习题一 绘制典型信号及其频谱图

习题一 绘制典型信号及其频谱图
习题一 绘制典型信号及其频谱图

习题一绘制典型信号及其频谱图

(1)绘制单边指数信号及其频谱图的MATLAB程序如下:

close all;

E=1;a=1;

t=0:0.01:4;

w=-30:0.01:30;

f=E*exp(-a*t);

F=E./(a+j*w);

plot(t,f);xlabel('t');ylabel('f(t)');

figure;

plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');

figure;

plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB'); figure;

plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');

请更改参数,调试此程序,绘制单边指数信号的波形图和频谱图。观察参数a对信号波形及其频谱的影响。

上述代码(E=1;a=1)的图形如下所示:

现改变参数再绘制图形:①E=1;a=2;

图形如下所示:

②E=2;a=1; 图形如下所示:

③E=2;a=2; 图形如下所示:

由图可知,a越大,单边指数信号的波形图f(t)-t下降越快,其频谱图|F(ω)|-ω、|F(ω)| in dB-ω在ω=0处的峰值越小,φ(ω)-ω的初始近似水平段的值也越小。

(2)绘制矩形脉冲信号、升余弦脉冲信号和三角脉冲信号的波形图和频谱图,观察并对比各信号的频带宽度和旁瓣的大小。

①矩形脉冲

代码如下:

close all;

E=1;tau=1;

t=-4:0.1:4;

w=-30:0.1:30;

f=E*(t>-tau/2&t=tau/2);

F=(2*E./w).*sin(w*tau/2);

plot(t,f);xlabel('t');ylabel('f(t)');

figure;

plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');

figure;

plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB'); figure;

plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');

图形如下所示:

②升余弦脉冲代码如下:clear all; E=1;tau=1;

t=-3:0.1:3;

w=-30:0.1:30;

f=(E/2*(1+cos(2*pi*t/tau))).*(t>-tau/2&t=tau/2|t<=-tau/2 );

Sa=sin(w*tau/2)./(w*tau/2);

F=E*tau/2*Sa./(1-(w*tau/2/pi).^2);

plot(t,f);xlabel('t');ylabel('f(t)');

figure;

plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');

figure;

plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB'); figure;

plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');

图形如下所示:

③三角脉冲

代码如下:

close all;

E=1;tau=1;

t=-3:0.1:3;

w=-30:0.1:30;

f=E*(1-2*abs(t)/tau).*(t-tau/2)+0*(t>=tau/2|t<=-tau/2);

Sa=sin(w*tau/4)./(w*tau/4);

F=E*tau/2*Sa.^2;

plot(t,f);xlabel('t');ylabel('f(t)');

figure;

plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');

figure;

plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB'); figure;

plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');

图形绘制如下:

由图可知,三种信号中矩形脉冲相对频带宽度最小,升余弦脉冲和三角脉冲的频带宽度较为接近;旁瓣大小比较结果为:矩形脉冲>三角脉冲>升余弦脉冲。

装配图习题

零件图装配图习题 9-1 根据泵盖轴测图上所指出的表面及其表面粗糙度参数数值 , 在视图上标出相应的表面粗糙度代号 . [答案] 加工方法去除材料不去除材料 表面代号 A 、 B 、 C 面 D 面其它面表面粗糙度参数 Ra( u m) 1.6 12.5 9-2 找出轴承套 ( 该零件为旋转体的组合 ) 图中的表面粗糙度代号标注方面的错误 , 在下图中作正确标注 , 并说明符号的含义 . [答案]

9-3 根据零件图中的尺寸 , 在装配图中标出其基本尺寸和配合代号 , 并填写下表 . [答案 ] 尺寸名称基本 尺寸 最大极限尺寸最小极限尺寸上偏差下偏差公差 配合 基准制 配合 种类 数值(mm) 孔ES= EI= 轴es= ei= 9-4 根据装配图 , 在相应的零件图上分别注出基本尺寸和极限偏差 ( 查表 ), 并说明配合代号的意义 . [答案]

:基本尺寸,基准制,配合种类; 孔的公差带代号,轴的公差带代号。 :基本尺寸,基准制,配合种类; 孔的公差带代号,轴的公差带代号。 9-5 根据齿轮与轴的装配图, 分别在相应的零件图上注出基本尺寸、公差带代号及极限偏差值 ( 查表 ), 并说明配合代号的含义 . [答案] :基本尺寸,基准制,配合种类; 孔的公差带代号,轴的公差带代号。 9-6 图中轴与孔的基本尺寸为 ? 20, 采用基轴制配合 , 轴的公差等级为 7 级 , 孔的公差等级为 8 级 , 孔的基本偏差为 F, 试在装配图中注出基本尺寸和配合代号 ; 分别在相应的零件图上注写基本尺寸、公差带代号及极限偏差值 ( 查表 ), 并说明配合种类 __________________ . [答案]

习题1 绘制典型信号及其频谱图(参考模板)

习题一绘制典型信号及其频谱图 电子工程学院 202班一、单边指数信号 单边指数信号的理论表达式为 对提供的MATLAB程序作了一些说明性的补充,MATLAB程序为

figure(3); plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB');title(' 幅频特性/dB'); figure(4); plot(w,angle(F)*57.29577951);xlabel('\omega');ylabel('\phi(\omega)/(°) ');title('相频特性'); 调整,将a分别等于1、5、10等值,观察时域波形和频域波形。由于波形 较多,现不失代表性地将a=1和a=5时的各个波形图列表如下进行对比,其 他a值的情况类似可推知。 a15 时 域 图 像

幅频特性 幅频特性/d B 相频特性

分析: 由上表中a=1和a=5的单边指数信号的波形图和频谱图的对比可以发现,当a值增大时,信号的时域波形减小得很快,而其幅频特性的尖峰变宽,相频特性的曲线趋向平缓。 二、矩形脉冲信号 矩形脉冲信号的理论表达式为 MATLAB程序为:

clear all; E=1;%矩形脉冲幅度 width=2;%对应了时域表达式中的tao t=-4:0.01:4; w=-5:0.01:5; f=E*rectpuls(t,width); %MATLAB中的矩形脉冲函数,width即是tao,t为时间 F=E*width*sinc(w.*width/2); figure(1); plot(t,f);xlabel('t');ylabel('f(t)');title('信号时域图像'); figure(2); plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');title('幅频特性'); figure(3); plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB');title(' 幅频特性/dB'); figure(4); plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');title('相频特性'); 调整,将分别等于1、4等值,观察时域波形和频域波形。由于波形较多,现不失代表性地将a=1和a=4时的各个波形图列表如下进行对比,其他值的情况类似可推知。 14

对正弦信号的采样频谱分析.doc

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计 课程名称:课程设计2 设计题目:对正弦信号的抽样频谱分析院系:电子与信息工程学院 班级:0805203 设计者:褚天琦 学号:1080520314 指导教师:郑薇 设计时间:2011-10-15 哈尔滨工业大学

一、题目要求: 给定采样频率fs,两个正弦信号相加,两信号幅度不同、频率不同。要求给定正弦信号频率的选择与采样频率成整数关系和非整数关系两种情况,信号持续时间选择多种情况分别进行频谱分析。 二、题目原理与分析: 本题目要对正弦信号进行抽样,并使用fft对采样信号进行频谱分析。因此首先对连续正弦信号进行离散处理。实际操作中通过对连续信号间隔相同的抽样周期取值来达到离散化的目的。根据抽样定理,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。设抽样周期为TS(抽样角频率为ωS),则 可见抽样后的频谱是原信号频谱的周期性重复,当信号带宽小于奈奎斯特频率的二分之一时不会产生频谱混叠现象。 因此,我们对采样频率的选择采取fs>2fo,fs=2fo,fs<2fo三种情况进行分析。对信号采样后,使用fft函数对其进行频谱分析。为了使频谱图像更加清楚,更能准确反映实际情况并接近理想情况,我们采用512点fft。取512点fft不仅可以加快计算速度,而且可以使频谱图更加精确。若取的点数较少,则会造成频谱较大的失真。 三、实验程序: 本实验采用matlab编写程序,实验中取原信号为 ft=sin(2πfXt)+2sin(10πfXt),取频率f=1kHz,实验程序如下: f=1000;fs=20000;Um=1; N=512;T=1/fs; t=0:1/fs:0.01; ft=Um*sin(2*pi*f*t)+2*Um*sin(10*pi*f*t); subplot(3,1,1); plot(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft'); title('抽样信号的连续形式'); subplot(3,1,2); stem(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft');

实验一利用DFT分析信号频谱

实验一利用DFT 分析信号频谱 一、 实验目的 1. 加深对DFT 原理的理解。 2. 应用DFT 分析信号的频谱。 3. 深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。 二、 实验设备与环境 计算机、MATLAB^件环境。 三、 实验基础理论 1. DFT 与DTFT 的关系 方法二:实际在MATLAB 十算中,上述插值运算不见得是最好的办法。 由于DFT 是DTFT 的取 样值,其相邻两个频率样本点的间距为 —,所以如果我们增加数据的长度 N,使得到的 N DFT 谱线就更加精细,其包络就越接近 DTFT 的结果,这样就可以利用 DFT 计算DTFT 如果 没有更多的数据,可以通过补零来增加数据长度。 3、利用DFT 分析连续时间函数 利用DFT 分析连续时间函数是,主要有两个处理:①抽样,②截断 对连续时间信号x a (t) 一时间T 进行抽样,截取长度为 M 则 址 ML X a (N)「-x a (t)e4dt 二「x a (nT)e jnT n=0 再进行频域抽样可得 M 4 —j 竺 n 送,T' X a (nT)e N =TX M (k) NT n =0 因此,利用DFT 分析连续时间信号的步骤如下: (1 )、确定时间间隔,抽样得到离散时间序列 x(n). (2) 、选择合适的窗函数和合适长度 M 得到M 点离散序列x M DFT 实际上是 DTFT 在单位圆上以 的抽样,数学公式表示为: N-1 _j 空 k X(k) = X(z)| 耳八 x(n)e N z” N n=0 (2 — 1) 2、利用 DFT 求DTFT 方法一:利用下列公式: 2rk X(e j )二、X(k)( ) k=0 N k= 0,1,..N - 1 (2 — 2) Sn(N ,/2) Nsin(,/2) .N A e 2为内插函数 (2— 3) (2—4) X a (r 1)|

(完整版)机械制图试题库及答案

《机械制图》试题 (适用于2011级机电数控专业中职学生,闭卷考试,满分500分) 一、选择题(共70题,每题3分,共210分) 1. (5章2节) (1)用剖切面完全地剖开机件所得的视图称()视图。 (A)全剖 (B)半剖 (C)局部剖 (D)断面 (2)用剖切面局部地剖开机件所得的视图称()视图。 (A)全剖 (B)半剖 (C) 局部剖 (D)断面 (3)半剖视图以()线为对称中心线。 (A)双点画线 (B)虚线 (C)细实线 (D) 细点画线 (4)全剖视图选用的是()剖切面。 (A)单一 (B)几个平行的 (C)几个相交的 (D) 都有可能 (5)机件向不平行于任何基本投影面的平面投影所得的视图叫()。 (A)局部视图 (B) 斜视图 (C)基本视图 (D)向视图 (6)在半剖视图中半个视图与半个剖视图的分界线用()。 (A)粗实线 (B)细实线 (C) 细点画线 (D)波浪线 (7)机件具有若干相同结构(如齿、槽等),并按一定规律分布时,只需画出几个完整的结构,其余用()线连接,并注明该结构的总数。 (A)粗实 (B) 细实 (C)细点画 (D)波浪 2. (5章3节) (8)在下图的A-A断面图中,选出正确的断面图()。

A B C D (9)下图的A-A剖面图中,选出正确的断面图()。 A B C D 3. (5章4节)(10)下面中间的图用的是()表达方法。 (A)局部剖视图(B)局部放大图 (C)局部放大剖视图(D)局部剖视放大图 (11)半剖视图选用的是()剖切面。 (A)单一 (B)几个平行的 (C)几个相交的 (D)其它 (12)局部剖视图选用的是()剖切面。 (A)单一 (B)几个平行的 (C)几个相交的 (D)其它 (13)六个基本视图中最常用的是()视图。 (A)主、右、仰 (B) 主、俯、左 (C)后、右、仰 (D)主、左、仰 (14)六个基本视图的投影规律是“主俯仰后:长对正;():高平齐; 俯左仰右:宽相等。” (A)主俯仰右 (B)俯左后右 (C) 主左右后 (D)主仰后右 (15)在局部剖视图中,视图与剖视部分的分界线用()。 (A)粗实线 (B)细实线 (C)细点画线 (D) 波浪线 (16)重合剖面的轮廓线用()线表示。 (A)粗实 (B) 细实 (C)细点画 (D)波浪

09典型信号的频谱分析

实验九 典型信号的频谱分析 一. 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的频谱特征,并能够从信号频谱中读取 所需的信息。 2. 了解信号频谱分析的基本原理和方法,掌握用频谱分析提取测量信号特征的方法。 二. 实验原理 信号频谱分析是采用傅里叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。 图1、时域分析与频域分析的关系 信号频谱X(f)代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰富的信息。时域信号x(t)的傅氏变换为: dt e t x f X ft j ?+∞ ∞--=π2)()( (1) 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 工程上习惯将计算结果用图形方式表示, 以频率f 为横坐标,X(f)的实部)(f a 和虚部 )(f b 为纵坐标画图,称为时频-虚频谱图; 以频率f 为横坐标,X(f)的幅值)(f A 和相位 )(f ?为纵坐标画图,则称为幅值-相位谱; 以f 为横坐标,A(f) 2为纵坐标画图,则称为 功率谱,如图所示。 频谱是构成信号的各频率分量的集合,它 完整地表示了信号的频率结构,即信号由哪些 谐波组成,各谐波分量的幅值大小及初始相 位,揭示了信号的频率信息。 图2、信号的频谱表示方法

三. 实验内容 1. 白噪声信号幅值谱特性 2. 正弦波信号幅值谱特性 3. 方波信号幅值谱特性 4. 三角波信号幅值谱特性 5. 正弦波信号+白噪声信号幅值谱特性 四. 实验仪器和设备 1. 计算机1台 2. DRVI快速可重组虚拟仪器平台1套 3. 打印机1台 五. 实验步骤 1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI 采集仪主卡检测”或“网络在线注册”进行软件注册。 2.在DRVI软件平台的地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择 “典型信号频谱分析”,建立实验环境。 图5 典型信号的频谱分析实验环境 下面是该实验的装配图和信号流图,图中的线上的数字为连接软件芯片的软件总线数据线号,6017、6018为两个被驱动的信号发生器的名字。 图6 典型信号的频谱分析实验装配图

用FFT对信号作频谱分析 实验报告

实验报告 实验三:用FFT 对信号作频谱分析 一、 实验目的与要求 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、 实验原理 用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 三、 实验步骤及内容(含结果分析) (1)对以下序列进行FFT 分析: x 1(n)=R 4(n) x 2(n)= x 3(n)= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它 n

实验结果图形与理论分析相符。(2)对以下周期序列进行谱分析: x4(n)=cos[(π/4)*n]

x5(n)= cos[(π/4)*n]+ cos[(π/8)*n] 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: (3)对模拟周期信号进行频谱分析: x6(n)= cos(8πt)+ cos(16πt)+ cos(20πt) 选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】:

信号与测试实验1时率与频率

基本信号分析 一、实验目的 1.掌握基本信号的时域和频域分析方法 2.掌握信号的自相关和互相关分析,了解其应用 二、数据处理与分析 (1)幅值为1,频率为100Hz的正弦信号,上图为时域图,下图为利用快速傅里叶变换获得的频谱图。从频谱图上看出,f=100Hz时频域的幅值最大。 (2)频域为100Hz,幅值为1的方波信号,上图为时域图,下图为借助快速傅立叶变换获得的频域图。从频谱图上看出,f=100Hz时频域的幅值最大,随着频域增大,频域的幅值逐渐衰减。

(3)频率为100Hz,幅值为1的锯齿波信号图,上图为时域图,下图为借助傅立叶变换而获得的频域图。从频域图看出,在100Hz的整数倍频率上,频域幅值都出现了峰值,随着频率的增大,峰值逐渐收敛至0. (4)平均振幅为1的噪声信号,上图为时域图,下图为通过快速傅立叶变

换得出的频谱图,从频谱图可以看出,白噪声信号的频谱杂乱无章,无明显规律。 (5)由频率为50Hz、100Hz、150Hz的正弦信号组成的复合信号,上图为时域图,下图为频域图,从图中可以看出,频谱图在50、100、150Hz处出现了峰值。 (6)频率为100Hz 的正弦信号叠加噪声信号:上图为时域信号图,下图为

通过快速傅立叶变换获得的频谱图。与没有叠加噪声信号的正弦波相比,时域波形出现了毛刺,而频谱图中除了在100Hz处有峰值外,在其他频率点处也出现了一些较低的峰值。 (7)频率为100Hz的正弦信号和频率为100Hz的方波信号进行叠加,上图为时域信号,下图为频谱图。从时域图上可以看出,正弦波形叠加方波后有了明显的畸变。从频谱图上可以看出,除了100Hz处出现峰值以外,在其他频率点也出现了一些峰值。

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

机械制图零件图、装配图题库

-------------------------------------密-----------------------封-----------------------线--------------------------------- 班级___________ 考场__________ 姓名______________ 学号_________ 徐工技校2011至2012学年度第二学期 《机械制图》期终考试试题库(零件图、装配图) 一、填空题(每空1分) 第九章 零件图 1. 主视图的投影方向应该能够反映零件的 。(难度:A ) 2. 和 公差简称为形位公差(难度:A ) 3. 尺寸公差带是由 和 两个要素组成。 确定公差带位置, 确定公差带大小。(难度:A ) 4. 配合有 和 两种基准制。配合分成间隙配合 、 和 三类。(难度:A ) 5. 允许尺寸变动的两个 称为极限尺寸。(难度:A ) 6. 极限与配合在零件图上的标注,其中一种形式是在孔或轴的基本尺寸后面注出基本偏差代号和公差等级,这种形式用于 的零件图上。第二种形式是在孔或轴的基本尺寸后面,注出偏差值,这种形式用于 的零件图上。第三种是在孔或轴的基本尺寸后面,既注出基本偏差代号和公差等级,又同时注出上、下偏差数值,这种形式用于 的零件图上。(难度:B ) 7. 形位公差的框格用 线绘制,分成 格或多格 。(难度:A ) 8. 按作用不同,可将基准分为 基准和 基准。(难度:A ) 9. 基孔制的孔(基准孔)的基本偏差代号用 符号表示,其基本偏差值为 。基轴制的轴(基准轴)的基本偏差代号用 符号表示,其基本偏差值为 。(难度:A ) 10. 基本偏差是决定公差带相对零线位置的 。(难度:A ) 11. 外螺纹的规定画法是:大径用 表示;小径用 表示;终止线用 表示。(难度:A ) 12. 当被连接零件之一较厚,不允许被钻成通孔时,可采用 连接。(难度:A ) 13. 剖切平面通过轴和键的轴线或对称面,轴和键均按 形式画出,键的顶面和轮毂键槽的底面有间隙,应画 条线。(难度:A ) 14. Tr40×14(P7)LH-8e-L 的含义_____________________________________________(难度:B ) 15. 模数大,齿距 ,齿厚、齿高也随之 ,因而齿轮的承载能力 。(难度:B ) 16. 螺纹的旋向有 和 两种,工程上常用 螺纹。(难度:B ) 17. 单个圆柱齿轮的剖视图中,当剖切平面通过齿轮的轴线时,轮齿一律按 绘制,齿根线画成 线。(难度:B ) 18. 普通平键有 、 和 三种结构类型。(难度:B ) 19. 左旋螺纹要注写 。(难度:A ) 20. 普通平键的标记:键 GB/T1096 18×11×100表示b= mm ,h= mm ,L= mm 的A 型普通平键(A 省略不注)。(难度:B ) 第十章 装配图 1. 在装配图中,当剖切平面通过某些标准产品的组合件,或该组合件已由其他图形表达清楚时,可只画出 。(难度:A ) 2. 装配图中的明细栏画在装配图右下角标题栏的 方,栏内分格线为 线,左边外框线为 线。(难度:A ) 3. 两个零件的接触表面,只用 条共有的轮廓线表示;非接触面画 条轮廓线。(难度:A ) 4. 装配图中的 ,用来表达机器(或部件)的工作原理、装配关系和结构特点。(难度:A ) 5. 在装配图中 尺寸表示机器、部件规格或性能的尺寸。(难度:A ) 6. 在各视图中,同一零件的剖面线方向与间隔必须 。(难度:A ) 7. 装配图中的指引线应自所指引部分的可见轮廓内引出,并在指引线末端画一 。若所指部分不便于画圆点时,可在指引线末端画 ,并指向该部分的轮廓线。(难度:A ) 8. 一张完整的装配图包括以下几项基本内容: 、 、 和标题栏、零件序号、明细栏。(难度:A ) 9. 装配图中零件序号应自下而上,如标题栏上方位置不够时,可将明细栏顺序画在标题栏的

信号的频谱分析

实验三信号的频谱分析 方波信号的分解与合成实验 一、任务与目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5… 此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2 三、内容与步骤 本实验在方波信号的分解与合成单元完成。 1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。 2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。) 3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。 4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。并分别保

装配图试题Word版

装配图测试题 一选择题(15*2=30分) 1、机器在设计过程中是先画出()再由装配图拆画零件图 A、装配图 B、零件图 C、透视图 2、一张完整的装配图主要包括以下四个方面的内容:一组图形、()、技术要求、标题栏、明细栏。 A、全部尺寸 B、必要尺寸 C、一个尺寸 3、零件图上所采用图样画法(如视图、剖视断面等)在表达装配件时是否同样适用()A、适用B、不适用C、不一定 4、在装配图的规定画法中。同一零件在各视图上的剖面线方向和间隔必须() A、一致 B、不一致 C、可一致可不一致 5、在装配图的规定画法中。对部件中某些零件的范围和极限位置可用()线画出其轮廓。 A、细点画线 B、双点画线 C、虚线 6、同一种零件或相同的标准组件在装配图上只编()个序号。 A、一个 B、两个 C、三个 7、在零件明细栏中填写零件序号时,一般应。 A、由上向下排列 B、由下向上排列 C、由左向右排列 D、由右向左排列 8、基本尺寸相同的配合面,画图时应。 A、画一条线 B、画两条线 C、根据配合的情况,间隙配合画两条线,过盈配合画一条线 9、装配图中,表示带传动的带用的线型为。 A、粗实线 B、细实线 C、虚线 D、细点画线 10、装配图中,表示链传动的链用的线型为。 A 、粗点画线 B、双点画线 C、细点画线 D、虚线 11、在装配图中单独画出某一零件的视图说法正确的是———。 A、在装配图中不能出现单个零件的视图,否则易产生混淆 B、在装配图中可以出现单个零件的视图,此时须标注清楚投射方向和名称并标注字母,而按投影关系配置时,可省略投射方向和字母 C、在装配图中可以出现单个零件的视图,但必须标注清楚投射方向和名称并标注字母 12、下列哪一种尺寸在装配图中不需要标注。 A、定形尺寸 B、装配尺寸 C、安装尺寸 D、性能尺寸 13、装配图中的技术要求不包括下列哪种要求。 A、装配要求 B、检验要求 C、使用要求 D、加工要求 14、为了保证装配要求,两个零件同一方向只能有对接触面。 A、1 B、2 C、3 D、4

信号的频谱分析及MATLAB实现

信号的频谱分析及MATLAB 实现(实例) 摘自:张登奇,杨慧银.信号的频谱分析及MATLAB 实现[J].湖南理工学院学报(自然科学版),2010,(03) 摘 要:DFT 是在时域和频域上都已离散的傅里叶变换,适于数值计算且有快速算法,是利用计算机实现信号频谱分析的常用数学工具。文章介绍了利用DFT 分析信号频谱的基本流程,重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施,实例列举了MATLAB 环境下频谱分析的实现程序。通过与理论分析的对比,解释了利用DFT 分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应,并提出了相应的改进方法。 关键词:MATLAB ;频谱分析;离散傅里叶变换;频谱混叠;频谱泄漏;栅栏效应 3 分析实例 对信号进行频谱分析时,由于信号不同,傅里叶分析的频率单位也可能不同,频率轴有不同的定标方式。为了便于对不同信号的傅里叶分析进行对比,这里统一采用无纲量的归一化频率单位,即模拟频率对采样频率归一化;模拟角频率对采样角频率归一化;数字频率对2π归一化;DFT 的k 值对总点数归一化。同时,为了便于与理论值进行对比,理解误差的形成和大小,这里以确定信号的幅度谱分析为例进行分析说明。假设信号为:)()(t u e t x t -=,分析过程:首先利用CTFT 公式计算其模拟频谱的理论值;然后对其进行等间隔理想采样,得到)(n x 序列,利用DTFT 公式计算采样序列的数字连续频谱理论值,通过与模拟频谱的理论值对比,理解混叠误差形成的原因及减小误差的措施;接下来是对)(n x 序列进行加窗处理,得到有限长加窗序列)(n xw ,再次利用DTFT 公式计算加窗后序列)(n xw 的数字连续频谱,并与加窗前)(n x 的数字连续频谱进行对比,理解截断误差形成的原因及减小误差的措施;最后是对加窗序列进行DFT 运算,得到加窗后序列)(n xw 的DFT 值,它是对)(n xw 数字连续频谱进行等间隔采样的采样值,通过对比,理解栅栏效应及DFT 点数对栅栏效应的影响。利用MATLAB 实现上述分析过程的程序如下: clc;close all;clear; %CTFT 程序,以x(t)=exp(-t) t>=0 为例 %利用数值运算计算并绘制连续信号波形 L=4, %定义信号波形显示时间长度 fs=4,T=1/fs; %定义采样频率和采样周期 t_num=linspace(0,L,100);%取若干时点,点数决定作图精度 xt_num=exp(-1*t_num);%计算信号在各时点的数值 subplot(3,2,1);plot(t_num,xt_num),%绘信号波形 xlabel('时间(秒)'),ylabel('x(t)'),%加标签 grid,title('(a) 信号时域波形'),%加网格和标题 %利用符号运算和数值运算计算连续信号幅度谱的理论值 syms t W %定义时间和角频率符号对象 xt=exp(-1*t)*heaviside(t),%连续信号解析式 XW=fourier(xt,t,W),%用完整调用格式计算其傅氏变换 %在0两边取若干归一化频点,点数决定作图精度 w1=[linspace(-0.5,0,50),linspace(0,1.5,150)];

机械制图选择题库带答案

第五章零件图的表达与识读 1.一张完整的零件图应包括:一组图形、完整的尺寸、技术要求和(B )。 A 明细栏 B 标题栏 C 零件序号 D 总体尺寸 2.一张完整的零件图应包括:一组图形、完整的尺寸、(D )和标题栏。 A 明细栏 B 总体尺寸 C 零件序号 D 技术要求 3.基本视图配置中,俯视图在主视图的( D )方。 A 上 B 左 C 后 D 下 4.基本视图配置中,右视图在主视图的( B )方。 A 上 B 左 C 后 D 下 5.六个基本视图仍然保持“长对正、高平齐、(A )”的“三等”投影关系。 A 宽相等 B 左 右等高 C 前 后一致 D 上 下对齐 6.六个基本视图仍然保持“(C )、高平齐、宽相等”的“三等”投影关系。 A 上 下对齐 B 左 右等高 C 长对正 D 前 后一致 7.分析轴承座三视图,高度方向基准是A 、B 、C 、D 中的( C )。 8.分析轴承座三视图,长度方向基准是A 、B 、C 、D 中的( D )。 A C D B

9.分析阶梯轴视图,长度方向基准是( 右端面 )。 10.分析阶梯轴视图,径向基准是(轴线 )。 11.分析标准直齿圆柱齿轮的图形,选出符号d a 代表的结构名称。(D ) A 分度圆直径 B 齿厚 C 齿根圆直径 D 齿顶圆直径 12. 分析标准直齿圆柱齿轮的图形,选出符号d f 代表的结构名称。(C ) A 分度圆直径 B 齿厚 C 齿根圆直径 D 齿顶圆直径 13. 分析标准直齿圆柱齿轮的图形,选出符号d 代表的结构名称。(A ) A 分度圆直径 B 齿厚 C 齿根圆直径 D 齿顶圆直径 14.分析标准直齿圆柱齿轮的图形,选出符号h 代表的结构名称。(A ) A 全齿高 B 齿厚 C 齿根高 D 齿顶高 15.分析标准直齿圆柱齿轮的图形,选出符号h a 代表的结构名称。(D ) A 全齿高 B 齿厚 C 齿根高 D 齿顶高 16.分析标准直齿圆柱齿轮的图形,选出符号h f 代表的结构名称。(C ) A 全齿高 B 齿厚 C 齿根高 D 齿顶高 17.分析标准直齿圆柱齿轮的图形,选出符号p 代表的结构名称。(C ) A 全齿高 B 齿厚 C 齿距 D 齿顶高 18.分析标准直齿圆柱齿轮的图形,选出符号e 代表的结构名称。(D ) 左端面 圆柱面

应用MATLAB对信号进行频谱分析

数字信号处理课程设计报告书 2011年7 月 1日 课题名称 应用MATLAB 对信号进行频谱分析 姓 名 张炜玮 学 号 20086377 院、系、部 电气系 专 业 电子信息工程 指导教师 刘鑫淼 ※※※※※※※※※ ※※ ※※ ※※ ※※ ※※※※※ ※※ 2008级数字信号处理课程设计

应用MATLAB对信号进行频谱分析 20086377 张炜玮 一、设计目的 用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 二、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 三、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N 有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: X(k)=DFT[x(n)]= kn N W N n n x ∑ - = 1 ) ( ,k=0,1,...,N-1 N j e N Wπ2- = 逆变换:x(n) =IDFT[X(k)]= kn N W k X N n N - ∑ - = 1 ) ( 1 ,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 四、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f*t);

机械制图与CAD试题库

一、填空题 1、每一个尺寸都由尺寸界线、尺寸线和()三要素组成。尺寸数字 2、尺寸界线用()绘制。细实线 3、尺寸线用()绘制。细实线 4、尺寸线的终端形式有( )和斜线终端。箭头终端 5、尺寸数字有()和()。尺寸数字有()和()。 6、对称中心线用()来画。细点划线 7、轴线、对称中心线、双折线和作为中断线用的()。双点画线 8、线性尺寸的数字一般应注写在()的上方,也允许注写在尺寸线的中断处。 尺寸线 9、在标注()时,应在尺寸数字前加注符号“Φ”直径 10、注()的直径或半径时,应在符号“Φ”或“R”前再加注符号“S”。球面 11、标注线性尺寸时,尺寸线必须与所标注的线段()。平行 12、尺寸界线一般与尺寸线( )。垂直 13、平面图形的尺寸按其作用分为两类:( )和()定形尺寸定位尺寸 14、投射线通过物体,向选定的投影面投射,并在该投影面上得到图形的方法叫做 ()投影法。 15、投影法可分为()投影法和( )投影法两大类。中心平行16、投射线相互平行的投影法称为( )。平行投影法 17、平行投影法又分为()和( )斜投影法、正投影法。 18、三视图之间的位置关系为:以主视图为准,俯视图在主视图的(),左视图在主视图的()。正下方正右方19、投射线与投影面相倾斜的平行投影法,称为()斜投影法20、投射线与投影面相垂直的平行投影法,称为()正投影法 21、三个相互垂直相交的投影平面组成三投影面体系。其中,正投影面,用()表示;水平投影面,用()表示;侧投影面,用()表示。 V H W 22、将物体置于三投影面体系中,按正投影法分别向V、H、W三个投影面进行投影,即可得到物体的相应投影,该投影也称为()视图。 23、主、俯两个视图之间的投影关系为:主、俯视图()长对正 24、主、左两个视图之间的投影关系为:主、左视图()高平齐 25、俯、左两个视图之间的投影关系为:俯、左视图()宽相等 26、在三投影面体系中,平行于一个投影面,且倾斜于另外两个投影面的直线称为()。投影面的平行线 27、在三投影面体系中,平行于H面,且倾斜于V、W的直线称为()。水平线28、在三投影面体系中,平行于V面,且倾斜于H、W的直线称为()。在三投影面体系中,平行于V面,且倾斜于H、W 的直线称为() 29、在三投影面体系中,平行于W面,且倾斜于H、V的直线称为()。侧平线30、在三投影面体系中,垂直于一个投影面(必然平行于另外两投影面)的直线,称为()投影面的垂直线。 31、在三投影面体系中,垂直于H面(必然平行于V、W面)的直线称为() 铅垂线; 32、在三投影面体系中,与三个投影面均倾斜的直线,称为()。一般位置直线 33、在三投影面体系中,平行于一个投影面(则必然垂直于另外两个投影面)的平面,称为()。投影面平行面。 34、在三投影面体系中,平行于H面(则必然垂直于V、W面)的平面,称为( ) 水平面; 35、在三投影面体系中,平行于V面(则必然垂直于H、W面)的平面,称为( ) 正平面; 36、在三投影面体系中,平行于W面(则必

相关文档
最新文档