Seven energytemperature scales in hole-doped cuprates

Seven energytemperature scales in hole-doped cuprates
Seven energytemperature scales in hole-doped cuprates

a r X i v :c o n d -m a t /0210176v 2 [c o n d -m a t .s u p r -c o n ] 8 O c t 2002

Seven energy/temperature scales in hole-doped cuprates

A Mourachkine

Free University of Brussels,CP-232,Blvd du Triomphe,B-1050Brussels,Belgium

(Received)

Abstract The purpose of this paper is to discuss a phase diagram of hole-doped cuprates.Hole-doped cuprates have a very rich phase diagram as a function of doping.This is due to a charge inhomogeneity in CuO 2planes:the charge distribution in CuO 2planes is inhomogeneous both on a nanoscale and macroscale.Depending on the doping level,the CuO 2planes comprise at least four di?erent types of clusters having a size of a few nanometers.Each type of clusters has its own features.As a consequence,the common phase diagram consists of,at least,seven di?erent energy/temperature scales.As an example,we consider a phase diagram of Bi 2Sr 2CaCu 2O 8+x .

I.INTRODUCTION

The phenomenon of high-T c superconductivity was dis-covered in cuprates [1].The understanding of a phase di-agram of cuprates is important since it is directly related to the understanding of the physics of high-T c supercon-ductors.

In the literature,one can ?nd a few di?erent phase diagrams for superconducting cuprates.As an example,?gure 1shows four di?erent phase diagrams of hole-doped cuprates,taken from the literature.All four phase dia-grams show the commensurate antiferromagnetic phase at low doping level p and the superconducting phase with a transition temperature T c .These two phases are long-ranged.The commensurate antiferromagnetic phase ap-pears at a N′e el temperature T N .If in La 2?x Sr x CuO 4(LSCO),these two phases are separated by some dis-tance,in YBa 2Cu 3O 6+x (YBCO)the distance between them is almost absent.In spite of this and some other small di?erences,there is good agreement on the exis-tence of these two phases in the phase diagram of su-perconducting cuprates.In ?gure 1,one can see that the disagreement among all these phase diagrams is mainly in the dispositions of the temperature scales situated above the superconducting phase.In other words,there is no consensus on the physics of normal state of cuprates.Soon after the discovery of high-T c superconductivity it became clear that the understanding of normal-state properties of cuprates is crucial for the understanding of the mechanism of high-T c superconductivity.Indeed,there is an interesting contrast between the development of the physics of cuprates and that of the physics of con-ventional superconductors.Just before the creation of the BCS theory,the normal-state properties of conven-tional metals were very well understood;however super-conductivity was not.The situation with the cuprates was just the opposite:at the time high-T c superconduc-tivity was discovered,there already existed a good un-derstanding of the phenomenon of superconductivity,but the normal-state properties of the cuprates were practi-cally unknown.What is interesting is that 16years after

the discovery [1]their normal-state properties are still “unknown.”The problem is not that there is no expla-nation of these unusual properties,the problem is that there are too many of them.

There is good agreement on the existence of the so-called pseudogap which occur at T ?>T c .There is even consensus on the doping dependence of pseudogap in hole-doped cuprates:the magnitude of pseudogap de-creases as the doping level increases.However,here the common agreement ends.Further there is a polariza-tion of opinions based either on di?erent measurements or on di?erent theories.First,there is no yet consensus on the presence of preformed Cooper pairs above T c in cuprates.Secondly,there is no agreement on the exact doping dependence of temperature (energy)scale T ?.The question concerning the presence of preformed Cooper pairs above T c in cuprates is not the main topic of this paper,therefore we are not going to discuss it here.There are enough evidence in the literature for the presence of preformed Cooper pairs above T c in cuprates (see references in [2]and [3]).The purpose of this pa-per is to discuss the second issue raised above,namely,the doping dependences of di?erent temperature/energy scales in hole-doped cuprates and their origins.Hole-doped cuprates have a very rich phase diagram as a func-tion of doping.This is due to a charge inhomogeneity in CuO 2planes:the charge distribution in CuO 2planes is inhomogeneous both on a nanoscale and macroscale.De-pending on the doping level,the CuO 2planes comprise at least four di?erent types of clusters having a size of a few nanometers.Each type of clusters has its own fea-tures.As a consequence,the common phase diagram consists of,at least,seven di?erent energy/temperature scales.As an example,we consider a phase diagram of Bi 2Sr 2CaCu 2O 8+x (Bi2212).

II.DIFFERENT PHASE DIAGRAMS

In ?gure 1,the ?rst two phase diagrams are based on experimental data:the phase diagram shown in ?gure

1(a)is mainly inferred from nuclear magnetic resonance, speci?c heat and resistivity measurements(see references in[3]).The phase diagram in?gure1(b)is based on tun-neling and angle-resolved photoemission(ARPES)mea-surements.In?gure1(b),the pseudogap temperature scale T?is inferred from bias positions of humps in tun-neling and ARPES spectra,while the positions of main peaks in these spectra determine the pairing tempera-ture/energy scale T0corresponding to the formation of incoherent Cooper pairs.The phase diagrams in?gures 1(c)and1(d)are purely theoretical and based on the idea of the existence of two types of superconductivity: an unconventional type in underdoped cuprates and a BCS type in overdoped cuprates.They emerge near the optimally doped region of superconducting phase. Leaving the phase diagrams shown in?gures1(c)and 1(d)for further theoretical considerations,we focus our attention exclusively on experimental data presented in ?gures1(a)and1(b).The question is why do di?erent ex-perimental techniques give di?erent energy/temperature scales?This question is directly related to the under-standing of normal-state properties of cuprates.

III.PHASE DIAGRAM OF BI2212

Figure2shows an idealized phase diagram of Bi2212 taken from[3],in which the spin-glass temperature scale T g is added.This temperature/energy scale was re-cently observed in Bi2212by muon spin relaxation mea-surements[4].Figure2shows six di?erent tempera-ture/energy scales in Bi2212.The seventh temperature scale—the commensurate antiferromagnetic phase at low doping level—is not shown because it was not yet ob-served in Bi2212:There is a technical problem to syn-thesize large-size good-quality undoped single crystals of Bi2212,which are necessary for neutron scattering mea-surements.In fact,the commensurate antiferromagnetic phase is not the primary focus of this paper.It is worth noting that the phase diagram of Bi2212in?gure2is not universal but re?ects main features of the physics involved in all cuprates.First,the temperature scales in ?gure2will be given explicitly,and then we discuss their origins.

The superconducting phase appears at a critical tem-perature T c shown in?gure2.In Bi2212,the doping dependence T c(p)can be expressed[5]as

T c(p)?T c,max[1?82.6(p?0.16)2].(1) For Bi2212,T c,max=95K.The superconducting phase is approximately located between p=0.05and0.27, having the maximum critical temperature T c,max in the middle,thus at p?0.16.The corresponding phase-coherence energy scale?c is proportional to T c as2?c=Λk B T c,where k B is the Boltzmann constant.In di?erent cuprates,the coe?cientΛis slightly di?erent:Λ?5.4in Bi2212;Λ?5.1in YBCO;andΛ?5.9in Tl2Ba2CuO6 (Tl2201)[3].

In the literature,there are ample evidence for the exis-tence of the so-called quantum critical point in cuprates (see references in[3]).In a quantum critical point lo-cated at/near absolute zero,the magnetic order is about to form or to disappear.In?gure2,the quantum critical point in Bi2212exists at p?0.19.At low temperature, superconductivity in cuprates is most robust at this dop-ing level p=0.19,and not at p=0.16(see below why). In?gure2,the temperature scale T MT starts/ends in the quantum critical point(MT=Magnetic Tran-sition).Then,it is more or less obvious that this tem-perature/energy scale has a magnetic origin.The tem-perature scale T MT is analogous with a magnetic transi-tion temperature of long-range antiferromagnetic phase in heavy fermions[3].The doping dependence T MT(p) can be expressed as

T MT(p)?T MT,0× 1?p

0.3

(Kelvins).(3)

The corresponding charge gap?cg observed in tunneling and ARPES spectra depends on hole concentration as

?cg(p)?251× 1?p

0.3

(Kelvins).(5)

The dynamical two-dimensional magnetic stripes can be considered as a local memory e?ect of the commensurate antiferromagnetic phase.

In?gure2,the temperature scale T pair corresponds to the formation of Cooper pairs,the doping dependence of which can be expressed as

T pair(p)?T CO(p)

3

× 1?p

3

=

251

0.3

(meV).(7)

The pairing gap manifests itself in tunneling and ARPES measurements.The extensions of three dependences T CO(p),T MO(p)and T pair(p)cut the horizontal axis ap-proximately in one point,at p=0.3.

In?gure2,the spin-glass temperature scale T g is shown schematically.For example,the temperature scale T g in LSCO linearly increases as the doping starts to increase from zero,reaches its maximum when it crosses a N′e el temperature scale T N,and then decreases to zero as the doping increases.In Bi2212,T g?8K at p=0.05,and T g=0somewhere at p?0.15[4].

It is worth noting that,in?rst approximation in Bi2212,the two energy scales with characteristic tem-peratures T CO and T MT intersect the vertical axis in one point,at T≈980K.Some discussion on this issue can be found elsewhere[3].

It is necessary to mention that the above formula are approximate.To understand why,consider just one tem-perature/energy scale—the charge ordering scale T CO. From acoustic measurements,it is well known that any structural phase transition has a hysteresis on lowering and on increasing the temperature.Since in cuprates,a structural phase transition precedes the charge ordering, its hysteresis may a?ect the charge ordering temperature scale.As a consequence,the above expression for T CO(p) is most likely approximate.Secondly,the real doping de-pendences of temperature scales T MT,T CO,T MO and T pair,most likely,are not linear but quasi-linear.

IV.CHARGE INHOMOGENEITIES:PHASE

SEPARATION

Let us go back to the question raised above:Why do di?erent experimental techniques give di?erent en-ergy/temperature scales?As a matter of fact,this ques-tion is related to another question,namely,how is it pos-sible that there are several magnetic temperature/energy scales in one phase diagram(see?gure2)?

Consider CuO2planes at di?erent doping levels.In undoped region(p<0.05),the doped holes gather into clusters having a size of a few nanometers.These clusters are embedded in an antiferromagnetic background where the long-range antiferromagnetic order is preserved.In the clusters,the holes are not distributed homogeneously, but they form quasi-one-dimensional stripes along the diagonal direction relative to the Cu–O–Cu bonds[6].In ?gure3,this type of clusters is marked by B.The spin glass appears in these clusters at T g[6].

In underdoped region,thus above p=0.05,the charge stripes in most clusters are rotated by45?relative to those in undoped region.Thus,they now run along the Cu–O–Cu bonds,and the distance between stripes be-comes smaller than that between diagonal stripes.How-ever,in a small fraction of clusters,the charge stripes remain diagonally oriented.This explains the existence of spin glass in the superconducting phase.The clusters with vertically(horizontally)oriented charge stripes are schematically shown in?gure3by C.Thus,in deep un-derdoped region,the two types of clusters—with vertical stripe order and with diagonal stripe order—are embed-ded in an antiferromagnetic background.Therefore,the long-range antiferromagnetic phase which is usually lo-cated at low doping level extends to higher dopings.The doped holes are sucked out by the clusters.As a con-sequence,the N′e el temperature scale T N literally trans-forms into the temperature scale T MT shown in?gure2. In a sense,the temperature scale T MT is an echo of the T N scale.

Near optimally doped region,the picture is di?erent: now clusters with intact antiferromagnetic order are em-bedded in a charge-stripe background.In?gure3,the antiferromagnetic clusters are shown by A.At p=0.19, this type of clusters completely vanishes,as schematically shown in?gure4(a).At the same time,the fraction of clusters with vertical charge stripes is maximal at p= 0.19,as shown in?gure4(b).Since superconductivity in cuprates occurs in these clusters,this is the reason why it is most robust at p=0.19,and not at p=0.16.

The three temperature scales,T MT,T g and T MO shown in?gure2,originate from a magnetic ordering in di?erent clusters—A,B and C in?gure3,respectively. Since di?erent experimental techniques are sensitive to di?erent types of correlations,and have di?erent resolu-tions and di?erent characteristic times,it is then obvious why there is a discrepancy among phase diagrams pre-sented in the literature.

Finally,let us consider the deep overdoped region.In deep overdoped region,new doped holes gather between stripes,forming clusters with Fermi sea,in which the hole distribution is more or less homogeneous.The Fermi-sea clusters,shown schematically in?gure3by D,are em-bedded in a charge-stripe background.Since,the super-conducting phase vanishes at p=0.27,it is commonly as-sumed that above this doping level,the hole distribution becomes homogeneous in CuO2planes.In fact,this as-sumption may be not true:The three temperature scales T CO,T MO and T pair in?gure2originate from di?erent types of ordering in clusters with vertical charge stripes.

Since these three temperature scales cut the horizontal axis approximately at p=0.3,as shown in?gure2,it is possible that between p=0.27and0.3,the hole distri-bution in CuO2planes is not completely homogeneous. The clusters with vertical charge stripes may exist be-tween p=0.27and0.3,being embedded in a Fermi-sea background.In this case,the hole distribution in CuO2 planes is homogeneous only above p=0.3,as schemat-ically shown in?gure4(a).After all,this is not very important for understanding the mechanism of high-T c superconductivity.

V.STRIPE PHASE

Since superconductivity in cuprates occurs in clusters with vertical charge stripes,it is most important to un-derstand the physics of this phase.The size of clusters with vertical charge stripes depends on the doping level: In underdoped region,the size of these clusters is about 30?A[7].Then,it is obvious that the length of charge stripes is of the same magnitude.In overdoped region, the length of charge stripes increases up to100?A[8]. Therefore,the length of charge stripes also depends on the doping level.

Since charge stripes in cuprates are very dynamical, one may wonder how it is possible to observe charge-stripe domains by tunneling[7,8].First of all,there are two types of dynamics involved:the?uctuation of charge stripes inside clusters,and the clusters?uctuate as whole.Superconductivity most likely requires the for-mer but not the latter.Secondly,the charge stripes can slow down in one separate cluster,this will not a?ect su-perconductivity locally if the charge stripes in the neigh-boring clusters go on?uctuating[3].Generally speaking, the charge stripes can be pinned by an impurity,by a lattice defect,or by the surface.

It is commonly assumed that the charge-stripe orien-tation in adjacent CuO2layers is alternately rotated by 90?.In fact,this assumption is not necessary:Depending on doping level,the clusters with vertical charge stripes may coexist in the same CuO2layer with clusters having horizontal charge stripes[3].

VI.SUMMARY

We discussed here a phase diagram of hole-doped cuprates and the origins of di?erent temperature/energy scales.Hole-doped cuprates have a very rich phase di-agram as a function of doping.This is due to a charge inhomogeneity in CuO2planes:the charge distribution in CuO2planes is inhomogeneous both on a nanoscale and macroscale.Depending on the doping level,the CuO2 planes comprise at least four di?erent types of clusters having a size of a few nanometers.Each type of clus-ters has its own features.As a consequence,the common phase diagram consists of,at least,seven di?erent en-ergy/temperature scales.As an example,we considered a phase diagram of Bi2Sr2CaCu2O8+x.

T

T T T FIG. 1.Di?erent phase diagrams of superconducting cuprates,which can be found in the literature.T N is the N′e el temperature;T c is the critical temperature;T ?is the pseudogap temperature;and T 0is the pairing temperature (AF =antiferromagnetic;SC =superconducting).

0100200300400500

0.05

0.1

0.15

0.2

0.25

0.3

T e m p e r a t u r e (K )

hole concentration, p

T CO

Bi2212

T pair

T c

T MO T MT

QCP

T g

FIG.2.Phase diagram of Bi2212[3].T c is the critical tem-perature;T pair is the pairing temperature;T MT is the mag-netic-transition temperature;T MO is the magnetic-ordering temperature;and T CO is the charge-ordering temperature (for more details see text).The commensurate antiferromagnetic phase at low doping is not shown.The spin-glass tempera-ture scale T g is shown schematically (QCP =quantum critical point).

CuO 2

plane

MO T T FIG.3.Schematic representation of four types of clusters existing in CuO 2planes at di?erent dopings.Cluster A in-cludes a virgin antiferromagnetic phase.Cluster B includes diagonal charge stripes and a magnetic ordering between the stripes.The stripes are schematically shown by the lines.Cluster C includes vertical charge stripes and a

magnetic or-dering between the stripes.In cluster D,holes are distributed homogeneously (the Fermi sea).The magnetic ordering in clusters A,B and C occurs at T MT ,T g and T MO ,respectively.

FIG.4.(a)Fractions of clusters (phases)A,B and D in ?gure 3in a CuO 2plane as a function of doping.(b)Fraction of clusters (phase)C.Both plots are shown schematically.

中控系统操作规程及注意事项正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.中控系统操作规程及注意 事项正式版

中控系统操作规程及注意事项正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加 施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事 项。文档可以直接使用,也可根据实际需要修订后使用。 一、操作规程 中控室采用一台IBM计算机和PLC站进行数据交换,显示现场的状态和数据。 1、先开显示器,再开主机,开机后系统直接进入Window2000操作系统。 2、双击桌面上“广饶康达环保水务有限公司中控系统”图标,系统进入泉州宝洲污水处理厂中控系统操作画面,此为登陆画面,点击“登陆”按钮,在User和Password里都输入“1”,点击“OK”,就自动返回登陆界面,然后直接点击“进入”按钮,系统就进入主参数画面。

3、主参数表一显示二期生物池、污泥泵房、二沉池设备操作块按钮及DO、MLSS 等参数,画面左下角为红色菜单按钮,中间为报警信息,右下角为时间信息。 4、点击菜单按钮,选择主参数表二,画面显示为二期曝气沉砂池设备操作块按钮及二期进水流量信息,下面信息跟主参数表一一样。 5、点击菜单按钮,选择工艺流程图,画面显示的为宝洲污水厂的工艺流程图信息。 6、点击菜单按钮,选择厂区总图,画面显示为二期的厂区构筑物布置图,点击相应的构筑物可进入该构筑物相应设备的控制画面。

中国传统节日腊八节

中国传统节日腊八节 【篇一:中国传统文化之传统节日】 中国传统节日除夕(农历十二月廿九或三十)春节(农历正月初一)元宵节(农历正月十五)龙头节(农历二月初二)上巳节(农历三 月初三)寒食节(清明节前一日) 清明节(公历4月5日前后)端午节(农历五月初五)七夕(农历七月初七)中元节(农历七月十四或十五)中秋节(农历八月十五)重阳节(农历九月初九)寒衣节(农历十月初一)下元节(农历十 月十五)腊八节(农历十二月初八) 其中,春节、元宵、清明、端午、七夕、中秋、重阳为中国七大传 统节日。 一、除夕: 农历十二月大年三十晚上叫除夕。 来历:除夕最早源于先秦时期的“逐除”。据记载,古人在新年的前 一天,用击鼓的方法来驱除“疫疠之鬼”,来年才会无病无灾。这就 是“除夕”节的由来。“除”意思是“交替”;“夕”意思是“夜晚”。故除 夕之夜,含有“旧岁到此而除,明日另换新岁”的意思。“除”乃除旧 布新之意。“除夕”有“送旧迎新、祛病消灾”的意思。 风俗活动:守岁、放烟花、吃团圆饭。 诗句:(唐)范成大《卖痴呆词》:“除夕更阑人不睡,厌禳钝滞迫 新岁;小儿呼叫走长街,云有痴呆召人卖。” 二、春节: 农历正月初一即春节。是农历的一岁之首,俗称“大年”。是我国民 间最热闹、最隆重的一个传统节日。 来历:古代的春节,是指农历二十四个节气中的“立春”时节,南北 朝以后才将春节改在一年岁末,并泛指整个春季,这时大地回春, 万象更新,人们便把它作为新的一年的开始。到了辛亥革命后的民 国初年,改农历为公历(阳历)后,便将正月初一定为春节。直到1949年中国人民政治协商会上才正式把正月初一的新年定为“春节”,至今仍有许多人将过春节叫过年。 年:人们常把过春节说成“过年”,而“年”的最初含义与今天根本不同。 据说,在很古的时候,世界上有一种最凶恶的野兽叫“年”。它一出来,见人吃人,见畜伤畜,人们生命安全受到严重威胁。天神为了

物流方面的英语专业术语

物流方面的英语专业术语、组织名称中英对照 第一节基本概念术语 1 article 物品 2 logistics 物流 3 logistics activity 物流活动 4 logistics operation 物流作业 5 logistics modulus 物流模数 6 logistics technology 物流技术 7 logistics cost 物流成本 8 logistics management 物流管理 9 logistics center 物流中心10 logistics network 物流网络11 logistics information 物流信息12 logistics enterprise 物流企业13 logistics documents 物流单证14 logistics alliance 物流联盟15 supply logistics 供应物流16 production logistics 生产物流17 distribution logistics 销售物流 18 returned logistics 回收物流 19 waste material logistics 废弃物物流 20 environmental logistics 绿色物流 21 internal logistics 企业物流22 external logistics 社会物流23 military logistics 军事物流24 international logistics 国际物流 25 Third Part Logistics (TPL) 第三方物流 26 customized logistics 定制物流27 virtual logistics 虚拟物流 28 value-added logistics service 增值物流服务 29 supply chain 供应链30 bar code 条码 31 Electronic Data Interchange (EDI) 电子数据交换 32 tangible loss 有形损耗33 intangible loss 无形损耗 二、物流作业术语 34 transportation 运输35 combined transport 联合运输36 throuth transport 直达运输37 transfer transport 中转运输 38 drop and pull transport 甩挂运输 39 containerized transport 集装运输 40 container transport 集装箱运输41 door-to-door 门到门42 door to cy 门到场43 door to cfs 门到站 44 Full Container Load (FCL) 整箱货 45 Less-than Container Load (LCL) 拼箱货46 storing 储存47 storage 保管48 article reserves 物品储存49 inventory 库存50 cycle stock 经常库存51 safety stock 安全库存52 inventory cycle time 库存周期

中控系统操作手册

中控系统操作手册 前言 会议系统为集成度高且设备集中的一个弱电子系统,为保证此系统能长时间、稳定运行及请用户单位指派专门管理人员及操作人员进行管理和操作,非相关操作人员禁止动用会议室设备(包括各种遥控器),操作人员请严格遵守以下操作流程进行操作,以免误操作而影响整个会议系统的稳定性,甚至导致设备损坏。 详细操作说明如下: 第一部分:3楼外事会议室操作说明 ` (1号和2号外事会议室和新闻发布中心设备操作一样,下面以1号外事会议室为例说 明) 操作流程 第一步:进入设备间,检查调音台推子是否都拉到最底端,如没在最底端,请全部拉到最底端;然后开启系统电源(中控电源、时序控制器电源、强电控制模块电源及其 它电源)用触摸屏开启系统,点击触摸屏起始页,所有设备即可自行按顺序打开。 系统开启后说明:机柜内所有设备电源开启,投影机供电。。。 · 第二步:检查机柜内设备及调音台的电源开关是否打开,若没打开请手动开启。判断开启与否请通过设备指示灯观察。 第三步:根据实际会议内容需求,通过触摸屏依次开启相应的设备、切换相应的信号(详见“、ST-7600C触摸屏的操作”)推起调音台推子。 注:1、触摸屏方向请指向机房,保证最佳的接收信号 第四步:当会议结束,离开操作间时,首先将调音台推至最底端,然后通过触摸屏关闭系统,待时序电源关闭(关闭系统后3分钟)后方可关闭机房,然后离开。 注:1、中控主机及继电器模块无需关闭,请保持常供电状态 ~ 注:1、开启系统前,确保调音台推子拉到最下面,以免造成设备损伤甚至烧毁。 2、音频信号处理设备,如:调音台,均衡器等设备的相关设置已经调试完毕。如无特 殊需求,请勿随意调整原设备的设置,以免影响会议系统的声效。

常用物流英语专业英语词汇

常用物流英语专业英语词汇 一、常用物流英语50句 1.Modern logistics is one of the most challenging and exciting jobs in the world. 现代物流是世界上最富挑战性和最激动人心的工作。 2.Logistics is part of a supply chain. 物流是供应链的整体组成部分。 3.Logistics is anything but a newborn baby. 物流不是新鲜事。 4.Logistics is a unique global “pipeline”. 物流是独特的全球通道。 5.Logistics is related to the effective and efficient flow of materials and information. 物流所涉及的是物料和信息有效、快速的流动。 6.Logistics operation and management include packaging, warehousing, material handling, inventory control, transport, forecasting, strategic planning, customer service, etc. 物流操作和管理包括包装、仓储、物料搬运、库存控制、运输、预测、战略计划和客户服务等方面。 7.Logistics consists of warehousing, transportation, loading and unloading, handling, carrying, packaging, processing, distribution and logistics information.

物流专业英语词汇

物流专业英语词汇大全-物流英语-物流专业英语-物 流英语词汇表 一、物流英语的145个专业词汇

二、常用物流英语50句 1.Modern logistics is one of the most challenging and exciting jobs in the world. 现代物流是世界上最富挑战性和最激动人心的工作。 2.Logistics is part of a supply chain. 物流是供应链的整体组成部分。 3.Logistics is anything but a newborn baby. 物流不是新鲜事。 4.Logistics is a unique global “pipeline”. 物流是独特的全球通道。 5.Logistics is related to the effective and efficient flow of materials and information. 物流所涉及的是物料和信息有效、快速的流动。 6.Logistics operation and management include packaging, warehousing, material handling, inventory control, transport, forecasting, strategic planning, customer service, etc.

物流操作和管理包括包装、仓储、物料搬运、库存控制、运输、预测、战略计划和客户服务等方面。 7.Logistics consists of warehousing, transportation, loading and unloading, handling, carrying, packaging, processing, distribution and logistics information. 物流由仓储、运输、装卸、搬运、包装、加工、配送和物流信息所组成。 8.Logistics may be divided into supply logistics, production logistics, distribution logistics, returned logistics and waste material logistics. 物流可以分成供应物流、生产物流、销售物流、回收物流和废弃物物流。 9.Logistics is now the last frontier for increasing benefits in industrial production.. 物流是当今工业生产增加利润的最后领域。 10.Logistics is unique, and it never stops! 物流是独特的,它从不停止。 11.Logistics performance is happening around the globe, twenty-four hours a day, seven days a week and fifty-two weeks a year. 物流运作一天24小时、一周7天、一年52星期在全球发生。 12.Logistics is concerned with getting products and services where they are needed and when they are desired. 物流所涉及的是在需要的时候和在需要的地方去的产品和服务的活动。 13.Logistics is the process of planning, implementing and controlling the efficient, effective flow and storage of goods, services and related information from the point of origin to the point of consumption for the purpose of conforming to customer requirements.

中控系统软件介绍

中控系统 中控系统设备 1)快思聪主机 2)网连网主机两台 3)Clearone TH20两台 4)TAINET 2908网关 5)大触屏 6)小触屏 7)无线路由 8)红外主机 9)调音主机两台 10)电源模块三台 中控控制设备IP表:

网连网主机2端口分配: 红外主机: 1决策室电视左 2决策室电视右 3指挥终端 4会议终端 有线电话内线号码:5111 无线路由: 无线路由管理员密码修改:在IE浏览器中输入路由器的IP地址,按提示输入用户名、密码,登录成功,依次展开“Management”,→“Password”,在“Password Setup”页面输入要修改的用户名、新密码及确认密码,单击“Apply Changes”,保存配置,单击“Reset”,重启生效。

修改无线路由连接密钥:依次展开“Wireless ”,→“Security ”,打开“Wireless Security Setup ”页面,找到“Pre-Shared Key:”项,输入要修改的密钥,单击“Apply Changes ”,保存配置,单击 “Reset ”,重启生效。

软件操作使用手册 大触屏主要功能:大厅控制、图控室控制、电源控制、电话控制、摄像头控制、红外控制、视频矩阵控制、RGB矩阵控制 大屏软件主界面

大厅控制:控制指挥中心大厅DLP大屏、欧帝液晶电视、大小会议室电视、决策室电视、终端切换图像、并控制道路摄像头的推拉摇移。 大厅控制主界面

使用方法:单击对应的显示设备、信号源,实现图像切换。(单击显示设备,显示设备底色变为白色。单击信号源按钮,按钮显示凹下去。) 如:切换大厅左侧液晶1信号为“江苏大厦红绿灯” 步骤一:单击左侧液晶1,如图所示 步骤二:单击信号源“江苏大厦红绿灯”,如图所示 步骤三:图像切换成功,如图所示 此时可以使用“街道信号控制器”,控制“江苏大厦红绿灯”摄像头的推拉摇移。(注:“街道信号控制器”仅支持“云台摄像头”。) 终端图像切换 如:将DLP2屏图像切换为“会议终端”,显示信号为“大厅地插2” 步骤一:单击DLP2,如图所示

中国传统文化之传统节日

中国传统节日 除夕(农历十二月廿九或三十) 春节(农历正月初一) 元宵节(农历正月十五) 龙头节(农历二月初二) 上巳节(农历三月初三) 寒食节(清明节前一日) 清明节(公历4月5日前后) 端午节(农历五月初五) 七夕(农历七月初七) 中元节(农历七月十四或十五) 中秋节(农历八月十五) 重阳节(农历九月初九) 寒衣节(农历十月初一) 下元节(农历十月十五) 腊八节(农历十二月初八) 其中,春节、元宵、清明、端午、七夕、中秋、重阳为中国七大传统节日。 一、除夕: 农历十二月大年三十晚上叫除夕。 来历:除夕最早源于先时期的“逐除”。据记载,古人在新年的前一天,用击鼓的方法来驱除“疫疠之鬼”,来年才会无病无灾。这就是“除夕”节的由来。“除”意思是“交替”;“夕”意思是“夜晚”。故除夕之夜,含有“旧岁到此而除,明日另换新岁”的意思。“除”乃除旧布新之意。“除夕”有“送旧迎新、祛病消灾”的意思。 风俗活动:守岁、放烟花、吃团圆饭。 诗句:(唐)成大《卖痴呆词》:“除夕更阑人不睡,厌禳钝滞迫新岁;小儿呼叫走长街,云有痴呆召人卖。” 二、春节: 农历正月初一即春节。是农历的一岁之首,俗称“大年”。是我国民间最热闹、最隆重的一个传统节日。 来历:古代的春节,是指农历二十四个节气中的“立春”时节,南北朝以后才将春节改在一年岁末,并泛指整个春季,这时回春,万象更新,人们便把它作为新的一年的开始。到了辛亥革命后的民国初年,改农历为公历(阳历)后,便将正月初一定为春节。直到1949年中国人民政治协商会上才正式把正月初一的新年定为“春节”,至今仍有许多人将过春节叫过年。 年:人们常把过春节说成“过年”,而“年”的最初含义与今天根本不同。

国际物流专业英语词汇

1、电子数据交换的英文缩写为 EDI; 2、条形码的英文为 Bar Code; 3、第三方物流的英文缩写是 TPL 4、Autodiscrimination中文意思为自动辨别 5、Automated Warehouse 中文意思是自动化仓库 6、自动识别的英文是 Automatic Identification 7、Average Inventory 中文意思平均存货 8、Bar Code Reader 中文意思为条形码阅读器 9、Zero inventory 中文意思为零库存 10、ISO的全称为国际标准华组织 11、On-hand inventory 中文意思为现货 12、JITC 中文意思为准时供(送)货系统 13、B/L中文意思是提单 14、Turnover Ratio of inventory 中文意思为存货周转率 1、条形码系统包括 Bar Code、Bar Code Label、Bar Code Reader 2、仓库系统的设施包括Warehouse、Forks 、Goods Shelf 3、海运集装箱物流系统由 Container、Ship、Port 、Yard 4、运输工具为Air Cargo Carrier、Shipping Lines 、Motor Carrier 5、Carrier 中文意思是运送人、承运人 三、 1、Terminal 在港口物流中的含义是港口 T 2、Terminal 在电子商务中是终端机口 T 3、Cargo意为物运输 F 4、大量货物运输是Bulk carrier T 5、企业经营进出口均要付 Duty F 6、在仓库中的货物称为 Invention F 7、Quality Control 意思是品质管制 T 8、零售商店常常经客人Discount,以便助销。 T 9、Shipper和Carrier 是同一个货运的参与方。 T 10、Logistics的中文既是物流,又是后勤。 T 四、 1、Electronic Data Interchange Means 的意思是电子数据交换系统 2、Bar Code ,Bar Code Label and Bar Code Reader Compose A 条形码识别与 阅读System; 3、销售住处系统的英文是Point Of Sales 4、TEU指 20英尺集箱 5、Zero Inventory 意思是零库存 6、Material Requirement Planning (MRP) Is 物料需求计划

中控系统

随着城市建设的不断完善,各种展示人文、历史、城市发展的规划、展示馆、博物馆更趋现代化、智能化和人性化。 一个现代化的展览馆要形象直观的向观众展示相关展品,通常会同时运用声、光、电等多种手段来烘托效果,也就是说,几乎每一件展品都包含了显示、照明、效果灯光、音响及其他一些机械动作,这些多媒体效果的体现,大部分是依靠投影机、LED、电脑摇头灯、染色灯、成像灯和喇叭等设备共同完成的。 一个上规模展览馆,通常会有多个展区,而每个展区又分为多个版块,总体面积达到好几千平方,这样算下来,一个城市规划展览馆就会有几十甚至上百件多媒体展品,要同时控制这么多的设备,让所有的多媒体装备都能听从操作人员或者讲解员的指令,全凭单个设备的手动操作简直就是天方夜谭。另外,从环保的角度来考虑,整个展览馆的设备同时开启的时候,用电量也大得惊人,在能源紧缺的当今,如果某个展区暂时没有游客参观而任凭所有的设备在那里唱唱跳跳,也实在是一件非常不环保的事,但是要工作人员随时守在各个展位前面开关设备对人力资源更是极大的浪费,最好是让设备能够"聪明"起来,做到"人来即开、人走即关",这样才能体现出现代化和智能化的科技发展趋势。 多媒体设备智能控制的实现 要实现上述的功能,我们就需要有很多聪明的投影机、聪明的LED、聪明的电脑摇头灯、染色灯、成像灯和聪明的喇叭等等多媒体设备,那如何将这些原本毫不相干的设备联合在一起实现集中控制和智能模糊控制呢?又如何在一个多楼层的展馆中实现无线触摸屏的整体跨楼层控制呢?首先,中控系统主机包含多种控制接口:RS232、RS485、红外和IO。常用的多媒体设备一般都可以通过这些途径来获得控制。另外,中控主机可以接驳多种周边控制设备,如电源管理器、调光器、DXM512灯光重演器、数字音频处理器等等,有了这些周边控制设备,中控就可以轻松地控制灯光及设备电源的开关、电脑摇头灯的各种变光摆动、多通道音频信号的切换及调节音量大小。当外围设备较多或者楼层跨度较大时,通常在每一个楼层都放置一台中控主机,主机与主机之间通过双向RS232互相连接,这样即使控制距离超过了无线触摸屏的控制范围,我们的智能中控主机也可以轻松应对。 通常在一个高度现代化和自动化的展览馆里,我们力求对受控设备实现无人值守的完美控制。首先,系统指定时间对某些特定的照明、图标进行定时开关,开馆时间提供常规照明和标志、铭牌的指示,闭馆期间提供基本通道的照明。其次,一般的展览设备可以对一些长期开机的设备如服务器进行定时重启。另外根据实际的需求,可以做到人来即开、人走即关等等多种多样的实用效果,比如在一个大型城市仿真模型上方,当讲解员在边上讲解时,需要调暗整体照明灯光、聚光灯适时的照亮某一个区域,大屏幕同时播放相关的视频片段,背景音乐声减小。当讲解员介绍完毕由观众自由参观时,需要打开整体照明,关闭聚光灯指示、增大背景音乐,大屏幕同时播放总体介绍的视频片段。这一系列动作可以由讲解员或操作人员通过便携的手持无线触摸屏进行一键操作,方便快捷并且大大节约了操作成本。另外,有一些小型的展板,在上方安装红外感应器,通过对人流量的检测,中控主机对当前状况进行判断,即有人经过还是驻足停留,行人经过时仅开启展板的照明灯光,当观众在前面停留参观时开启大屏幕开始播放介绍短片。当观众离开,所有的设备经过预定的时间以后又会自动关闭,仅保持基本的照明灯光。有了这样的效果,整个展览馆才能真正的体现出我们的城市向现代化发展大步迈进的信号。 聚创新一代中控系统(JCJK-2012U型)在展览馆中的完美应用 深圳聚创有着多种大型展览馆的多媒体中控系统的设计和施工经验,通过新一代中控系统(JCJK-2012U型)中央控制主机和无线Wi-Fi ipad或安卓系统平板电脑,有效地克服了多媒体展厅中空间大、区域多、形状不规则而引起的控制信号不稳定等无线射频中控系统经常出现的问题,通过编程,全新的JCJK-2012U型中控可以达到跨楼层、跨主机超远程控制的

(完整word版)中国传统文化之传统节日

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 中国传统文化之传统节日 华人传统节日除夕(农历十二月廿九或三十)春节(农历正月初一)元宵节(农历正月十五)龙头节(农历二月初二)上巳节(农历三月初三)寒食节(清明节前一日)清明节(公历 4 月 5 日前后)端午节(农历五月初五)七夕(农历七月初七)中元节(农历七月十四或十五)中秋节(农历八月十五)重阳节(农历九月初九)寒衣节(农历十月初一)下元节(农历十月十五)腊八节(农历十二月初八)其中,春节、元宵、清明、端午、七夕、中秋、重阳为中国七大传统节日。 一、除夕: 农历十二月大年三十晚上叫除夕。 来历: 除夕最早源于先秦时期的逐除。 据记载,古人在新年的前一天,用击鼓的方法来驱除疫疠之鬼,来年才会无病无灾。 这就是除夕节的由来。 除意思是交替;夕意思是夜晚。 故除夕之夜,含有旧岁到此而除,明日另换新岁的意思。 除乃除旧布新之意。 除夕有送旧迎新、祛病消灾的意思。 风俗活动: 1/ 13

守岁、放烟花、吃团圆饭。 诗句: (唐)范成大《卖痴呆词》: 除夕更阑人不睡,厌禳钝滞迫新岁;小儿呼叫走长街,云有痴呆召人卖。 二、春节: 农历正月初一即春节。 是农历的一岁之首,俗称大年。 是我国民间最热闹、最隆重的一个传统节日。 来历: 古代的春节,是指农历二十四个节气中的立春时节,南北朝以后才将春节改在一年岁末,并泛指整个春季,这时大地回春,万象更新,人们便把它作为新的一年的开始。 到了辛亥革命后的民国初年,改农历为公历(阳历)后,便将正月初一定为春节。 直到 1949 年中国人民政治协商会上才正式把正月初一的新年定为春节,至今仍有许多人将过春节叫过年。 年: 人们常把过春节说成过年,而年的最初含义与今天根本不同。 据说,在很古的时候,世界上有一种最凶恶的野兽叫年。 它一出来,见人吃人,见畜伤畜,人们生命安全受到严重威胁。 天神为了惩罚年,把它锁进深山,只许它一年出山一次。

浙大中控DCS系统操作规程

规程编号:KF-HD-CYJSB-*** 版本号:2013-9 受控号: 浙大中控DCS系统 操 作 规 程 实施日期:二零一三年九月 发布单位:开发事业部哈得作业区

目录 一、使用范围和编制依据 二、管辖范围 三、系统介绍 四、主要技术参数 五、风险及控制措施 六、装置介绍 (一)浙大中控JX-300XP集散控制系统 七、操作规定 (一)浙大中控自控系统监控操作 八、注意事项 浙大中控DCS系统操作规程 一、使用范围和编制依据 本规程适用于哈得作业区DCS系统正常维护和操作管理。 本规程依据浙大中控JX-300X DCS系统操作维护手册编制。 二、管辖范围 哈一联、哈四联、天然气站主控室。

三、系统介绍 1、DCS系统由硬件系统和软件系统两部分组成 1)系统硬件 哈四联系统由三个操作站(其中一个兼作工程师站)和3个控制站构成。 哈一联系统由四个操作站(其中一个兼作工程师站)和3个控制站构成。 天然气站系统由三个操作站(其中两个兼作工程师站)和一个控制站构成。 本规程所涉及的操作均在操作站上实现,具体的硬件构成参见相关技术资料。 2)系统软件 系统的所有操作均在Advantrol软件下实现,具体的Advantrol操作参见相关技术手册。 四、主要技术参数 1、浙大中控DCS系统 五、风险及控制措施 六、装置介绍 东河天然气站设计为日处理量22.5万方天然气处理站,配备了一套独立的浙大中控JX-300XP自动化监控系统,本系统由硬件、通讯网络、操作

站计算机、监控软件等组成。 JX-300XP 系统硬件 1、 机柜 天然气站仪控室有I/O 卡件机柜两套,哈四联机柜间有I/O 卡件机柜五套,哈一联机柜间有I/O 卡件机柜五套。 2、 系统软件 系统的所有操作均在Advantrol 软件下实现,具体的Advantrol 操作参见相关 从服务器 主服务器监控机 现场仪器仪 表 现场仪器仪 表

中国传统节日简介

中国传统节日简介 春节 时间:农历正月初一至正月十五 英文:The Spring Festival 释义:春节是农历的一岁之首,俗称“大年”, 也叫“大年初一”。 起源:春节的来历,在中国大约有四千多年 的历史了。它是中国民间最热闹、最隆重的一个传 统节日。古代的春节,是指农历二十四个节气中的 “立春”时节,南北朝以后才将春节改在一年岁末, 并泛指整个春季,这时大地回春,万象更新,人们 便把它作为新的一年的开始。到了辛亥革命后的民 国初年,改农历为公历[阳历]后,便将正月初一定 为春节。直到1949年9月27日,中国人民政治协商会议上才正式把正月初一至正月十五的新年定为“春节”,因而至今仍有许多人将过春节叫过年。 习俗:守岁放鞭炮贴春联拜年吃饺子 元宵节 时间:农历正月十五 英文:Lantern Festival 释义:是中国一个重要的传统节日。正月十五日是一年中第一个月圆之夜,也是一元复始,大地回春的夜晚,人们对此加以庆祝,也是庆贺新春的延续,因此又称“上元节”,即阴历正月十五日。在古书中,这一天称为“上元”,其夜称“元夜”、“元夕”或“元宵”。而元宵这一名称一直沿用至今。 习俗: 由于元宵有 张灯、看灯 的习俗,民 间又习称为“灯节”。此外还有吃元宵、踩高跷、猜灯谜、 舞龙、赏花灯、舞狮子等风俗 清明节 时间:农历四月五日前后

英文:Tomb-sweeping Day 释义:清明节是中国最重要的祭祀节日,是最适合祭祖和扫墓的日子。扫墓俗称上坟,祭祀死者的一种活动。汉族和一些少数民族大多都是在清明节扫墓。 习俗:按照旧的习俗,扫墓时,人们要携带酒食果品、纸钱等物品到墓地,将食物供祭在亲人墓前,再将纸钱焚化,为坟墓培上新土,折几枝嫩绿的新枝插在坟上,然后叩头行礼祭拜,最后吃掉酒食回家。唐代诗人杜牧的诗《清明》:“清明时节雨纷纷,路上行人欲断魂。借问酒家何处有?牧童遥指杏花村。”写出了清明节的特殊气氛。 清明节,又叫踏青节,按阳历来说,它是在每年的4月4日至6日之间,正是春光明媚草木吐绿的时节,也正是人们春游[古代叫踏青]的好时候,所以古人有清明踏青,并开展一系列体育活动的的习俗。 端午节 时间:农历五月初五 英文:Dragon Boat Festival 释义:农历五月初五日为“端午节”,是中国一个古老的传统节日。“端午”本名“端五”,端是初的意思。因为人们认为“五月”是恶月,“初五”是恶日,因而避讳“五”,改为“端午”。端午节早在西周初期即有记载,并非为纪念屈原而设立的节日,但是端午节之后的一些习俗受到屈原的影响。 习俗赛龙舟、吃粽子、饮雄黄酒、游百病、佩香囊。 七夕节 时间:农历七月初七 英语:Chinese Valentine’s day 释义:阴历七月七日的晚上称“七夕”。中国民 间传说牛郎织女此夜在天河鹊桥相会。所谓乞 巧,即在月光对着织女星用彩线穿针,如能穿 过七枚大小不同的针眼,就算很“巧”了。农谚 上说“七月初七晴皎皎,磨镰割好稻。”这又是 磨镰刀准备收割早稻的时候。 习俗:妇女于七夕夜向织女星穿针乞巧等 风俗,受西方国家的影响,中国越来越多的情 侣把那天视为中国情人节,男女双方会互赠礼物,或外出约会。

交通运输与物流专业英语Unite中英文

Unit Six Alternative Evaluation and Choice Text A Feasibility determination Every decision involves at least two options. Even though a single proposal was presented, decision makers have a choice between the proposal and doing nothing. Evaluation appraises the positive impacts and the negative impacts of alternative options in terms of either a single or multiple decision criteria. Determining relevant impacts to particular decision and specifying the appropriate decision criteria are related to the value system within which the choice is to be made. In the case of transportation decisions in the public sector, the operating value system is not that of any single individual or subgroup but that of the community as a whole. There exist conflicting value systems within society. Consequently, transportation decision also entails the resolution of conflicts. 每一项抉择至少包含两个选项,即使是一个单一的提议,决策者也可以选择执行这个提议或什么也不做。不管是根据单一的还是多样化的决策标准,评估的目的在于评价每个选项的积极影响和消极影响。(人们)在做决定时,确立具体抉择的相关影响并详细说明合理的评判标准与其价值体系是相关联的。在公共部门的交通决策中,其价值体系代表的不仅是某一个人或小团体的利益,而是整个社区的价值体系。社会中常存在着相互冲突的价值体系,因此,交通决策也包含着解决(价值冲突)的问题。 Two types of evaluation studies are commonly undertaken: pre-implementation studies, which facilitate the choice of the best course of action from among several alternative proposals, and post-implementation studies, which assess the performance of already implemented action. Post-implementation studies are important for two reasons. First, they help to discover whether or not the implemented alternative performs well, and second, they help to determine whether or not it continues to perform properly over time. This is especially important in the case of transportation systems, which are subject to changing conditions and also to evolving goals and objectives. Continuous monitoring and periodic performance evaluation can help identify emerging problems and also provide guidance to the design of possible improvements. (交通决策中)通常存在着两种类型的评估调查:实施前调查,这有助于在几种备选方案中选出最佳方案;实施后调查,用于评估实施项目的各项性能指标。实施后调查非常重要,原因有二:第一,它有助于发现实施项目是否运行良好;第二,它有助于确定(实施项目)随着时间流逝仍然能良好运行。在易受条件、目标和目的改变影响的交通运输系统中,(实施后调查)显得尤为重要。持续的监测和周期性的性能评估有助于发现问题,为可能的改进设计提供帮助。 An alternative must be both feasible and superior to all others in order to be selected for implementation. The prerequisites to the admission of an alternative to the list of acceptable options include the conditions of technological feasibility, economic efficiency, and cost-effectiveness, and availability of the needed resources. We present the fundamental elements of efficiency and effectiveness evaluation techniques, along with brief description of their conceptual foundations and their major strengths and weaknesses. 用于实施的选择方案必须具有可行性且优于其他备选方案。(项目中)能够进入候选名单的

物流英语专业术语

物流管理logistics management 客户服务customer service 物资搬运material handling 零配件和服务支持parts and service support 工厂及仓库选址factory and warehouse site selection 存货管理inventory management 订单处理order processing 需求预测demand forecasting 退货处理return goods handling 逆向物流reverse logistics 产出点point of origin 消费点point of consumption 物流成本logistics cost 销售损失lost sales 退货处理成本cost of return goods handling 潜在的销售potential sales 运输成本transportation cost 进货渠道inbound channel 出货渠道outbound channel 订单处理成本order processing cost 需求预测deman forecast 销售沟通distribution communications 电子数据交换系统electronic data interchange (EDI) 卫星数据传输satellite data transmission 条码bar coding 内部成本internal cost 外部成本external cost 订单传输order transmittal 订单输入order entry 批量成本lot quantity cost 缺货stock-out 库存成本inventory carrying/ holding cost 资金成本capital cost 仓储空间成本storage space cost 风险成本risk cost 供应链supply chain 供应链管理supply chain management 核心能力core competency 人力资源human resources 供应链整合supply chain integration 物资采购material procurement 最终用户end customer 货物流product flow 信息流information flow

中控操作基本知识一资料

中控操作基本知识一、填空题:1、我公司充气梁篦冷机余热回收的主要用途()、()、()。 2、分解炉内燃料的燃烧方式为()和(),传热方式为()为主。 3、篦式冷却机的篦床传动主要由()和()两种方式。 4、熟料中Cao经高温煅烧后一部分不能完全化合,而是以()形式存在,这种经高温煅烧后不能完全化合的Cao是熟料()不良的主要因至素。 5、旋窑生产用煤时,为了控制火焰的形状和高温带长度,要求煤具有较高的()和(),以用()为宜。 6、熟料急冷主要是防止()矿物在多晶转变中产生不利的晶体转变。 7、我公司篦冷机一段熟料料层一般控制在(),冷却机热回收效率能够达到()。 8、煤灰的掺入,会使熟料的饱和比(),硅率(),铝率()。 9、与传统的湿法、半干法水泥生产相比,新型干法水泥生产具有()、()、()、()、()和()的方大保证体系。10、旋风筒的作用主要是(),传热只完成()。11、在故障停窑时,降温一定要控制好,一般都采用()保温,时间较长时,其降温的速率不要超过(),以免造成耐火材料的爆裂。12、轮带滑移量是反映()与()的相对位移。13、我公司燃烧器为()燃烧器,其中中心风的作用为()、()、()。14、篦冷机的规格为(),篦床面积为()。15、预热器采用高效低压损大锅壳结构的旋风筒,其目的为()、()、()、()。16、预热器一般分为()预热器和()预热器。17、影响物料在预热器旋风筒内预热的因素①()、②()。18、旋风筒的级数较多,预热器出口温度越(),即()越小。19、一级旋风筒的最大目的是①()②()。20、分解炉一般分为()分解炉和()分解炉。21、饱和比的高低,反映了熟料中()含量的高低,也即生料中()含量的高低。22、硅锌酸率的大小,反映了熟料中能形成()的多少,也即在煅烧时()的多少。23、新型干法线均化链的组成()、()、()、()、()。24、正常火焰的温度通过钴玻璃看到:最高温度处火焰发(),两边呈()。25、预分解窑熟料煅烧过程大致可以分为()、()、()三个主要过程。26、()和()的合理配置是降低煤耗的主要措施之一。27、可以通过改变磨擦系数和调整()来控制筒体的上下窜动。28、分解炉是由()、

相关文档
最新文档