0.4972 1.0000 反幂法 function [lambda,v]=INV_shift(a,x,epsilon,max1)

矩阵乘法的并行化 实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称: 学生姓名: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验内容与步骤 实验1,矩阵乘法的串行实验 (1)实验内容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

矩阵键盘设计实验报告

南京林业大学 实验报告 基于AT89C51 单片机4x4矩阵键盘接口电路设计 课程机电一体化设计基础 院系机械电子工程学院 班级 学号 姓名

指导老师杨雨图 2013年9月26日

一、实验目的 1、掌握键盘接口的基本特点,了解独立键盘和矩 阵键盘的应用方法。 2、掌握键盘接口的硬件设计方法,软件程序设计 和贴士排错能力。 3、掌握利用Keil51软件对程序进行编译。 4、用Proteus软件绘制“矩阵键盘扫描”电路,并用测试程序进行仿真。 5、会根据实际功能,正确选择单片机功能接线,编制正确程序。对实验结果 能做出分析和解释,能写出符合规格的实验报告。 二、实验要求 通过实训,学生应达到以下几方面的要求: 素质要求 1.以积极认真的态度对待本次实训,遵章守纪、团结协作。 2.善于发现数字电路中存在的问题、分析问题、解决问题,努力培养独立 工作能力。 能力要求 1.模拟电路的理论知识 2.脉冲与数字电路的理念知识 3.通过模拟、数字电路实验有一定的动手能力 4.能熟练的编写8951单片机汇编程序 5.能够熟练的运用仿真软件进行仿真 三、实验工具 1、软件:Proteus软件、keil51。 2、硬件:PC机,串口线,并口线,单片机开发板 四、实验内容

1、掌握并理解“矩阵键盘扫描”的原理及制作,了解各元器件的参数及格 元器件的作用。 2、用keil51测试软件编写AT89C51单片机汇编程序 3、用Proteus软件绘制“矩阵键盘扫描”电路原理图。 4、运用仿真软件对电路进行仿真。 五.实验基本步骤 1、用Proteus绘制“矩阵键盘扫描”电路原理图。 2、编写程序使数码管显示当前闭合按键的键值。 3、利用Proteus软件的仿真功能对其进行仿真测试,观察数码管的显示状 态和按键开关的对应关系。 4、用keil51软件编写程序,并生成HEX文件。 5、根据绘制“矩阵键盘扫描”电路原理图,搭建相关硬件电路。 6、用通用编程器或ISP下载HEX程序到MCU。 7、检查验证结果。 六、实验具体内容 使用单片机的P1口与矩阵式键盘连接时,可以将P1口低4位的4条端口线定义为行线,P1口高4位的4条端口线定义为列线,形成4*4键盘,可以配置16个按键,将单片机P2口与七段数码管连接,当按下矩阵键盘任意键时,数码管显示该键所在的键号。 1、电路图

GPU上的矩阵乘法的设计与实现

计 算 机 系 统 应 用 https://www.360docs.net/doc/d32416876.html, 2011 年 第20卷 第 1期 178 经验交流 Experiences Exchange GPU 上的矩阵乘法的设计与实现① 梁娟娟,任开新,郭利财,刘燕君 (中国科学技术大学 计算机科学与技术学院,合肥 230027) 摘 要: 矩阵乘法是科学计算中最基本的操作,高效实现矩阵乘法可以加速许多应用。本文使用NVIDIA 的CUDA 在GPU 上实现了一个高效的矩阵乘法。测试结果表明,在Geforce GTX 260上,本文提出的矩阵乘法的速度是理论峰值的97%,跟CUBLAS 库中的矩阵乘法相当。 关键词: 矩阵乘法;GPU ;CUDA Design and Implementation of Matrix Multiplication on GPU LIANG Juan-Juan, REN Kai-Xin, GUO Li-Cai, LIU Yan-Jun (School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China) Abstract: Matrix multiplication is a basic operation in scientific computing. Efficient implementation of matrix multiplication can speed up many applications. In this paper, we implement an efficient matrix multiplication on GPU using NVIDIA’s CUDA. The experiment shows that our implementation is as fast as the implementation in CUBLAS, and the speed of our implementation can reach the peak speed’s 97%, on Geforce GTX260. Keywords: matrix multiplication; GPU; CUDA GPU 是一种高性能的众核处理器,可以用来加速许多应用。CUDA 是NVIDIA 公司为NVIDIA 的GPU 开发的一个并行计算架构和一门基于C 的编程语言。在CUDA 中程序可以直接操作数据而无需借助于图形系统的API 。现在已经有许多应用和典型算法使用CUDA 在GPU 上实现出来。 1 引言 矩阵乘法是科学计算中的最基本的操作,在许多领域中有广泛的应用。对于矩阵乘法的研究有几个方向。一个是研究矩阵乘法的计算复杂度,研究矩阵乘法的时间复杂度的下界,这方面的工作有strassen 算法[1]等。另外一个方向是根据不同的处理器体系结构,将经典的矩阵乘法高效的实现出来,这方面的结果体现在许多高效的BLAS 库。许多高效的BLAS 库都根据体系结构的特点高效的实现了矩阵乘法,比如GotoBLAS [2], ATLAS [3]等。Fatahalian [4]等人使 用着色语言设计了在GPU 上的矩阵乘法。CUBLAS 库是使用CUDA 实现的BLAS 库,里面包含了高性能的矩阵乘法。 本文剩下的部分组织如下,第2节介绍了CUDA 的编程模型,简单描述了CUDA 上编程的特点。第3节讨论了数据已经拷贝到显存上的矩阵乘法,首先根据矩阵分块的公式给出了一个朴素的矩阵乘法实现,分析朴素的矩阵乘法的资源利用情况,然后提出了一种新的高效的矩阵乘法。第4节讨论了大规模的矩阵乘法的设计和实现,着重讨论了数据在显存中的调度。第5节是实验结果。第6节是总结和展望。 2 CUDA 编程模型和矩阵乘法回顾 2.1 CUDA 编程模型 NVIDIA 的GPU 是由N 个多核处理器和一块显存构成的。每个多核处理器由M 个处理器核,1个指令部件,一个非常大的寄存器堆,一小块片上的共享内 ① 基金项目:国家自然科学基金(60833004);国家高技术研究发展计划(863)(2008AA010902) 收稿时间:2010-04-26;收到修改稿时间:2010-05-21

矩阵连乘实验报告

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:软件12K1 学生姓名:吴旭 学号:121909020124 成绩: 指导老师:刘老师实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号 的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在A k和A k+1之间将矩阵链断开,1n,则其相应的完全加括号方式为((A1…A k)(A k+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后将计

算结果相乘得到A[1:n]。 2、建立递归关系 设计动态规划算法的第二步是递归定义最优值。对于矩阵连乘积的最优计算次序问题,设计算A[i:j],1i n,所需的最少数乘次数为m[i][j],原问题的最优值为m[1][n]。 当i=j时,A[i:j]=A i为单一矩阵,无需计算,因此m[i][i]=0,i=1,2,…n。 当i

数据结构实验报告稀疏矩阵运算

教学单位计算机科学与技术 学生学号 5 数据结构 课程设计报告书 题目稀疏矩阵运算器 学生豹 专业名称软件工程 指导教师志敏

实验目的:深入研究数组的存储表示和实现技术,熟悉广义表存储结构的特性。 需要分析:稀疏矩阵是指那些多数元素为零的矩阵。利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算效率。实现一个能进行稀疏矩阵基本运算的运算器。要求以带“行逻辑信息”的三元组顺序表存储稀疏矩阵,实现两矩阵的相加、相减、相乘等运算。输入以三元组表示,输出以通常的阵列形式列出。 软件平台:Windows 2000,Visual C++ 6.0或WINTC 概要设计:ADT Array { 数据对象: D = {aij | 0≤i≤b1-1, 0 ≤j≤b2-1} 数据关系: R = { ROW, COL } ROW = {| 0≤i≤b1-2, 0≤j≤b2-1} COL = {| 0≤i≤b1-1, 0≤ j≤b2-2} 基本操作: CreateSMatrix(&M); //操作结果:创建稀疏矩阵M. Print SMatrix(M); //初始化条件: 稀疏矩阵M存在. //操作结果:输出稀疏矩阵M. AddSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M与N的行数和列数对应相等. //操作结果:求稀疏矩阵的和Q=M+N. SubSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M与N的行数和列数对应相等. //操作结果:求稀疏矩阵的差Q=M-N. MultSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M的列数等于N的行数. //操作结果:求稀疏矩阵的乘积Q=M*N. } ADT Array

数学实验矩阵的运算

数学实验报告 学院: 班级: 学号: 姓名: 完成日期:

实验四矩阵的运算 (一)投入产出分析 一.实验目的 1.理解投入产出分析中的基本概念和模型; 2.从数学和投入产出理论的角度,理解矩阵乘法、逆矩 阵等的含义。 二.问题描述 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、部需求、初始投入等如表1-1所示 表1-1国民经济三产部门之间的投入产出表 根据表回答下列问题: (1)如果农业、制造业、服务业外部需求为50,150,100,问三个部门总产出分别为多少? (2)如果三个部门的外部需求分别增加一个单位,问

他们的总产出分别为多少? 三.实验过程 1.问题(1)的求解 (1)求直接消耗矩阵A 根据直接消耗的计算公式 a ij=x ij/x j 和各部门中间需求; x n a n 运行如下代码可得直接消耗系数表。 X=[15 20 30;30 10 45;20 60 0]; X_colsum=[100 200 150]; X_rep=repmat(X_colsum,3,1) A=X./ X_rep 运行结果为: A = 0.1500 0.1000 0.2000 0.3000 0.0500 0.3000 0.2000 0.3000 0 (2)求解 根据公式 X=(I-A)-1y 在运行如下代码

y=[50;150;100]; n=size(y,1); W=eye(n)-A; X=W\y 运行结果为 X = 139.2801 267.6056 208.1377 即三个部门的总产出分别为139.2801,267.6056, 208.1377亿元。 2.问题2求解 设外部需求由y增加至y+Δy,则产出x的增量为 Δx=(I-A)-1(y+Δy)- (I-A)-1y=(I-A)-1Δy 利用问题(1)求得的I-A矩阵,再运行如下的MATLAB 代码可得问题的结果: dx=inv(W) 运行结果: dx = 1.3459 0.2504 0.3443 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167

数据结构稀疏矩阵基本运算实验报告

课程设计 课程:数据结构 题目:稀疏矩阵4 三元组单链表结构体(行数、列数、头) 矩阵运算重载运算符优 班级: 姓名: 学号: 设计时间:2010年1月17日——2010年5月XX日 成绩: 指导教师:楼建华

一、题目 二、概要设计 1.存储结构 typedef struct{ int row,col;//行,列 datatype v;//非0数值 }Node; typedef struct{ Node data[max];//稀疏矩阵 int m,n,t;//m 行,n 列,t 非0数个数 … … 2.基本操作 ⑴istream& operator >>(istream& input,Matrix *A)//输入 ⑵ostream& operator <<(ostream& output,Matrix *A){//输出 ⑶Matrix operator ~(Matrix a,Matrix b)//转置 ⑷Matrix operator +(Matrix a,Matrix b)//加法 ⑸Matrix operator -(Matrix a,Matrix b)//减法 ⑹Matrix operator *(Matrix a,Matrix b)//乘法 ⑺Matrix operator !(Matrix a,Matrix b)//求逆 三、详细设计 (1)存储要点 position[col]=position[col-1]+num[col-1]; 三元组表(row ,col ,v) 稀疏矩阵((行数m ,列数n ,非零元素个数t ),三元组,...,三元组) 1 2 3 4 max-1

可达矩阵快速算法

传递闭包Warshall方法计算可达矩阵简要介绍 ①在集合X上的二元关系R的传递闭包是包含R的X上的最小的传递关系。R的传递闭包在数字图像处理的图像和视觉基础、图的连通性描述等方面都是基本概念。一般用B表示定义在具有n个元素的集合X上关系R的n×n二值矩阵,则传递闭包的矩阵B+可如下计算: B+ = B + B2 + B3 + ……+ (B)n ②式中矩阵运算时所有乘法都用逻辑与代替,所有加法都用逻辑或代替。上式中的操作次序为B,B(B),B(BB),B(BBB),……,所以在运算的每一步我们只需简单地把现有结果乘以B,完成矩阵的n次乘法即可。 https://www.360docs.net/doc/d32416876.html, /ism/cal_warshall_get_r_mat_detail.php Warshall在1962年提出了一个求关系的传递闭包的有效算法。 其具体过程如下,设在n个元素的有限集上关系R的关系矩阵为M:(1)置新矩阵A=M; (2)置k=1; (3)对所有i如果A[i,k]=1,则对j=1..n执行: A[i,j]←A[i,j]∨A[k,j];

(4)k增1; (5)如果k≤n,则转到步骤(3),否则停止。 所得的矩阵A即为关系R的传递闭包t(R)的关系矩阵。 在《离散数学》中都提及了该算法。 Warshall算法映射到有向图中 设关系R的关系图为G,设图G的所有顶点为u1,u2,…,un,则t(R)的关系图可用该方法得到:若G中任意两顶点ui和uj之间有一条路径且没有ui到uj的弧,则在图G中增加一条从ui到uj的弧,将这样改造后的图记为G’,则G’即为t(R)的关系图。G’的邻接矩阵A应满足:若图G中存在从ui到uj路径,即ui与uj连通,则A[i,j]=1,否则 A[i,j]=0。 这样,求t(R)的问题就变为求图G中每一对顶点间是否连通的问题。 相乘矩阵,就为所有节点的关系图,也就是当前条件下的关系矩阵。 对于相乘矩阵,进行叠代,叠代的过程为,行取值,然后计算值中对应的每一行的值取并集,得到当前行的关系集合。 取完所有行,得到了一个新的转移矩阵再对转移矩阵进行进行求解。

strassen矩阵相乘算法C++代码

Strassen 矩阵相乘算法代码 #include #include #include #include usingnamespace std; template class Strassen_class { public: void ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize);//朴素算法实现void FillMatrix(T** MatrixA, T** MatrixB, int length);//A,B矩阵赋值 void PrintMatrix(T **MatrixA, int MatrixSize);//打印矩阵 void Strassen(int N, T **MatrixA, T **MatrixB, T **MatrixC);//Strassen算法实现 }; template void Strassen_class::ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) {

MATLAB矩阵实验报告

MATLAB 程序设计实验 班级:电信1104班 姓名:龙刚 学号:1404110427 实验内容:了解MA TLAB 基本使用方法和矩阵的操作 一.实验目的 1.了解MA TLAB 的基本使用方法。 2.掌握MA TLAB 数据对象的特点和运算规则。 3.掌握MA TLAB 中建立矩阵的方法和矩阵的处理方法。 二.实验内容 1. 浏览MATLAB 的start 菜单,了解所安装的模块和功能。 2. 建立自己的工作目录,使用MA TLAB 将其设置为当前工作目录。使用path 命令和工作区浏览两种方法。 3. 使用Help 帮助功能,查询inv 、plot 、max 、round 等函数的用法和功能。使用help 命令和help 菜单。 4. 建立一组变量,如x=0:pi/10:2*pi ,y=sin(x),在命令窗口显示这些变量;在变量窗口打开这些变量,观察其值并使用绘图菜单绘制y 。 5. 分多行输入一个MA TLAB 命令。 6. 求表达式的值 ()6210.3424510w -=+? ()22tan b c a e abc x b c a ππ++ -+=++,a=3.5,b=5,c=-9.8 ()220.5ln 1t z e t t =++,21350.65i t -??=??-?? 7.已知 1540783617A --????=??????,831253320B -????=????-?? 求 A+6B ,A 2-B+I A*B ,A.*B ,B*A A/B ,B/A [A,B],[A([1,3], :); B^2]

8.已知 23100.7780414565532503269.5454 3.14A -????-??=????-?? 输出A 在[10,25]范围内的全部元素 取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 分别求表达式E

数据结构三元组表存储结构实现稀疏矩阵应用课程方案实验报告

高二《数系的扩充与复数的概念》说课稿 高二《数系的扩充与复数的概念》说稿 《数系的扩充与复数的概念》是北师大版普通高中程标准数学实验教材选修1-2第四第一节的内容,大纲时安排一时。主要包括数系概念的发展简介,数系的扩充,复数相关概念、分类、相等条,代数表示和几何意义。 复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认识,也为进一步学习数学打下了基础。通过本节学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。 在学习了这节以后,学生首先能知道数系是怎么扩充的,并且这种扩充是必要的,虚数单位公开《数系的扩充与复数的概念》说稿在数系扩充过程中的作用,而复数就是一个实数加上一个实数乘以公开《数系的扩充与复数的概念》说稿。学生能清楚的知道一个复数什么时候是虚数,什么时候是纯虚数,两个复数相等的充要条是什么。让学生在经历一系列的活动后,完成对知识的探索,变被动地“接受问题”为主动地“发现问题”,加强学生对知识应用的灵活性,深化学生对复数的认识,从而提高分析问题和解决问题的能力。 教学目标为:1.在问题情境中了解数系的扩充过程。体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的

作用,感受人类理性思维的作用以及数与现实世界的联系。. 2.理解复数的有关概念、数系间的关系、和几何表示。 3.掌握复数的分类和复数相等的条。 4体会类比、转化、数形结合思想在数学发现和解决数学问题中的作用。 教学重点为认识i的意义、复数的有关概念以及复数相等的条. 教学难点为复数相关概念的理解和复数的几何意义的理解 复数的概念是整个复数内容的基础,复数的有关概念都是围绕复数的代数表示形式展开的。虚数单位、实部、虚部的命名,复数想等的充要条,以及虚数、纯虚数等概念的理解,都应促进对复数实质的理解,即复数实际上是一有序实数对。类比实数可以用数轴表示,把复数在直角坐标系中表示出,就得到了复数的几何表示,这就把数和形有机的结合了起。 在学习本节的过程中,复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,采用讲解已学过的数集的扩充的历史,让学生体会到数系的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类。由于学生对数系扩充的知识不熟悉,对了解实数系扩充到复数系的过程有困难,也就是对虚数单位公开《数系的扩充与复数的概念》说稿的引入难以理解。另外虚数单位公开《数系的扩充与复数的概念》说

矩阵运算实验报告

实验报告 --矩阵运算 一.实验目的。 1.通过实践加强对程序设计语言课程知识点的理解和掌握,培养对课程知识综合运用能力、实际分析问题能力及编程能力,养成良好的编程习惯。 2.通过实践进一步领会程序设计的特点和应用,提高运用C++ 语言以及面向对象知识解决实际问题的能力。 3.通过实践掌握用C++ 语言编写面向对象的实用程序的设计方法,对面向对象方法和思想增加感性的认识; 4.学会利用C++程序设计语言编写出一些短小、可靠的Windows实用程序,切实提高面向对象的程序设计能力。为后续的相关课程的学习打下基础。 二.实验要求。 1.学会建立模板类; 2.实现矩阵的“加”、“减”、“乘”、“数乘”、“转置”; 3.动态存分配并用随机数填充; 4.注意“加”、“减”、“乘”要进行条件的判断; 三.设计思路。

3.1算法基本流程 1)获取用户输入的矩阵1的行数和列数,动态生成一个一维数组 2)利用随机数生成数组成员,并利用两个循环输出数组,使其符合矩阵的格式 3)矩阵2同矩阵1的处理方法 4)通过两个矩阵的行数和列数比较来判断能否进行加减乘等运算,如不能,输出相关信息 5)如能够进行计算,则利用数组进行相应运算,并按照正确格式输出 6)通过改变一维数组中元素的顺序来实现转置并输出 3.2算法流程图

四.基本界面。

五.关键代码。 5.1关键类的声明 class CMatrixclass { public: CMatrixclass() { int m_Row = 0; //行 int m_Col = 0; //列 m_pElements = NULL; //一维数组

矩阵乘法的并行化实验报告

科技大学计算机与通信工程学院 实验报告 实验名称: 学生: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验容与步骤 实验1,矩阵乘法的串行实验 (1)实验容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

实现稀疏矩阵(采用三元组表示)的基本运算实验分析报告

实现稀疏矩阵(采用三元组表示)的基本运算实验报告

————————————————————————————————作者:————————————————————————————————日期: 2

实现稀疏矩阵(采用三元组表示)的基本运算实验报告 一实验题目: 实现稀疏矩阵(采用三元组表示)的基本运算二实验要求: (1)生成如下两个稀疏矩阵的三元组 a 和 b;(上机实验指导 P92 )(2)输出 a 转置矩阵的三元组; (3)输出a + b 的三元组; (4)输出 a * b 的三元组; 三实验内容: 3.1 稀疏矩阵的抽象数据类型: ADT SparseMatrix { 数据对象:D={aij| i = 1,2,3,….,m; j =1,2,3,……,n; ai,j∈ElemSet,m和n分别称为矩阵的行数和列数 } 数据关系 : R={ Row , Col } Row ={ | 1≤ i≤m , 1≤ j≤ n-1} Col ={| 1≤i≤m-1,1≤j≤n} 基本操作: CreateSMatrix(&M) 操作结果:创建稀疏矩阵M PrintSMatrix(M) 初始条件:稀疏矩阵M已经存在 操作结果:打印矩阵M DestroySMatrix(&M) 初始条件:稀疏矩阵M已经存在 操作结果:销毁矩阵M CopySMatrix(M, &T) 初始条件:稀疏矩阵M已经存在 操作结果:复制矩阵M到T AddSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的和Q=M+N SubSMatrix(M, N, &Q) 3

稀疏矩阵(实验报告)

《数据结构课程设计》实验报告 一、实验目的: 理解稀疏矩阵的加法运算,掌握稀疏矩阵的存储方法,即顺序存储的方式,利用顺序存储的特点——每一个元素都有一个直接前驱和一个直接后继,完成相关的操作。 二、内容与设计思想: 1、设计思想 1)主界面的设计 定义两个矩阵a= 0 0 3 0 0 0 0 0 b= 0 2 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 定义两个数组A和B,用于存储矩阵a和矩阵b的值;定义一个数组C,用于存放数组A 和数组B相加后的结果。 2)实现方式 稀疏矩阵的存储比较浪费空间,所以我们可以定义两个数组A、B,采用压缩存储的方式来对上面的两个矩阵进行存储。具体的方法是,将非零元素的值和它所在的行号、列号作为一个结点存放在一起,这就唯一确定一个非零元素的三元组(i、j、v)。将表示稀疏矩阵的非零元素的三元组按行优先的顺序排列,则得到一个其结点均为三元组的线性表。即:以一维数组顺序存放非零元素的行号、列号和数值,行号-1作为结束标志。例如,上面的矩阵a,利用数组A存储后内容为: A[0]=0,A[1]=2, A[2]=3, A[3]=1, A[4]=6, A[5]=5, A[6]=3, A[7]=4, A[8]=7, A[9]=5, A[10]=1, A[11]=9, A[12]=-1 同理,用数组B存储矩阵b的值。 2、主要数据结构 稀疏矩阵的转存算法: void CreateMatrix(int A[m][n],int B[50]) { int i,j,k=0; for(i=0;i

相关文档
最新文档