Creo(Proe)空间曲线的构建方法

Creo(Proe)空间曲线的构建方法
Creo(Proe)空间曲线的构建方法

江西省南昌市2015-2016学年度第一学期期末试卷

(江西师大附中使用)高三理科数学分析

一、整体解读

试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。 1.回归教材,注重基础

试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。 2.适当设置题目难度与区分度

选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。 3.布局合理,考查全面,着重数学方法和数学思想的考察

在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析

1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →

=,则A BA C →→

?的最小值为( )

A .1

4- B .12-

C .34-

D .1-

【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。解法较多,属于较难题,得分率较低。

【易错点】1.不能正确用OA ,OB

,OC 表示其它向量。

2.找不出OB 与OA 的夹角和OB

与OC 的夹角的倍数关系。

【解题思路】1.把向量用OA ,OB

,OC 表示出来。

2.把求最值问题转化为三角函数的最值求解。

【解析】设单位圆的圆心为O ,由AB AC →

=得,22

()()OB OA OC OA -=- ,因为

1OA OB OC ===

,所以有,OB OA OC OA ?=? 则()()AB AC OB OA OC OA ?=-?-

2OB OC OB OA OA OC OA =?-?-?+

21OB OC OB OA =?-?+

设OB 与OA 的夹角为α,则OB

与OC 的夹角为2α

所以,cos22cos 1AB AC αα?=-+ 211

2(cos )22

α=--

即,AB AC ? 的最小值为1

2

-,故选B 。

【举一反三】

【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知

//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ

== 则AE AF ? 的最小值为.

【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何

运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ? ,体

现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】

2918

【解析】因为1,9DF DC λ= 12

DC AB =

119199918CF DF DC DC DC DC AB λλλλλ

--=-=-== ,

AE AB BE AB BC λ=+=+ ,19191818AF AB BC CF AB BC AB AB BC λλλλ

-+=++=++=+ ,

()

221919191181818AE AF AB BC AB BC AB BC AB BC

λλλλλλλλλ+++?????=+?+=+++?? ? ?????

19199421cos1201818

λλ

λλ++=

?++???

?2117172992181818λλ=

++≥+= 当且仅当2192λλ=即23λ=时AE AF ? 的最小值为

29

18

. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的

交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设8

9

FA FB →

?=

,求BDK ?内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。

【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。

2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。 【解题思路】1.设出点的坐标,列出方程。 2.利用韦达定理,设而不求,简化运算过程。 3.根据圆的性质,巧用点到直线的距离公式求解。

【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =

则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -, 故2

14x my y x =-??

=?整理得2

440y my -+=,故121244

y y m y y +=??=? 则直线BD 的方程为()212221y y y y x x x x +-=--即2

222144y y y x y y ?

?-=- ?-??

令0y =,得1214

y y

x ==,所以()1,0F 在直线BD 上.

(Ⅱ)由(Ⅰ)可知121244

y y m y y +=??=?,所以()()2

12121142x x my my m +=-+-=-,

()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →

=-

故()()()2

1212121211584FA FB x x y y x x x x m →→

?=--+=-++=-,

则2

84

84,93

m m -=

∴=±,故直线l 的方程为3430x y ++=或3430x y -+=

21y y -==

故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,

故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131

,54t t +--------------10分 由

31315

4t t +-=

得1

9t =或9t =(舍去).故圆M 的半径为31253

t r +=

= 所以圆M 的方程为2

21499x y ?

?-+= ??

?

【举一反三】

【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=5

4|PQ|.

(1)求C 的方程;

(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.

【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x.

(2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入

y 2=2px ,得

x 0=8

p

所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8

p

.

由题设得p 2+8p =54×8

p ,解得p =-2(舍去)或p =2,

所以C 的方程为y 2=4x.

(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.

故线段的AB 的中点为D(2m 2+1,2m), |AB|=

m 2+1|y 1-y 2|=4(m 2+1).

又直线l ′的斜率为-m ,

所以l ′的方程为x =-1

m y +2m 2+3.

将上式代入y 2=4x ,

并整理得y 2+4

m y -4(2m 2+3)=0.

设M(x 3,y 3),N(x 4,y 4),

则y 3+y 4=-4

m

,y 3y 4=-4(2m 2+3).

故线段MN 的中点为E ? ????

2m

2+2m 2+3,-2m ,

|MN|=

1+1

m 2|y 3-y 4|=4(m 2+1)2m 2+1

m 2

.

由于线段MN 垂直平分线段AB ,

故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=1

2|MN|,

从而14|AB|2+|DE|2=1

4|MN|2,即 4(m 2+1)2+

? ????2m +2m 2+? ??

??2

m 2+22=

4(m 2+1)2(2m 2+1)

m 4

化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.

三、考卷比较

本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。

即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。题型分值完全一样。选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。

3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。

四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)

PROE螺纹三种画法

基于Pro/E 3.0创建螺纹的三种方法 ——原创:哈尔滨工业大学翟万柱 笔者是Pro/E的初学者,在这里仅就个人在Pro/E学习中的点滴心得与大家分享,希望大家提出宝贵意见、多多批评,以求共同进步。 螺纹机构是机械行业普遍应用的一种机构,为创建螺纹的方便Pro/E中设立有强大的螺旋扫描功能,可以实现螺纹、弹簧等基于螺旋线多种特征,其中的变节距螺旋扫描功能更是为螺旋类特征的灵活创建提供的广阔的空间,本文最后将介绍变节距弹簧的建模过程。 在掌握直接应用内建功能实现螺旋特征创建的同时,笔者认为从理论原理出 发,通过基础建模功能实mouse曲面.prt.1 现设想功能也是十分必要的。不但对 其他三维软件学习起到借鉴作用,同时也可以在内建功能不能满足要求的时候通过基础功能的灵活运用达到目的,并可以对Pro/E3.0的基本功能和机械基础知识增进了解。 方法一: 首先,应用“插入”(Insert)>“扫描”(Sweep)>“伸出项”(Protrusion)功能进行普通梯形螺纹的建模。 想必大家对此功能都已熟悉,唯一值得讨论的地方也是重要的地方可能就是螺旋线的生成问题了。简单易行的方法就是用方程建立曲线,而且可以容易的与参数建立关系,使得生成特征具有通用性。 常用参数方程如下:(应用时注意坐标系的选择与类型的设定) 笛卡儿坐标下的螺旋线柱坐标下的螺旋线x = radia * cos ( t *(n*360)) r=radia y = radia * sin ( t * (n*360)) theta=theta0+t*(n*360) z = l*t z=t*l 其中:radia为半径;n为指定长度上螺旋线的圈数;l为设定长度。 n=l/螺距;多头螺纹生成需要多条螺旋线,注意生成其他螺旋线时须设定参数方程中角度的初始值;对于左旋螺纹参数方程中角度值取负 值。 生成螺旋曲线方法为:单击“插入”(Insert)>“模型基准”(Model Datum)> “曲线”(Curve),或单击“基准”(Datum)工具栏上的按钮。然后选择“从方程”(From Equation),接下来选择坐标系并指定坐标系类型后,既可在编辑窗口中输入相关参数方程,得到目的曲线。 此种方法虽然简单、快结,但需要熟悉参数方程,并熟练坐标系的设定。对于象笔者这样数学不佳,又相对懒惰的朋友,是否有更直观的方法可行呢?答案是肯定的。

空间曲线与曲面

实验七空间曲线与曲面 实验目的 1.掌握空间直线、平面的画法。 2.了解常见的空间曲线与曲面的画法。 与本实验相关的理论 最基本的空间作图函数是Plot3 ,用于作所有二元函数的三维立方体图形,其格式是: Plot3D[f,{x,xmin,xmax},{y,ymin,ymax},可选项] 由于很多曲面和绝大多数曲线都不能用显函数的形式表示。Mathematica 还提供了Parametric Plot3D参数作图函数,其格式是:Parametric Plot3D[{x[u,v],y[u,v] ,z[u,v]} ,{u,umin,umax},{v,vmin,vmax},可选项] Mathematica作三维图形的机理是先在XOY坐标面给定区域内计算出一系列格点的值,再用矩形“小瓦片”拟合张在上面的曲面上。因而如果曲面的表面变化复杂,可通过设置更细的“瓦片”分割来改善。这时候可增加选项PlotPoint―>n 来说明分割数n。 实验步骤 一、画空间曲线 注意空间曲线的参数方程只有一个参变量,如果要画出螺旋线 x=10cost , y=10sint , z=2t 的图形,只要输入: Parametric Plot3D[{10cos[t],10sin[t],2t} ,{t,0,20}] 空间直线也类似地处理。 例1:求过A(3,5,-2),B(3,5,-2)的直线方程,并画图。 分析:空间直线方程可由点向式写出,再改成参数式

) 2(4)2(535313----=--=--z y x 化为参数式是:t x 23-=,t y 25-=,t z 62+-= 输入:Parametric Plot3D[{3-2t ,5-2t ,-2+6t} ,{t ,0,1}] 二、画空间曲面 例2:求过A (1,0,0),B (0,2,0),C (0,0,3),的平面方程,并画图。 分析:平面方程可由截距式写出,y x z 2 333--=。 输入:Parametric Plot3D[{3-3x-3y/2} ,{x ,-1,1},{y ,-1,1}] 例3:画出二元函数22),(y x y x f +=的图形。 输入:Parametric Plot3D[{x^2+y^2} ,{x ,-4,4},{y ,-4,4}] 例4:画出椭球心在原点,3=a ,4=b ,5=c 的椭球面。 输入:Parametric Plot3D[{3*Cos[u] Cos[v], 4*Sin[u] Cos[v],5*Sin[v]} ,{u ,0,2Pi},{v ,-Pi/2,Pi/2}] 例5:画出以x y cos =为准线,母线平行于Z 轴的柱面。 输入:Parametric Plot3D[{x,Cos[x],z} ,{x ,-4,4},{z ,-4,4}] 例6:画出由平面曲线z x cos 1+=绕Z 轴放转而成的旋转面。 输入:Parametric Plot3D[{(1+Cos[u])Cos[v] ,(1+Cos[u])Sin[v] ,u} ,{u ,-Pi ,Pi},{v ,0,2Pi}] 例7:画单叶双曲面。 输入:Parametric Plot3D[{Sec[u]Cos[v] ,Sec[u]Sin[v] ,Tan[u]} ,{u ,-Pi/2+0.5,Pi/2-0.5},{v ,0,2Pi}]

PROE螺纹画法

Pro/E 3.0创建螺纹的方法 笔者是Pro/E的初学者,在这里仅就个人在Pro/E学习中的点滴心得与大家分享,希望大家提出宝贵意见、多多批评,以求共同进步。 螺纹机构是机械行业普遍应用的一种机构,为创建螺纹的方便Pro/E中设立有强大的螺旋扫描功能,可以实现螺纹、弹簧等基于螺旋线多种特征,其中的变节距螺旋扫描功能更是为螺旋类特征的灵活创建提供的广阔的空间,本文最后将介绍变节距弹簧的建模过程。 在掌握直接应用内建功能实现螺旋特征创建的同时,笔者认为从理论原理出发,通过基础建模功能实现设想功能也是十分必要的。不但对其他三维软件学习起到借鉴作用,同时也可以在内建功能不能满足要求的时候通过基础功能的灵活运用达到目的,并可以对Pro/E3.0的基本功能和机械基础知识增进了解。 方法一: 首先,应用“插入”(Insert)>“扫描”(Sweep)>“伸出项”(Protrusion)功能进行普通梯形螺纹的建模。 想必大家对此功能都已熟悉,唯一值得讨论的地方也是重要的地方可能就是螺旋线的生成问题了。简单易行的方法就是用方程建立曲线,而且可以容易的与参数建立关系,使得生成特征具有通用性。

常用参数方程如下:(应用时注意坐标系的选择与类型的设定)笛卡儿坐标下的螺旋线柱坐标下的螺旋线x = radia * cos ( t *(n*360)) r=radia y = radia * sin ( t * (n*360)) theta=theta0+t*(n*360) z = l*t z=t*l 其中:radia为半径;n为指定长度上螺旋线的圈数;l为设定长度。 n=l/螺距;多头螺纹生成需要多条螺旋线,注意生成其他螺旋线时须设定参数方程中角度的初始值;对于左旋螺纹 参数方程中角度值取负值。 生成螺旋曲线方法为:单击“插入”(Insert)>“模型基准”(Model Datum)>“曲线”(Curve),或单击“基准”(Datum)工具栏上的 按钮。然后选择“从方程”(From Equation),接下来选择坐标系并指定坐标系类型后,既可在编辑窗口中输入相关参数方程,得到目的曲线。 此种方法虽然简单、快结,但需要熟悉参数方程,并熟练坐标系的设定。对于象笔者这样数学不佳,又相对懒惰的朋友,是否有更直观的方法可行呢?答案是肯定的。 下面笔者就以变截面扫描功能根据螺纹形成原理实现此目的,虽然步骤繁琐但容易理解,同时也可以为大家开拓思路,深刻的理解Pro/E基本功能。

实验2-空间曲线曲面图形的绘制

实验二空间曲线曲面图形的绘制 一、实验目的 熟练掌握使用Mathematica软件绘制空间曲线曲面图形的方法. 二、实验容与Mathematica命令 1.基本三维图形 函数(,) 的图形为三维空间的一个曲面,Mathematica中,绘制三维曲面图形的 z f x y 基本命令格式为 Plot3D[f,{x,xmin,xmax},{y,ymin,ymax},Options] 其中,f为一个二元显函数. 该命令有众多可供使用的选项,可执行命令“Options[Plot3D]”查询. 1)绘制曲面的基本方法 运行t1=Plot3D[Sin[x+y]*Cos[x+y],{x,0,4},{y,0,4}] 图1 2)用PlotRange 设定曲面的表面的变化围 运行Show[t1,PlotRange{-0.2,0.5}]

图2 3)坐标轴上加标记,并且在每个外围平面上画上网格 运行Show[t1,AxesLabel{"Time","Depth","Value"},FaceGrids All] 图 3 4)观察点的改变 将观察点改变在(2,-2,0),运行 Show[t1,ViewPoint{2,-2,0}]

图 4 也可用鼠标拖动改变视点。 5)无网格和立体盒子的曲面 运行 Show[t1,Mesh False,Boxed False] 图 5 6)没有阴影的曲面 利用Shading取消曲面的阴影运行 Show[t1,Shading False]

图 6 7)给曲面着色 Show[t1,Lighting False 图 7 Show[t1,Lighting None]

ProE各种曲线及方程

1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 此主题相关图片如下:1.jpg 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 此主题相关图片如下:2.jpg 3.螺旋线(Helical curve) 圆柱坐标(cylindrical)

方程:r=t theta=10+t*(20*360) z=t*3 此主题相关图片如下:3.jpg 4.蝴蝶曲线 球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8

此主题相关图片如下:4.jpg 5.渐开线 采用笛卡尔坐标系 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 此主题相关图片如下:5.jpg

6.螺旋线. 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 此主题相关图片如下:6.jpg 7.对数曲线 笛卡尔坐标系 方程:z=0 x = 10*t y = log(10*t+0.0001) 此主题相关图片如下:7.jpg

采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20 此主题相关图片如下:8.jpg 9.双弧外摆线 卡迪尔坐标 方程:l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 此主题相关图片如下:9.jpg 10.星行线 卡迪尔坐标

proe中曲线方程proe各种螺旋线画法教学提纲

每一页的曲线类型如下: 第1页:碟形弹簧、葉形线、螺旋线(Helical curve)、蝴蝶曲线和渐开线; 第2页:螺旋线、对数曲线、球面螺旋线、双弧外摆线和星行线; 第3页:心脏线、圆内螺旋线、正弦曲线、太阳线和费马曲线(有点像螺纹线); 第4页:Talbot 曲线、4叶线、Rhodonea 曲线、抛物线和螺旋线; 第5页:三叶线、外摆线、Lissajous 曲线、长短幅圆内旋轮线和长短幅圆外旋轮线;第6页:三尖瓣线、概率曲线、箕舌线、阿基米德螺线和对数螺线; 第7页:蔓叶线、tan曲线、双曲余弦、双曲正弦和双曲正切; 第8页:一峰三驻点曲线、八字曲线、螺旋曲线、圆和封闭球形环绕曲线; 第9页:柱坐标螺旋曲线、蛇形曲线、8字形曲线、椭圆曲线和梅花曲线; 第10页:花曲线、空间感更强的花曲线、螺旋上升的椭圆线、螺旋花曲线和鼓形线; 第11页:长命锁曲线、簪形线、螺旋上升曲线、蘑菇曲线和8字曲线; 第12页:梅花曲线、桃形曲线、碟形弹簧、环形二次曲线和蝶线; 第13页:正弦周弹簧、环形螺旋线、内接弹簧、多变内接式弹簧和柱面正弦波线; 第14页:ufo(漩涡线)手把曲线、篮子、圆柱齿轮齿廓的渐开线方程和对数螺旋曲线;第15页:罩形线、向日葵线、太阳线、塔形螺旋线和花瓣线; 第16页:双元宝线、阿基米德螺线的变形、渐开线方程、双鱼曲线和蝴蝶结曲线; 第17页:“两相望”曲线、小蜜蜂、弯月、热带鱼和燕尾剪; 第18页:天蚕丝、心电图、变化后的星形线、小白兔和大家好; 第19页:蛇形线、五环、蜘蛛网、次声波和十字渐开线; 第20页:内五环和蜗轨线; 1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3))

ProE 各种曲线方程集合(超全)

Pro/E 各种曲线方程集合 1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 此主题相关图片如下:1.jpg 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 此主题相关图片如下:2.jpg

3.螺旋线(Helical curve) 圆柱坐标(cylindrical) 方程:r=t theta=10+t*(20*360) z=t*3 此主题相关图片如下:3.jpg 4.蝴蝶曲线 球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8

此主题相关图片如下:4.jpg 5.渐开线 采用笛卡尔坐标系 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 此主题相关图片如下:5.jpg

6.螺旋线. 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 此主题相关图片如下:6.jpg 7.对数曲线

笛卡尔坐标系 方程:z=0 x = 10*t y = log(10*t+0.0001) 此主题相关图片如下:7.jpg 8.球面螺旋线 采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20 此主题相关图片如下:8.jpg 9.双弧外摆线 卡迪尔坐标

proe曲线造型

1太阳线柱坐标 r=1.5*cos(50*theta)+1 theta=t*360 z=0 圆螺旋 线柱 座标系 theta=t* 360 r=10+10*sin(6*theta) z=2*sin(6*theta) 费马曲线(有点像螺纹线) 数学方程:r*r = a*a*theta

圆柱坐标 方程1: theta=360*t*5 a=4 r=a*sqrt(theta*180/pi) 方程2: theta=360*t*5 a=4 r=-a*sqrt(theta*180/pi) 由于Pro/e只能做连续的曲线,所以只能分两次做 Talbot 曲线 卡笛尔坐标 theta=t*360 a=1.1 b=0.666 c=sin(theta) f=1 x = (a*a+f*f*c*c)*cos(theta)/a y = (a*a-2*f+f*f*c*c)*sin(theta)/b Rhodonea 曲线 笛卡尔坐标系 theta=t*360*4

x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta) y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta) 螺旋线 圆柱坐标 r = 5 theta = t*1800 z =(cos(theta-90))+24*t 三叶线 圆柱坐标 a=1 theta=t*380 b=sin(theta) r=a*cos(theta)*(4*b*b-1)

迪卡尔坐标 theta=t*720*5 b=8 a=5 x=(a+b)*cos(theta)-b*cos((a/b+1)*theta) y=(a+b)*sin(theta)-b*sin((a/b+1)*theta) z=0 长短幅圆旋轮线 卡笛尔坐标 a=5 b=7 c=2.2 theta=360*t*10 x=(a-b)*cos(theta)+c*cos((a/b-1)*theta) y=(a-b)*sin(theta)-c*sin((a/b-1)*theta) 长短幅圆外旋轮线 卡笛尔坐标 theta=t*360*10 a=5 b=3 c=5 x=(a+b)*cos(theta)-c*cos((a/b+1)*theta) y=(a+b)*sin(theta)-c*sin((a/b+1)*theta)

空间曲线与曲面的绘制

空间曲线与曲面的绘制 本实验的目的是:利用数学软件Mathematica 绘制三维图形来观察空间曲线和空间曲面图形的特 点,以加强几何的直观性。 1. 空间曲线的绘制 绘制空间曲线时一般使用曲线的参数方程,利用命令“ParametricPlot3D ”如画出参数方程「x =x(t) * y = y(t) , h Et “2所确定的空间曲线的命令格式为: Z =z(t) ParametricPlot3D[{x[t],y[t],z[t]},{t,tmi n, tmax}, 选项] 例1 画出旋转抛物面z = x2y2与上半球面z = 1亠:1 - x2- y2交线的图形。 X = cost 解:它们的交线为平面z=1上的圆x2+y2=1,化为参数方程为*y = sint,t"O,勿],下面的 z = 1 mathematica命令就是作出它们的交线并把它存在变量p中: p ParametricPlot3D Cos t , Sin t , 1 , t, 0, 2 Pi 运行即得曲线如图1所示。 在这里说明一点,要作空间曲线的图形,必须先求出该曲线的参数 乍(x, y, z) =0 方程。如果曲线为一般式,其在xOy面上的投影柱面的

PROE如何制作螺旋线

PRO/E如何制作螺旋线 作螺旋线有下列二个方法:1、formed curve ;2、利用方程式(from equation) 一.Formed curve: 1、首先建立缺省的datum plan;并建立一个参数p,用来控制螺旋圈数(set up/parameter s/create/real parameters ,初始值可以设为:1) 2、建立圆柱体(或者圆柱曲面),如下图: 3、建立form curve,选择tang plane 为sketching plane,选择圆柱体的顶面为top,然后绘制如 下图直线: 注意事项:a、对齐直线的两个端点(右上端点对齐圆柱的top面,左下端点对齐圆柱轴线和tang plane的交点) b、建立coordinate system,并对齐直线的左下端点)

4、建立relation: sd#=L*P*PI*D L为圆柱的长度 P 为参数(第一步建立的参数) D 为圆柱的直径 PI 为π 5、regenerate后你可以看到生成的helical curve了。 二、利用方程式: 1、首先建立缺省的datum plan,coordinate system 2、建立datum curve ,选择from equation 3、选择coordinate system, 圆柱坐标(cylindrical) 此时出现下列信息: /* For cylindrical coordinate system, enter parametric equation /* in terms of t (which will vary from 0 to 1) for r, theta and z /* For example: for a circle in x-y plane, centered at origin /* and radius = 4, the parametric equations will be: /* r = 4 /* theta = t * 360 /* z = 0

空间曲线的切线与空间曲面的切平面

第六节 空间曲线的切线与空间曲面的切平面 一、空间曲线的切线与法平面 设空间的曲线C 由参数方程的形式给出:?? ? ??===)()()(t z z t y y t x x ,),(βα∈t . 设),(,10βα∈t t ,)(),(),((000t z t y t x A 、))(),(),((111t z t y t x B 为曲线上两点,B A ,的连线AB 称为曲线C 的割线,当A B →时,若AB 趋于一条直线,则此直线称为曲线C 在点A 的切线. 如果)()()(t z z t y y t x x ===,,对于t 的导数都连续且不全为零(即空间的曲线C 为光滑曲线),则曲线在点A 切线是存在的.因为割线的方程为 ) ()() ()()()()()()(010010010t z t z t z z t y t y t y y t x t x t x x --=--=-- 也可以写为 010********)()() ()()()()()()(t t t z t z t z z t t t y t y t y y t t t x t x t x x ---=---=--- 当A B →时,0t t →,割线的方向向量的极限为{})(),(),(000t z t y t x ''',此即为切线的方向向量,所以切线方程为 ) () ()()()()(000000t z t z z t y t y y t x t x x '-='-='-. 过点)(),(),((000t z t y t x A 且与切线垂直的平面称为空间的曲线C 在点 )(),(),((000t z t y t x A 的法平面,法平面方程为 ))(())(())((00'00'00'=-+-+-z z t z y y t y x x t x 如果空间的曲线C 由方程为 )(),(x z z x y y == 且)(),(0' 0'x z x y 存在,则曲线在点)(),(,(000x z x y x A 的切线是 ) () ()()(100000x z x z z x y x y y x x '-= '-=- 法平面方程为

proe中曲线方程proe各种螺旋线画法学习资料

p r o e中曲线方程 p r o e各种螺旋线画法

每一页的曲线类型如下: 第1页:碟形弹簧、葉形线、螺旋线(Helical curve)、蝴蝶曲线和渐开线; 第2页:螺旋线、对数曲线、球面螺旋线、双弧外摆线和星行线; 第3页:心脏线、圆内螺旋线、正弦曲线、太阳线和费马曲线(有点像螺纹线); 第4页:Talbot 曲线、4叶线、Rhodonea 曲线、抛物线和螺旋线; 第5页:三叶线、外摆线、Lissajous 曲线、长短幅圆内旋轮线和长短幅圆外旋轮线;第6页:三尖瓣线、概率曲线、箕舌线、阿基米德螺线和对数螺线; 第7页:蔓叶线、tan曲线、双曲余弦、双曲正弦和双曲正切; 第8页:一峰三驻点曲线、八字曲线、螺旋曲线、圆和封闭球形环绕曲线; 第9页:柱坐标螺旋曲线、蛇形曲线、8字形曲线、椭圆曲线和梅花曲线; 第10页:花曲线、空间感更强的花曲线、螺旋上升的椭圆线、螺旋花曲线和鼓形线; 第11页:长命锁曲线、簪形线、螺旋上升曲线、蘑菇曲线和8字曲线; 第12页:梅花曲线、桃形曲线、碟形弹簧、环形二次曲线和蝶线; 第13页:正弦周弹簧、环形螺旋线、内接弹簧、多变内接式弹簧和柱面正弦波线; 第14页:ufo(漩涡线)手把曲线、篮子、圆柱齿轮齿廓的渐开线方程和对数螺旋曲线;第15页:罩形线、向日葵线、太阳线、塔形螺旋线和花瓣线; 第16页:双元宝线、阿基米德螺线的变形、渐开线方程、双鱼曲线和蝴蝶结曲线; 第17页:“两相望”曲线、小蜜蜂、弯月、热带鱼和燕尾剪; 第18页:天蚕丝、心电图、变化后的星形线、小白兔和大家好; 第19页:蛇形线、五环、蜘蛛网、次声波和十字渐开线; 第20页:内五环和蜗轨线; 1.碟形弹簧 圓柱坐标

各种曲线PROE的参数方程(精)

各种曲线 PROE 的参数方程 1. 碟形弹簧 (柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90+24*t 2. 葉形线 . 方程:a=10 x=3*a*t/(1+(t^3 y=3*a*(t^2/(1+(t^3 3.锥形螺旋线 (Helical curve 方程:r=t theta=10+t*(20*360 z=t*3 4. 蝴蝶曲线 (球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 5. 渐开线 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang y0=s*sin(ang x=x0+s*sin(ang y=y0-s*cos(ang z=0 (相似形:69、 78

6. 圆柱螺旋线 . 方程:x = 4 * cos ( t *(5*360 y = 4 * sin ( t *(5*360 z = 10*t 7. 对数曲线 方程:z=0 x = 10*t y = log(10*t+0.0001 8. 球面螺旋线 方程:rho=4 theta=t*180 phi=t*360*20 9. 双弧外摆线 方程:l=2.5 b=2.5 x=3*b*cos(t*360+l*cos(3*t*360 Y=3*b*sin(t*360+l*sin(3*t*360 10. 星形线 方程:a=5 x=a*(cos(t*360^3 y=a*(sin(t*360^3 11. 心脏线 方程:a=10 r=a*(1+cos(theta theta=t*360 12. 圆内螺旋线 方程:theta=t*360 r=10+10*sin(6*theta z=2*sin(6*theta 13. 正弦线方程:x=50*t y=10*sin(t*360 z=0

曲面与空间曲线的方程

第2章 曲面与空间曲线的方程 本章教学目的:通过本章学习,使学生理解空间坐标系下曲面与空间曲线方程之定 义及表示,熟悉空间中一些特殊曲面、曲线的方程。 本章教学重点:空间坐标系下曲面与空间曲线方程的定义。 本章教学难点:(1)空间坐标系下母线平行于坐标轴的柱面方程与平面坐标系下有 关平面曲线方程的区别; (2)空间坐标系下,空间曲线一般方程的规范表示。 本章教学内容: §1 曲面的方程 一 普通方程: 1 定义:设Σ为一曲面,F (x ,y ,z )=0为一三元方程,空间中建立了坐标系以后, 若Σ上任一点P (x ,y ,z )的坐标都满足F (x ,y ,z )=0,而且凡坐标满足方程的点都在曲面Σ上,则称F (x ,y ,z )=0为Σ的普通方程,记作 Σ:F (x ,y ,z )=0. 不难看出,一点在曲面Σ上〈═〉该点的坐标满足Σ的方程,即曲面上的点与其方程的解之间是一一对应的 ∴Σ的方程的代数性质必能反映出Σ的几何性质。 2 三元方程的表示的几种特殊图形: 空间中任一曲面的方程都是一三元方程,反之,是否任一三元方程也表示空间中的 一个曲面呢?一般而言这是成立的,但也有如下特殊情况 1° 若F (x ,y ,z )=0的左端可分解成两个(或多个)因式F 1(x ,y ,z ) 与F 2(x ,y ,z )的乘积,即F (x ,y ,z )≡F 1(x ,y ,z )F 2(x ,y ,z ),则 F (x ,y ,z )=0〈═〉F 1(x ,y ,z )=0或F 2(x ,y ,z )=0,此时 F (x ,y ,z )=0表示两叶曲面1∑与2∑,它们分别以F 1(x ,y ,z )=0,F 2(x ,y ,z )=0为其方程,此时称F (x ,y ,z )=0表示的图形为变态曲面。如 0),,(=≡xyz z y x F 即为三坐标面。 20方程()()[] 0)3(21)(),,(222222=-+-+-++≡z y x z y x z y x F 仅表示坐标原点和点(1,2,3) 3°方程0),,(=z y x F 可能表示若干条曲线,如 0))((),,(2 222=++≡z y y x z y x F 即表示z 轴和x 轴 4°方程0),,(=z y x F 不表示任何实图形,如

§7.4.1-3空间曲面和空间曲线

§7.4空间曲面和空间曲线 本节以两种方式来讨论空间曲面: (1)已知曲面的形状,建立这曲面的方程; (2)已知一个三元方程,研究这方程的图形。 7.4.1球面与柱面 (一)球面 空间中与一定点等距离的点的轨迹叫球面。 求球心在点),,( z y x M ,半径为R 的球面方程。 设),,(z y x M 为球面上的任一点,则有R M M = ,即 R z z y y x x =-+-+-222)()()( ,化简得: 2222)()()(R z z y y x x =-+-+- 。 ① 满足方程①,因此,方程①是球面的方程。 当0=== z y x 时,即球心在原点的球面方程为 2 222R z y x =++。 ② 例1.指出方程05642222=+--+++z y x z y x 表示何种曲面。 解:9415964412222+++-=+-++-+++z z y y x x , 22223)3()2()1(=-+-++z y x ,方程表示以)3 ,2 ,1(-为球心,3为半径的球面。 (二)柱面 动直线L 沿给定曲线C 平行移动所形成的曲面,称为柱面。动直线L 称为柱面的母线,定曲线C 称为柱面的准线。 y

现在来建立以xoy 面上的曲线C :? ??== . 0, 0),(z y x F 为准线,平行于L z 轴的直线 设) ,,( z y x M 为柱面上任一点,过 M 作平行于轴的直线 z ,交xoy 面于点 ) 0 , ,( y x M ,由柱面定义可知点上必在准线C M 。故有0),(= y x F 。由于 M M 与点点有相同的横坐标和纵坐标,故的坐标点 M 也必满足方程 0),(=y x F 。反之,如果空间一点) ,,( z y x M 满足方程0),(=y x F ,即0 ),(= y x F ,故 ) ,,( z y x M 且与轴平行的直线 z 必通过 上的点准线C ) 0 , ,( y x M ,即) 0 , ,( y x M 在过) 0 , ,( y x M 的母线上,于是) ,,( z y x M 必在柱面上,因此方程0),(=y x F 表示平行于轴的柱面 z 。 一般地 方程0) ,(=y x F 表示母线轴的柱面平行于 z ; 方程0) ,(=z y H 表示母线轴的柱面平行于 x ; 方程0) ,(=z x G 表示母线轴的柱面平行于 y 。 以二次曲线为准线的柱面称为二次柱面。 例如:方程2 2 2 a y x =+表示圆柱面;方程 12 22 2=+ b y a x 表示椭圆柱面; 方程12 2 22 =- b x a y 表示双曲柱面;方程Py x 22=表示抛物柱面。 y 22 a y = x x y 1 2 2=b y

ProE制作螺旋线

PROE制作螺旋线 *本人是在ProE 2001(很古老了, 呵呵)中做的, Wildfire中做的方法一样 制作螺旋线有下列二个方法: 1、formed curve (比较直观, 好控制形状); 2、用方程式(from equation); 一.Formed curve: 1、首先建立缺省的datum plan;并建立一个参数p,用来控制螺旋圈数(set up/parameters/create/real parameters ,初始值可以设为:1) 2、建立圆柱体(或者圆柱曲面),如下图: 3、建立form curve,选择tang plane 为sketching plane,选择圆柱体的顶面为top,然后绘制如下图直线:

注意事项:a、对齐直线的两个端点(右上端点对齐圆柱的top面,左下端点对齐圆柱轴线和tang plane的交点) b、建立coordinate system,并对齐直线的左下端点) 4、建立relation: sd#=L*P*PI*D L为圆柱的长度 P 为参数(第一步建立的参数) D 为圆柱的直径 PI 为π 5、regenerate后你可以看到生成的helical curve了。 -------------------------------------------------------------------------------- 二、利用方程式: 1、首先建立缺省的datum plan,coordinate system 2、建立datum curve ,选择from equation 3、选择coordinate system, 圆柱坐标(cylindrical) 此时出现下列信息: /* For cylindrical coordinate system, enter parametric equation

proe中曲线方程proe各种螺旋线画法

p r o e中曲线方程p r o e各 种螺旋线画法 Prepared on 24 November 2020

每一页的曲线类型如下: 第1页:碟形弹簧、叶形线、螺旋线(Helical curve)、蝴蝶曲线和渐开线; 第2页:螺旋线、对数曲线、球面螺旋线、双弧外摆线和星行线; 第3页:心脏线、圆内螺旋线、正弦曲线、太阳线和费马曲线(有点像螺纹线); 第4页:Talbot 曲线、4叶线、Rhodonea 曲线、抛物线和螺旋线; 第5页:三叶线、外摆线、Lissajous 曲线、长短幅圆内旋轮线和长短幅圆外旋轮线; 第6页:三尖瓣线、概率曲线、箕舌线、阿基米德螺线和对数螺线; 第7页:蔓叶线、tan曲线、双曲余弦、双曲正弦和双曲正切; 第8页:一峰三驻点曲线、八字曲线、螺旋曲线、圆和封闭球形环绕曲线; 第9页:柱坐标螺旋曲线、蛇形曲线、8字形曲线、椭圆曲线和梅花曲线; 第10页:花曲线、空间感更强的花曲线、螺旋上升的椭圆线、螺旋花曲线和鼓形线; 第11页:长命锁曲线、簪形线、螺旋上升曲线、蘑菇曲线和8字曲线; 第12页:梅花曲线、桃形曲线、碟形弹簧、环形二次曲线和蝶线; 第13页:正弦周弹簧、环形螺旋线、内接弹簧、多变内接式弹簧和柱面正弦波线; 第14页:ufo(漩涡线)手把曲线、篮子、圆柱齿轮齿廓的渐开线方程和对数螺旋曲线; 第15页:罩形线、向日葵线、太阳线、塔形螺旋线和花瓣线; 第16页:双元宝线、阿基米德螺线的变形、渐开线方程、双鱼曲线和蝴蝶结曲线; 第17页:“两相望”曲线、小蜜蜂、弯月、热带鱼和燕尾剪; 第18页:天蚕丝、心电图、变化后的星形线、小白兔和大家好; 第19页:蛇形线、五环、蜘蛛网、次声波和十字渐开线; 第20页:内五环和蜗轨线; 1.碟形弹簧 圆柱坐标 方程:r = 5 theta = t*3600 z =(sin*theta-90))+24*t 2.叶形线.笛卡儿坐标标方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 3.螺旋线(Helical curve)圆柱坐标(cylindrical)方程: r=t theta=10+t*(20*360) z=t*3 4.蝴蝶曲线球坐标方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 5.渐开线采用笛卡尔坐标系方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 6.螺旋线.笛卡儿坐标方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 7.对数曲线笛卡尔坐标系方程:z=0 x = 10*t y = log(10*t+ 8.球面螺旋线采用球坐标系方程:rho=4 theta=t*180 phi=t*360*20 9.双弧外摆线 卡迪尔坐标

proe中曲线方程proe各种螺旋线画法

、PROE常用曲线方程 【使用方法】 ★进入RROE建模界面,点击“[attachment=109](曲线)”,打开如下“菜单管理器”:[attachment=110] ★选择【从方程式/完成】弹出如下(左图)所示的对话框,要求选择一个坐标系,选择坐标系后弹出窗口如下(右图)所示。 [attachment=111][attachment=112] ★选择一种坐标类型后弹出界面如下所示: [attachment=113] 将公式编辑好后保存。点击“确定”出现螺旋曲线。 【常用曲线方程】 ★圆柱螺旋曲线方程式: 坐标类型:圆柱坐标 例:r=30 theta=t*360*8 z=t*200 解释:r为圆柱半径,t为螺旋线扫描的点,8为螺旋线的圈数,200为螺旋线的圆柱高度。[attachment=114] ★螺旋线(Helical curve) 建立环境:PRO/E;圆柱坐标(cylindrical) 例:r=t theta=10+t*360*20 z=t*3 解释:r为圆柱半径,t为螺旋线扫描的点,20为螺旋线的圈数,3为螺旋线的圆柱高度。[attachment=115] ★球形螺旋曲线方程式: 坐标类型:球坐标 rho=10 theta=t*180 phi=t*360*15 解释:rho为球半径,t为螺旋线扫描的点,180就是以球为中心,曲线的两个端点相对球心的角度,360*15就是曲线绕Z轴15圈,360*15可以用一个数值来表示,圈数为数值除以360。 [attachment=116] ★可变截面曲面(螺旋形)关系式: sdX=trajpar*360*10.5

trajpar为曲线,360*10.5为圈数,360为1圈 ★正弦曲线 建立环境:Pro/E软件、笛卡尔坐标系 x=50*t y=10*sin(t*360) z=0 解释:起始点到终点的距离为50,振幅±10,曲线距XOY平面的高度0。[attachment=117] 每一页的曲线类型如下: 第1页:碟形弹簧、葉形线、螺旋线(Helical curve)、蝴蝶曲线和渐开线; 第2页:螺旋线、对数曲线、球面螺旋线、双弧外摆线和星行线; 第3页:心脏线、圆内螺旋线、正弦曲线、太阳线和费马曲线(有点像螺纹线); 第4页:Talbot 曲线、4叶线、Rhodonea 曲线、抛物线和螺旋线; 第5页:三叶线、外摆线、Lissajous 曲线、长短幅圆内旋轮线和长短幅圆外旋轮线;第6页:三尖瓣线、概率曲线、箕舌线、阿基米德螺线和对数螺线; 第7页:蔓叶线、tan曲线、双曲余弦、双曲正弦和双曲正切; 第8页:一峰三驻点曲线、八字曲线、螺旋曲线、圆和封闭球形环绕曲线; 第9页:柱坐标螺旋曲线、蛇形曲线、8字形曲线、椭圆曲线和梅花曲线; 第10页:花曲线、空间感更强的花曲线、螺旋上升的椭圆线、螺旋花曲线和鼓形线; 第11页:长命锁曲线、簪形线、螺旋上升曲线、蘑菇曲线和8字曲线; 第12页:梅花曲线、桃形曲线、碟形弹簧、环形二次曲线和蝶线; 第13页:正弦周弹簧、环形螺旋线、内接弹簧、多变内接式弹簧和柱面正弦波线; 第14页:ufo(漩涡线)手把曲线、篮子、圆柱齿轮齿廓的渐开线方程和对数螺旋曲线;第15页:罩形线、向日葵线、太阳线、塔形螺旋线和花瓣线; 第16页:双元宝线、阿基米德螺线的变形、渐开线方程、双鱼曲线和蝴蝶结曲线; 第17页:“两相望”曲线、小蜜蜂、弯月、热带鱼和燕尾剪; 第18页:天蚕丝、心电图、变化后的星形线、小白兔和大家好; 第19页:蛇形线、五环、蜘蛛网、次声波和十字渐开线; 第20页:内五环和蜗轨线; 1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t

PROE各种常见曲线方程及图示

PRO/E各种常见曲线方程及图示

Eagles fly alone, but sheep flock together. 1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 3.螺旋线(Helical curve) 圆柱坐标(cylindrical) 方程: r=t theta=10+t*(20*360) z=t*3 4.蝴蝶曲线 球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 5.渐开线 采用笛卡尔坐标系 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0

Eagles fly alone, but sheep flock together. 6.螺旋线 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 7.对数曲线 笛卡尔坐标系 方程:z=0 x = 10*t y = log(10*t+0.0001) 8.球面螺旋线 采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20 9.双弧外摆线 卡迪尔坐标 方程: l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360)

相关文档
最新文档