NMOS管的开关特性管的开关特性管的开关特性管的开关特性 一

NMOS管的开关特性管的开关特性管的开关特性管的开关特性    一
NMOS管的开关特性管的开关特性管的开关特性管的开关特性    一

NMOS管的开关特性管的开关特性管的开关特性管的开关特性一、静态特性MOS管作为开关元件,同样是工作在截止或导通两种状态。由于MOS 管是电压控制元件,所以主要由栅源电压uGS决定其工作状态。

图3.8(a)为由NMOS增强型管构成的开关电路。

图3.8 NMOS管构成的开关电路及其等效电路工作特性如下:※uGS<开启电压UT:MOS管工作在截止区,漏源电流iDS基本为0,输出电压uDS≈UDD,MOS管处于"断开"状态,其等效电路如图3.8(b)所示。※uGS>开启电压UT:MOS管工作在导通区,漏源电流iDS=UDD/(RD+rDS)。其中,rDS为MOS管导通时的漏源电阻。输出电压UDS=UDD·rDS/(RD+rDS),如果rDS<<RD,则uDS≈0V,MOS管处于"接通"状态,其等效电路如图3.8(c)所示。二、动态特性MOS管在导通与截止两种状态发生转换时同样存在过渡过程,但其动态特性主要取决于与电路有关的杂散电容充、放电所需的时间,而管子本身导通和截止时电荷积累和消散的时间是很小的。

图 3.9(a)和(b)分别给出了一个NMOS管组成的电路及其动态特性示意图

图3.9 NMOS管动态特性示意图

由于MOS管导通时的漏源电阻rDS比晶体三极管的饱和电阻rCES要大得多,漏极外接电阻RD也比晶体管集电极电阻RC大,所以,MOS管的充、放电时间较长,使MOS管的开关速度比晶体三极管的开关速度低。不过,在CMOS电路中,由于充电电路和放电电路都是低阻电路,因此,其充、放电过程都比较快,从而使CMOS电路有较高的开关速度。

当输入电压ui由高变低,MOS管由导通状态转换为截止状态时,电源UDD通过RD 向杂散电容CL充电,充电时间常数τ1=RDCL。所以,输出电压uo要通过一定延时才由低电平变为高电平;当输入电压ui由低变高,MOS管由截止状态转换为导通状态时,杂散电容CL上的电荷通过rDS进行放电,其放电时间常数τ2≈rDSCL。可见,输出电压Uo也要经过一定延时才能转变成低电平。但因为rDS比RD小得多,所以,由截止到导通的转换时间比由导通到截止的转换时间要短。

由于MOS管导通时的漏源电阻rDS比晶体三极管的饱和电阻rCES要大得多,漏极外接电阻RD也比晶体管集电极电阻RC大,所以,MOS管的充、放电时间较长,使MOS 管的开关速度比晶体三极管的开关速度低。不过,在CMOS电路中,由于充电电路和放电电路都是低阻电路,因此,其充、放电过程都比较快,从而使CMOS电路有较高的开关速度。

N沟道增强型MOS管的输出特性曲线与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。

转移特性曲线由于场效应管作放大器件使用时是工作在饱和区(恒流区),此时iD几乎不随vDS而变化,即不同的vDS所对应的转移特性曲线几乎是重合的,所以可用vDS大于某一数值(vDS>vGS-VT)后的一条转移特性曲线代替饱和区的所有转移特性曲线.

MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压VP ,而用开启电压VT表征管子的特性。

N沟道耗尽型MOS管

结构:N沟道耗尽型MOS管与N沟道增强型MOS管基本相似。

区别:耗尽型MOS管在vGS=0时,漏-源极间已有导电沟道产生

增强型MOS管要在vGS≥VT时才出现导电沟道。

原因:制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),因此即使vGS=0时,在这些正离子产生的电场作用下,漏-源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压vDS,就有电流iD。

如果加上正的vGS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,iD增大。反之vGS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,iD减小。当vGS负向增加到某一数值时,导电沟道消失,iD趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用VP表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压VP也为负值,但是,前者只能在vGS<0的情况下工作。而后者在vGS=0,vGS>0,VP

电流方程:在饱和区内,耗尽型MOS管的电流方程与结型场效应管的电流方程相同。

使用场效应管的注意事项

1.从场效应管的结构上看,其源极和漏极是对称的,因此源极和漏极可以互换。但有些场效应管在制造时已将衬底引线与源极连在一起,这种场效应管的源极和漏极就不能互换了。2.场效应管各极间电压的极性应正确接入,结型场效应管的栅-源电压vGS的极性不能接反。

3.当MOS管的衬底引线单独引出时,应将其接到电路中的电位最低点(对N沟道MOS管而言)或电位最高点(对P沟道MOS管而言),以保证沟道与衬底间的PN结处于反向偏置,使衬底与沟道及各电极隔离。

4.MOS管的栅极是绝缘的,感应电荷不易泄放,而且绝缘层很薄,极易击穿。所以栅极不能开路,存放时应将各电极短路。焊接时,电烙铁必须可靠接地,或者断电利用烙铁余热焊接,并注意对交流电场的屏蔽。

场效应管与三极管的性能比较

1.场效应管的源极s、栅极g、漏极d分别对应于三极管的发射极e、基极b、集电极c,它们的作用相似。

2.场效应管是电压控制电流器件,由vGS控制iD,其放大系数gm一般较小,因此场效应管的放大能力较差;三极管是电流控制电流器件,由iB(或iE)控制iC。

3.场效应管栅极几乎不取电流;而三极管工作时基极总要吸取一定的电流。因此场效应管的输入电阻比三极管的输入电阻高。

4.场效应管只有多子参与导电;三极管有多子和少子两种载流子参与导电,因少子浓度受温度、辐射等因素影响较大,所以场效应管比三极管的温度稳定性好、抗辐射能力强。在环境条件(温度等)变化很大的情况下应选用场效应管。

5.场效应管在源极未与衬底连在一起时,源极和漏极可以互换使用,且特性变化不大;而三极管的集电极与发射极互换使用时,其特性差异很大,b值将减小很多。

6.场效应管的噪声系数很小,在低噪声放大电路的输入级及要求信噪比较高的电路中要选用场效应管。

7.场效应管和三极管均可组成各种放大电路和开关电路,但由于前者制造工艺简单,且具

有耗电少,热稳定性好,工作电源电压范围宽等优点,因而被广泛用于大规模和超大规模集成电路中。

CMOS工作原理

什么是CMOS-IC?

金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。由MOS管构成的集成电路称为MOS集成电路,而由PMOS 管和NMOS管共同构成的互补型MOS集成电路即为CMOS-IC(Complementary MOS Integrated Circuit)。

CMOS集成电路的性能特点

微功耗—CMOS电路的单门静态功耗在毫微瓦(nw)数量级。

高噪声容限—CMOS电路的噪声容限一般在40%电源电压以上。

宽工作电压范围—CMOS电路的电源电压一般为1.5~18伏。

高逻辑摆幅—CMOS电路输出高、低电平的幅度达到全电为VDD,逻辑―0‖为VSS。

高输入阻抗--CMOS电路的输入阻抗大于108Ω,一般可达1010Ω。

高扇出能力--CMOS电路的扇出能力大于50。

低输入电容--CMOS电路的输入电容一般不大于5PF。

宽工作温度范围—陶瓷封装的CMOS电路工作温度范围为

- 55 0C ~ 125 0C;塑封的CMOS电路为– 40 0C ~ 85 0C。

场效应管和mos管的区别

功率场效应晶体管MOSFET 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET (Vertical MOSFET),大大提高了MOSFET器件的耐压和耐电流能力。 按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET),本文主要以VDMOS 器件为例进行讨论。 功率MOSFET为多元集成结构,如国际整流器公司(International Rectifier)的HEXFET 采用了六边形单元;西门子公司(Siemens)的SIPMOSFET采用了正方形单元;摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字形排列。 2.2功率MOSFET的工作原理 截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1 反偏,漏源极之间无电流流过。 导电:在栅源极间加正电压UGS,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子—电子吸引到栅极下面的P区表面 当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。 2.3功率MOSFET的基本特性

二极管的开关特性

第一节二极管的开关特性 一般而言,开关器件具有两种工作状态:第一种状态被称为接通,此时器件的阻抗很小,相当于短路;第二种状态是断开,此时器件的阻抗很大,相当于开路。 在数字系统中,晶体管基本上工作于开关状态。对开关特性的研究,就是具体分析晶体管在导通和截止之间的转换问题。晶体管的开关速度可以很快,可达每秒百万次数量级,即开关转换在微秒甚至纳秒级的时间内完成。 二极管的开关特性表现在正向导通与反向截止这样两种不同状态之间的转换过程。二极管从反向截止到正向导通与从正向导通到反向截止相比所需的时间很短,一般可以忽略不计,因此下面着重讨论二极管从正向导通到反向截止的转换过程。 一、二极管从正向导通到截止有一个反向恢复过程 在上图所示的硅二极管电路中加入一个如下图所示的输入电压。在0―t1时间内,输入为+V F,二极管导通,电路中有电流流通。 设V D为二极管正向压降(硅管为0.7V左右),当V F远大于V D时,V D可略去不计,则 在t1时,V1突然从+V F变为-V R。在理想情况下,二极管将立刻转为截止,电路中应只有很小的反向电流。但实际情况是,二极管并不立刻截止,而是先由正向的I F变到一个很大的反向电流I R=V R/R L,这个电流维持一段时间t S后才开始逐渐下降,再经过t t后,下降到一个很小的数值0.1I R,这时二极管才进人反向截止状态,如下图所示。

通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。其中t S 称为存储时间,t t称为渡越时间,t re=t s+t t称为反向恢复时间。 由于反向恢复时间的存在,使二极管的开关速度受到限制。 二、产生反向恢复过程的原因——电荷存储效应 产生上述现象的原因是由于二极管外加正向电压V F时,载流子不断扩散而存储的结果。当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流于,如下图所示。 空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程L P(扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在L P范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近结边缘的浓度最大,离结越远,浓度越小。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布。 我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。 当输入电压突然由+V F变为-V R时P区存储的电子和N区存储的空穴不会马上消失,但它

场效应管开关原理

场效应管开关用 2009-07-01 20:41 from:https://www.360docs.net/doc/d62569726.html,/397418/blog/item/2d1937d83c21fbee38012f74.html 场效应管在mpn中,它的长相和我们前面讲的三极管极像,所以有不少修mpn的朋友好长时间还分不清楚,统一的把这些长相相同的三极管、场效应管、双二极管、还有各种稳压IC统统称作“三个脚的管管”,呵呵,如果这样麻木不分的话,你的维修技术恐怕很难快速提高的哦! 好了,说到这里场效应管的长相恐怕我就不用贴图了,在电路图中它常用 表示,关于它的构造原理由于比较抽象,我们是通俗化讲它的使用,所以不去多讲,由于根据使用的场合要求不同做出来的种类繁多,特性也都不尽相同;我们在mpn中常用的一般是作为电源供电的电控之开关使用,所以需要通过电流比较大,所以是使用的比较特殊的一种制造方法做出来了增强型的场效应管(MOS型),它的电路图符号: 仔细看看你会发现,这两个图似乎有差别,对了,这实际上是两种不同的增强型场效应管,第一个那个叫N沟道增强型场效应管,第二个那个叫P沟道增强型场效应管,它们的的作用是刚好相反的。前面说过,场效应管是用电控制的开关,那么我们就先讲一下怎么使用它来当开关的,从图中我们可以看到它也像三极管一样有三个脚,这三个脚分别叫做栅极

(G)、源极(S)和漏极(D),mpn中的贴片元件示意图是这个样子: 1脚就是栅极,这个栅极就是控制极,在栅极加上电压和不加上电压 来控制2脚和3脚的相通与不相通,N沟道的,在栅极加上电压2脚和3脚就通电了,去掉电压就关断了,而P沟道的刚好相反,在栅极加上电压就关断(高电位),去掉电压(低电位)就相通了! 我们常见的2606主控电路图中的电源开机电路中经常遇到的就是P沟道MOS管: 这个图中的SI2305就是P沟道MOS管,由于有很多朋友对于检查这一部分的故 障很茫然,所以在这里很有必要讲一下它的工作原理,来加深一下你的印象! 图中电池的正电通过开关S1接到场效应管Q1的2脚源极,由于Q1是一个P沟 道管,它的1脚栅极通过R20电阻提供一个正电位电压,所以不能通电,电压不 能继续通过,3v稳压IC输入脚得不到电压所以就不能工作不开机!这时,如果 我们按下SW1开机按键时,正电通过按键、R11、R23、D4加到三极管Q2的基极, 三极管Q2的基极得到一个正电位,三极管导通(前面讲到三极管的时候已经讲 过),由于三极管的发射极直接接地,三极管Q2导通就相当于Q1的栅极直接接

二极管的特性与应用

二极管的特性与应用 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si 管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称

场效应管特性

根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件 -------------------------------------------------------------- 1.概念: 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件. 特点: 具有输入电阻高(100000000~1000000000Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者. 作用: 场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器. 场效应管可以用作电子开关. 场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源. 2.场效应管的分类:

场效应管分结型、绝缘栅型(MOS)两大类 按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种. 按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类.见下图: 3.场效应管的主要参数: Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流. Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压. Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压. gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数. BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS. PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量. IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSM Cds---漏-源电容 Cdu---漏-衬底电容 Cgd---栅-源电容 Cgs---漏-源电容 Ciss---栅短路共源输入电容 Coss---栅短路共源输出电容 Crss---栅短路共源反向传输电容 D---占空比(占空系数,外电路参数) di/dt---电流上升率(外电路参数) dv/dt---电压上升率(外电路参数) ID---漏极电流(直流) IDM---漏极脉冲电流 ID(on)---通态漏极电流 IDQ---静态漏极电流(射频功率管)

开关二极管应用举例

开关二极管应用举例 【篇一:开关二极管应用举例】 ;;; 二极管应用范围很广,利用其单向导电性,tdc-gp2可以构成整流、检波、限幅和钳位等电路。;;; 【例1.2.1】二极管整流电路如图1.2.4(a)所示,vd为理想硅二极管,已知输入v.为正弦波电压,试 画出输出电压v的波形。;;; 解:由于二极管是理想二极管,根据单向导电性,当vi正半周时,vd导通 相当于短路线,vo - vi;vi负半周时,vd截止相当于开路,vo一0。由此画出输出的波形 【篇二:开关二极管应用举例】 开关电路是一种常用的功能电路,例如家庭中的照明电路中的开关,各种民用电器中的电源开关等。 在开关电路中有两大类的开关。 (1)机械式的开关。采用机械式的开关件作为开关电路中的元器件。 (2)电子开关。所谓的电子开关,不用机械式的开关件,而是采用二 极管、三极管这类器件构成开关电路。 1.开关二橛管开关特性 开关二极管同普通的二极管一样,也是一个pn结的结构,不同之 处是要求这种二极管的开关特性要好。 关于开关二极管的开关时间概念说明下列几点。 (1)开通时间。开关二极管从截止到加上正向电压后的导通要有一段 时间,这一时间称为开通时间。要求这一时间愈短愈好。 (2)反向恢复时间。开关二极管在导通后,去掉正向电压,二极管从 导通转为截止所需要的时间称为反向恢复时间。要求这一时间愈短 愈好。 (3)开关时间。开通时间和反向恢复时间之和,称为开关时间。要求 这一时间愈短愈好。 2.二极管开关电路等效电路 二极管开关电路中要使用二极管,由于普通二极管的开关速度不够高,所以在这种开关电路中所使用的二极管为专门的开关二极管。 图11-50(a)所示是开关二极管的等效电路,从图中可看出,此时开 关二极管在等效成一只开关sl的同时,还有两只电阻。等效电路中 的开关sl可认为是一个理想的开关,即其接通电阻小到为零,其断 开电阻大到为无穷大。 在分析电子开关电路时,为了方便电路的分析,通常将二极管的开 关作用等效成一个理想的电子开关,即可以用图11-50( b)所示的开 关电路图形符号来等效开关二极管。

MOS管的开关特性

第二章 逻辑门电路 §2·1 D 、T 及MOS 管的开关特性 一、D 的开关特性 1、静态开关特性: D 的基本特性—“单向导电性”。 在数字大信号时,其伏安特性可分段线性化: ⑴正向特性: ①V D 正≤V T (开启电压)时,I D =0D 截止。 (Si:V T =0.5V ;Ge:V T =0.1V ) ②V D 正>V T (开启电压) 时,D 导通。 (Si:V D 正=0.7V ;Ge:V D 正=0.3V ) ∴D 正向导通有“钳位”作用(V +、V-只差0.7V ), 忽略V D 正=0.7V ,相当“K ”接通。 D 正向导通“等效电路”: ⑵反向特性: ①│V D 反│≤│BV R │时,D 截止。I D 反=I O 反向饱和电流很小。 (Si :I O <1μA ;Ge:几十μA ) 温度T ↑→I O ↑(Si:Io ↑=2 I O /8℃;Ge: Io ↑=2 I O /10℃ ∵Si 的I O 基数小,∴Si 管温度特性好。 D 反向截止有“隔离”作用,忽略I O ,相当“K ”断开。 ②│V D 反│>│BV R │时,D 反向击穿。 除稳压管为齐纳(电)击穿外,雪崩(电热)击穿、D 烧坏。 2、动态开关特性 指D 在状态转换(导通 截止)过程中的导电特性。 + r D +

开启时间 关断时间 V CC 如图: ∵D 状态转换中,“内部电荷”发生变化。 ∴内部电荷“建立”和“消散”过程, 均有“延时”: ①开启时间—t 0n ; ②关断时间—t 0ff (反向恢复时间t re ) 特别D 在正向导通→反向截止时,PN 结内部“存储电荷”存在, ∴D 不能立即截止,瞬间出现反向电流I D 反'(违背单向导电性)。 通常: t 0ff >>t 0n (均很小) ; 若信号频率不非常高,可忽略。 二、T 的开关特性 1、静态开关特性: T 的三种工作状态:①截止 ②放大导通 ③饱和导通 “截止”和“饱和导通”的 电路如图: ⑴截止状态:V I =V IL 若满足截止条件: “V be ≤V T ”(0.5V )→ T 截止图中: V be =V b =V IL -V R1 ≤0.5V 则:be 结、bc 结均反向→T 截止。 其特点: ① I b =-I cb0≈0 ② I c =I cb0≈0 ③ I e =0 相当“K ”断开。 截止等效电路:(右图) 可见:V O =V OH =V CC -I cb0R C ≈V CC )V V (R R R V BB IL 2 11 IL ++-=

二极管的特性与应用及英文代码含义

二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1. 正向特性。 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2. 反向特性。

MOS管i-v特性

一、实验目的 分析mos晶体管i-v特性分析 二、实验要求 了解结型场效应管和MOS管的工作原理、特性曲线及主要参数 三、实验内容 1、MOS器件的结构介绍 2、MOS的工作原理 3、i-v特性曲线 图1 原理图

1.特性曲线和电流方程 输出特性曲线 与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止 区和击穿区几部分。 转移特性曲线 转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和 区(恒流区),此时i D 几乎不随v DS 而变化,即不同的v DS 所对应的转移特性曲线几乎是重合的,所以可用v DS 大于某一数值(v DS >v GS -V T )后的一条转移特性曲线代替饱和区的所有转移特性曲线. i D 与v GS 的近似关系 与结型场效应管相类似。在饱和区内,i D 与v GS 的近似关系式为 ( v GS > V T ) 式中I DO 是v GS =2V T 时的漏极电流i D 。 2.参数 2 GS DO D )1(-=T V v I i

MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压V P,而用开启电压V T表征管子的特性。 MOS管 1. 基本结构 原因:制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使v GS=0时,在这些正离子产生的电场作用下,漏-源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压v DS,就有电流i D。 如果加上正的v GS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,i D增大。反之v GS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,i D减小。当v GS负向增加到某一数值时,导电沟道消失,i D趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用V P表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压V P也为负值,但是,前者只能在v GS<0的情况下工作。而后者在v GS=0,v GS>0,V P

二极管的开关作用和反向恢复时间

二极管的开关作用和反向恢复时间 PN结二极管经常用来制作电开关。在正偏状态,即开态,很小的外加电压就能产生较大的电流,;在反偏状态,即关态,只有很小的电流存在于PN结内。我们最感兴趣的开关电路参数就是电路的开关速度。本节会定性地讨论二极管的开关瞬态以及电荷的存储效应。在不经任何数学推导的情况下,简单给出描述开关时间的表达式。 二极管的开关作用 利用二极管正、反向电流相差悬殊这一特性,可以把二极管作开关使用。 当开关K打向A时,二极管处于正向,电流很大,相当于接有负载的外回路与电源相连的开关闭合,回路处于接通状态(开态); 当开关K打向B时,二极管处于反向,反向电流很小,相当于外回路的开关断开,回路处于断开状态(关态)。 在关态时,流过负载的电流就是二极管的反向电流IR。二极管的反向恢复时间 假设外加脉冲的波形如图(a)所示,则流过二极管的电流就如图(b)所示。

外电路加以正脉冲时 导通过程中,二极管P区向N区输运大量空穴,N区向P区输运大量电子。 随着时间的延长,N区内空穴和P区内电子不断增加,直到稳态时停止。在稳态时,流入N区的空穴正好与N区内复合掉的空穴数目相等,流入P区的电子也正好与P区内复合掉的电子数目相等,达到动态平衡,流过P-N结的电流为一常数I1。 随着势垒区边界上的空穴和电子密度的增加,P-N结上的电压逐步上升,在稳态即为VJ。此时,二极管就工作在导通状态。 当某一时刻在外电路上加的正脉冲跳变为负脉冲时 正向时积累在各区的大量少子要被反向偏置电压拉回到原来的区域,开始时的瞬间,流过P-N结的反向电流很大,经过一段时间后,原本积累的载流子一部分通过复合,一部分被拉回原来的区域,反向电流才恢复到正常情况下的反向漏电流值IR。正向导通时少数载流子积累的现象称为电荷储存效应。二极管的反向恢复过程就是由于电荷储存所引起的。反向电流保持不变的这段时间就称为储存时间ts。在ts 之后,P-N结上的电流到达反向饱和电流IR,P-N结达到平衡。定义流过P-N结的反向电流由I2下降到0.1 I2时所需的时间为下降时间tf。储存时间和下降时间之和为(ts+tf)称为

微电子器件试验-晶体管开关特性的测试分析

电子科技大学微固学院 标准实验报告 (实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点:211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:晶体管开关特性的测试分析 三、实验学时:3 四、实验原理: 图1 如图1所示,如果在晶体管基极输入一脉冲信号Vi,则基极和集电极电流波型如 图所示。故由图可读出其延迟时间T d 、上升时间T r 、存储时间T s 和下降时间T f 。 晶体管开关时间参数一般是按照集电极电流i C 的变化来定义:?延迟时间t d:从脉冲信号加入到i C上升到0.1I CS。 ?上升时间t r:从0.1I CS上升到0.9 I CS。 ?存储时间t s:从脉冲信号去除到i C下降到0.9 I CS。

?下降时间t f:从0.9 I CS下降到0.1 I CS。 ?其中t d + t r即开启时间、 t s + t f即关闭时间。 五、实验目的: 掌握晶体管开关特性测量原理。并能熟练地运用仪器其对双极晶体管的开关时间进行测试。 六、实验内容: 掌握晶体管开关特性测量原理,用如下实验装置图2观察晶体管输入输出波型,读出各参数。 改变外电路偏置,研究电路偏置对开关时间的影响。 图2 七、实验器材(设备、元器件): 双踪示波器、脉冲发生器、直流稳压电源、测试盒、9031NPN 八、实验步骤: 1、按上图2连接仪器,校准仪器。 2、上脉冲,记录输入输出波型及NPN的开关参数。

九、实验数据及结果分析: 测量9103NPN的开关参数即:延迟时间T d、上升时间T r、存储时间T s和下降时间T f。 十、实验结论: 通过测试,可以知道:晶体管的开关时间中存储时间比例最高。 十一、总结及心得体会: 晶体管开关时间是衡量晶体管开关速度特性的重要参数。据了解,晶体管开关作用优点如下:控制大功率、直接工作在整流380V市电上的晶体管功率开关,以及简单和优化的基极驱动造就的高性能。从而可以知道它对数字电路的工作频率和整机性能有直接影响。本实验的使我掌握了晶体管开关时间的物理性质和测量原理方法,理解了双极晶体管开关特性的基本参数。促进了我能够结合课本更加直观地认识晶体管开关作用的相关概念,继而提高了自己对于晶体管的学习兴趣,为将来的学术和工作都打下了良好的的实践基础。 十二、对本实验过程及方法、手段的改进建议: 实验仪器老旧,建议更新。 报告评分: 指导教师签字:

2.1 脉冲基础知识和二极管的开关特性

第 6章 脉冲基础知识和反相器 2.1 脉冲基础知识和二极管的开关特性 1.了解脉冲的基本概念、常见波形和矩形脉冲信号的主要参数。 2.理解二极管的开关特性。 4.掌握二极管工作状态的判断。 一、脉冲的概念及波形 1.脉冲的概念 脉冲技术是电子技术的重要组成部分,应用广泛。 脉冲:含有瞬间突然变化、作用时间极短的电压或电流称为脉冲信号,简称为脉冲。 2.常见的几种脉冲波形如图6-1-1所示。

电子技术学习指导与巩固练习 2 图6-1-1常见脉冲波形 3.特点:(1)可以是周期性的、非周期性的或单次的。 (2)有正脉冲、负脉冲之分。 (3)各种脉冲的共同点:突变性、间断性、阶段性。 二、矩形脉冲波的主要参数 1.矩形脉冲波的主要参数 脉冲技术最常用的波形是矩形波、方波。 理想的矩形波如图6-1-2所示:上升沿、下降沿陡直;顶部平坦。 图6-1-2 理想的矩形波波形 图6-1-3 实际的矩形波波形 实际的矩形波波形如图6-1-3所示。 主要参数: (1) 幅度V m ——脉冲电压变化的最大值。 (2) 上升时间t r ——脉冲从幅度的10% 处上升到幅度的90%处所需时间。 (3) 下降时间t f ——脉冲从幅度的90% 处下降到幅度的10%处所需的时间。 (4) 脉冲宽度t p —— 定义为前沿和后沿幅度为50%处的宽度。 (5) 脉冲周期T —— 对周期性脉冲,相邻两脉冲波对应点间相隔的时间。周期的倒数为脉冲的频率f ,即 T f 1= 2.矩形波的分解 矩形波可由基波和多次谐波叠加而成。基波的频率与矩形波相同,谐波的频率为基波的整数倍。矩形波的数学表达式为 +++=)5sin(5 )3sin(3)sin(000t A t A t A v ωωω 三、二极管的开关特性

二极管的基本特性与应用(精)

几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平 面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固 地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流” 电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1、正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电 压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当 二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。 2、最高反向工作电压 加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工

半导体二极管三极管和MOS管的开关特性(精)

理想开关的开关特性 假定图2.1.1所示S是一个理想开关,则其特性应如下: 一、静态特性 (一)断开时,无论Uak在多大范围内变化,其等效电阻Roff=无穷,通过其中的电流Ioff=0。(二)闭合时,无论流过其中的电流在多大范围内变化,其等效电阻Ron=0,电压Uak=0。 二、动态特性 (一)开通时间Ton=0,即开关S由断开状态转换到闭合状态不需要时间,可以瞬间完成。 (二)关断时间Toff=0,即开关由闭合状态转换到断开状态哦也不需要时间,亦可以瞬间完成。 客观世界中,当然没有这种理想开关存在。日常生活中使用的乒乓开关、继电器、接触 器等,在一定电压和电流范围内,其静态特性十分接近理想开关,但动态特性很差,根本不可能满足数字电路一秒钟开关几百万次乃至数千万次的需要。虽然,半导体二极管、三极管和MOS管作为开关使用时,其静态特性不如机械开关,但其动态特性却是机械开关无法比拟的。 2.1.2 半导体二极管的开关特性 半导体二极管最显著的特点是具有单向导电特性。 一、静态特性 (一)半导体二极管的结构示意图、符号和伏安特性 1.结构示意图和符号 如图2.1.2所示,是半导体二极管的结构示意图和符号。 半导体二极管是一种两层、一结、两端器件,两层就是P型层和N型层、一结就 内部只有一个PN结,两端就是两个引出端,一个引出端叫做阳极A,一个引出端称为阴极K。 2.伏安特性 反映加在二极管两端的电压Ud和流过其中的电流Id两者之间关系的曲线,叫做 伏安特性曲线,简称为伏安特性。图2.1.3给出的是硅半导体二极管的伏安特性。 从图2.1.3所示伏安特性可清楚地看出,当外加正向电压小于0.5V时,二极管工作在死区,仍处在截止状态。只有在Ud大于0.5V以后,二极管才导通,而且当Ud达到0.7V后,即

MOS 场效应管的工作原理及特点

MOS 场效应管的工作原理及特点 场效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。有N沟道器件和P 沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide SemIConductor FET)。 MOS场效应管 有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟 道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P型半导体称为衬底(substrat),用符号B表示。 一、工作原理 1.沟道形成原理

当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着Vgs的继续增加,ID将不断增加。 在Vgs=0V时ID=0,只有当Vgs>Vgs(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 VGS对漏极电流的控制关系可用iD=f(vGS)|VDS=const这一曲线描述,称为转移特性曲线,见图。 转移特性曲线斜率gm的大小反映了栅源电压对漏极电流的控制作用。gm 的量纲为mA/V,所以gm也 称为跨导。 跨导的定义式如下: gm=△ID/△VGS| (单位mS) 2.Vds对沟道导电能力的控制 当Vgs>Vgs(th),且固定为某一值时,来分析漏源电压Vds对漏极电流ID的影响。Vds的不同变化对沟 道的影响如图所示。 根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS VGD=VGS—VDS 当VDS为0或较小时,相当VGD>VGS(th),沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,

二极管的作用

二极管的作用 1、整流 利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉冲直流电。 2、开关 二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。 3、限幅 二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 4、续流 在开关电源的电感中和继电器等感性负载中起续流作用。 5、检波 在收音机中起检波作用。 6、变容 使用于电视机的高频头中。 7、显示 用于VCD、DVD、计算器等显示器上。 8、稳压 稳压二极管实质上是一个面结型硅二极管,稳压二极管工作在反向击穿状态。在二极管的制造工艺上,使它有低压击穿特性。稳压二极管的反向击穿电压恒定,在稳压电路中串入限流电阻,使稳压管击穿后电流不超过允许值,因此击穿状态可以长期持续并不会损坏。 9、触发 触发二极管又称双向触发二极管(DIAC)属三层结构,具有对称性的二端半导体器件。常用来触发双向可控硅,在电路中作过压保护等用途。 1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。 2、识别方法:二极管的识别很简单,小功率二极管的N 极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。 3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。 4、常用的1N4000系列二极管耐压比较如下:型号 1N40011N4002 1N4003 1N4004 1N4005 1N4006 1N4007

开关二极管--型号类别及其参数

1.开关二极管的作用开关二极管的作用是利用其单向导电特性使其成为一个较理想的电子开关。 图4-10是开关二极管的应用电路。 开关二极管除能满足普通二极管和性能指标要求外,还具有良好的高频开关特性(反向恢复时间较短),被广泛应用于家电电脑、电视机、通信设备、家用音响、影碟机、仪器仪表、控制电路及各类高频电路中。 开关二极管分为普通开关二极管、高速开关二极管、超高速开关二极管、低功耗开关二极管、高反压开关二极管、硅电压开关二极管等多种。 开关二极管的封装形式有塑料封装和表面封装等。如图4-11所示。

2.普通开关二极管常用的国产普通开关二极管有2AK系列锗开关二极管,表4-8为2AK系开关二极管的主要参数。 3.高速开关二极管高速开关二极管较普通开关二极管的反向恢复时间更短,开、关频率更快。 常用的国产高速开关二极管有2CK系列,见表4-9。

进口高速开关二极管有1N系列、1S系列、1SS系列(有引线塑封)和RLS系列(表面安装),见表4-10和表4-11。 表4-11

4.超高速开关二极管常用的超高速二极管有1SS系列(有引线塑封)和RLS系列(表面封装),见表4-12。 5.低功耗开关二极管低功耗开关二极管的功耗较低,但其零偏压电容和反向恢复时间值均较高速开关二极管低。 常用的低功耗开关二极管有RLS系列(表面封装)和1SS系列(有引线塑封),表4-13为其主要参数。

6.高反压开关二极管高反压开关二极管的反向击穿电压均在220V以上,但其零偏压电容和反向恢复时间值相对较大。 常用的高反压开关二极管有RLS系列(表面封装)和1SS系列(有引线塑封),其主要参数见表4-14。 7.硅电压开关二极管硅电压开关二极管是一种新型半导体器件,有单向电压开关二极管和双向电压开关二极管之分,主要应用于触发器、过压保护电路、脉冲发生器及高压输出、延时、电子开关等电路。

MOS管特性(经典)

MOS管开关 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失

相关文档
最新文档