不规则图形面积汇总

不规则图形面积汇总
不规则图形面积汇总

计算图19-1中阴影部分面积是多少平方厘米?(圆的半径r=10厘米,∏取3.14)

分析:要计算图19-1中阴影部分的面积,关键在于处理图中空白部分的面积。

利用割补进行转化,把空白部分转移到圆的边缘。如图19-2所示,这样阴影部分面积就可以转化为4

1圆面积加上两个

正方形的面积来计算。 解 ∏×102×4

1+102×2=25∏+200=78.5+200=278.5

图19-3大小两圆相交部分面积是大圆面积的

15

4,是小圆面积的

5

3,量得小圆的半径是5厘米,问大圆的半径是多少

厘米?

分析:因为已知阴影部分与大圆,小圆的面积比,所以可以先求出两圆面积的比,继而求出它们的半径比。, 解 设阴影部分的面积为1.则小圆面积是4

15,小圆面积是

3

5。于是:

大圆面积:小圆面积=

4

15:

3

5=

4

9=(

2

3)2 5×2

3=7.5厘米

如图19-4,正方形面积是8平方厘米。求阴影部分的面积是多少平方厘米?

分析:这道题按常规思路是:要求阴影部分的面积,用正方形的面积减去一个四分之一圆的面积。因此,只要知道圆的半径,问题就得到解决了。但是,从题中的已知条件知道,圆的半径是不可能求出的,问题难以得解。这时,就必须改变解题思路,重新审题和分析图形,从图中不难看到,正方形的边长等于圆的半径,进而可以推出a ×a=r ×r=8平方厘米。所以,在求四分之一圆的面积时,就不必按常规的方法,去求解圆的半径,而直接用8平方厘米代替r ×r 的面积,四分之一圆的面积是3.14×8×

4

1=6.28平方厘米,则阴影部分的面积就是8-3.14×8×

4

1=1.72平方厘米。

如图19-7,求空白部分的面积是正方形面积的几分之几?

分析:因为圆和正方形它们的对称性,可以先画出两条辅助线帮助分析,即将正方形分成4个全等的小正方形。先看上面的两个小正方形,从圆中可知,A=B ,C=D 。故有A+D=B+C 。这样,可以得到阴影部分的面积与空白部分的面积是正方形面积的二分之一。

求图19-8中阴影部分的面积。

分析:阴影部分的面积是以边长为20的正方形与半径为20的4

1圆面积差减去边长为10的正方形与半径为10的4

1圆

面积差的2倍。

S 阴影=[20×20-3.14×202×4

1-10×10-3.14×102×

4

1]×2=(86-21.5)×2=129

如图19-9,A ,B 是两个圆的圆心,那么两个阴影部分的面积差是多少? 分析:两个阴影部分面积都难以直接求得,要计算它们面积的差需要转化。

甲- 乙=(甲+丙+丁)-(乙+丙+丁),甲丙丁的面积之和是大圆面积的四分之一,3.14×4×4×

4

1;乙丙丁的面积,乙

加丙是一个长方形,2×4,丁的面积可以直接求,3.14×2×2×4

1。这样两个阴影部分的面积差可以求得。

3.14×4×4×4

1-(4×2+3.14×2×2×

4

1)=1.42

求图19-10阴影部分的面积。 分析:这道题的阴影部分可以从半径为6的4

1圆面积中减去其中的空白部分的面积。

3.14×6×6×

4

1-(6×4-3.14×4×4×

4

1)=28.26-11.44=16.82

如图19-12,ABCG 和CDEF 都是正方形,DC 等于12厘米,CB 等于10厘米。求阴影的面积。

分析: 要运用求积公式直接求出阴影部分的面积是行不通的,因为阴影部分的面积是不规则图形。可以运用转化的方法,先求出直角梯形ABCF 的面积和圆心角为FCD 的扇形面积,所得的差就是阴影部分的面积。直角梯形的面积为:(10+12)×10÷2=110平方厘米。

4

1圆的面积:3.14×122÷4=3.14×144÷4=113.04 直角三角形的面积为:10×

(10+12)÷2=22×5=110 阴影部分的面积为110+113.04-110=113.04平方厘米。

求图19-15中的阴影部分的面积。(OB=4厘米)

分析: 如图19-16,首先可以用虚线连接AC 、BC 、OC ,并标出S1、S2、S3、S4,则阴影部分S1与空白部分S3面积相等。阴影部分S2与空白部分S4面积相等,所以阴影部分的面积等于4

1圆面积减去1个直角三角形的面积。3.14×42

×4

1-4×4×

2

1=3.14×4-8=4.56平方厘米

如图19-17,以小正方形4角的顶点为圆心,边长的一半为半径,作4个圆,在4个圆外作一正方形,每边都与其中两

个圆各有一个接触点,求阴影部分的面积S 。单位厘米。

分析:仔细分析观察后,便可看出阴影部分的面积S 等于大正方形面积S 减去小正方形的面积和4个4

3小圆面积的和。

解:S=40×40-[(40÷2)2

+3.14×(40÷2÷2)2

×

4

3×4]=1600-[400+942]=1600-1432=258平方厘米

不规则图形面积的计算(一)

不规则图形面积的计算(一) 我们曾经学过三角形、长方形、正方形、平行四边形、梯形等基本图形(也叫规则图形)的面积计算,但在实际问题中,有些图形的面积是由一些基本图形通过组合、平凑而成的,他们的面积及周长无法用公式直接计算,我们通常称这些图形为不规则图形。 那么,我们怎样计算不规则图形的面积和周长呢? 我们一般是将这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,从而较轻松的解决问题。 【例1】如图,正方形的边长是4,求阴影部分面积 【分析】正方形的对角线将正方形平分,又因所截其直线平行于正方形的边,故阴影和空白处的面积相等。 【例2】如图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE。求阴影部分的面积。 【分析】由FG=2GE可知,G点是线段EF的三等分点,故阴影部分的面积是

三角形CEF面积的三分之一。 【例3】如图,平行四边形ABCD的边长BC=10,直角三角形BCE的直角边EC=8,已知阴影部分的面积比三角形EFG的面积大10。求CF的长。 【分析】本题看似没有思路,重要是要理清各个面积之间的联系。 提示语对于求不规则图形的面积,首先要看清题目所给的条件,及通过题目所给条件可以得出什么?一般利用加辅助线,可以通过剪、拼、凑的方法得出答案。, 自己练 1、求下列图形阴影部分面积:单位:厘米

2、解答题: 直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米。又三角形ABF、三角形BCE和四边形BEDF的面积相等。求三角形DEF的面积。 (3)、有一三角形纸片沿虚线折叠到右下图,他的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米。求原三角形面积。 【提高题】求阴影部分面积(字母是为解题方便加的)

不规则图形的面积计算

不规则图形的面积计算 在图形面积计算时,经常会到一些无法直接求或不规则的图形,这时我们需要转换解题思维,根据图形的基本关系,运用分解、平移、旋转、割补、添辅助线等方法来思考。下面介绍几种常见的面积计算的解题思路. 一、“大减小” 例1.求下图中阴影部分的面积(单位:厘米) 解析:阴部部分的面积=“大减小” =两正方形面积-空白部分面积 =(4×4+3×3)-(4+3)×4÷2 =11平方厘米 二、“补” 例2.四边形ABCD是一个长10厘米,宽6厘米的长方形,三角形ADE的面积比三角形CEF的面积大10平方厘米,求CF的长。 解析:假设三角形EFC为图1,四边形ECBA为图2,三角形ADE为图3。给1、3同时补上2,它们的面积差不会发生改变 图形3的面积-图形1的面积=10

(图形3+图形2)-(图形1+图形2)= 即长方形ABCD的面积-三角形ABF的面积=10 那么,三角形ABF的面积=60-10=50=AB×BF÷2 可算出 BF=10厘米,所以CF=10-6=4厘米 例3.如图,四边形ACEF中,角ACE=角EFA=90°,角CAF=45°,AC=8厘米,EF=2厘米,求四边形ACEF的面积 解析:分别延长AF、CE,交于B点 在三角形ABC中,很明显,它是个等腰直角三角形,面积=8×8÷2=32平方厘米 在三角形EFB中,很明显,它也是一个等腰直角三角形,面积=2×2÷2=2平方厘米 所以,S四边形ACEF=S△ABC-S△EFB=32-2=30平方厘米 三、“移” 例4.如图所示(1图),四边形ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求路的面积。 解析:小路是曲折的,不规则图形,可用采用“移”的思路来解决 把图1下面空白部分往上、往左移,使它与上面空白部分连接在一起,就成了图2中的空白部分,是一个长方形,长是20-2=18米,宽是14-2=12米,这个长方形的面积=18×12=216平方米,小路的面积=大长方形的面积-空白长方形的面积=20×14-216=64平方米 例5.如图,AE=ED,AF=FC,已知三角形ABC的面积是100平方厘米,求阴影部分的面积

不规则图形面积的计算及详细讲解

第一讲不规则图形面积的计算(一) 习题一(及详细答案) 一、填空题(求下列各图中阴影部分的面积): 二、解答题: 1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。 2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN (阴影部分)的面积. 3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。 4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF的面积为4.求三角形ABE的面积. 5.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。求三角形DEF的面积. 6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少? 7.如右图,有一三角形纸片沿虚线折叠得到右下图,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米.求原三角形面积.

8.如右图,ABCD的边长BC=10,直角三角形BCE的直角边EC长8,已知阴影部分的面积比△EFG的面积大10.求CF的长. 习题一解答 一、填空题: 二、解答题: 3.CE=7厘米. 可求出BE=12.所以CE=BE-5=7厘米. 4.3.提示:加辅助线BD ∴CE=4,DE=CD-CE=5-4=1。 同理AF=8,DF=AD-AF=14-8=6, 6.如右图,大正方形边长等于长方形的长与宽的和.中间小正方形的边长等于长方形的长与宽的差.而大、小正方形的边长分别是8米和3米,所以长方形的宽为(8-3)÷2=(米),长方形的长为=(米).

求不规则图形的面积

求不规则图形的面积 李荣璋 在实际问题中,有些图形不是以基本图形(如三角形、矩形、正方形、平行四边形等)的形状出现,而是由一些基本图形组合、拼凑而成的简单图形,在计算它们的面积时无法直接应用公式。但是,对这些图形进行割补、剪拼等操作,可将它们转化为基本图形加以解决。 1. 等积变形 三角形面积计算公式为 (1)等底同高 如图1所示,在△ABC中,BD=DC,则 引申:当等高时,两三角形面积的比等于底的比。 图1 如图2所示,若,则

图2 (2)同底等高 如图3所示, 图3 例1. 如图4所示,点A为△CDE的边DE的中点,。若△ABC的面积为5平方厘米,求△ABD及△ACE的面积。 图4 解:取BD中点F,连结AF。

因为等底、同高, 所以它们的面积相等,都等于5平方厘米。 即平方厘米 平方厘米 又因为等底、同高 所以平方厘米。 例2. 如图5所示,已知,求阴影部分的面积。 图5 解:连结DF 因为 所以 因为

所以 即 所以 2. 利用矩形性质 例3. 如图6所示,在正方形有ABCD中,△ABE的面积是8平方厘米,它是△DEC 的面积的,求正方形ABCD的面积。 图6 解:过E作于F 平方厘米 平方厘米 所以正方形的面积

(平方厘米) 3. 其它根据题意计算 例4. 如图7所示,有一个三角形纸片沿虚线折叠得图8,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米,求原三角形面积。 图7 图8 解:如图9所示,设折叠后重合部分的面积为x平方厘米,则 原三角形面积为平方厘米 依题意得: 解得: 所以原三角形的面积为 (平方厘米)。

小学六年级奥数专题训练:不规则图形的面积求法

一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。 二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可。 三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它是一个底2,高4的三角形,就可以直接求面积了。 四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。 五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助

线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便。 六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半. 七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。 八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积. 九、对称添补法:这种方法是作出原图形的对称图形,从而得到一

六年级数学-不规则图形面积计算

不规则图形面积计算(1) 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形. 我们的面积及周长都有相应的公式直接计算. 如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算. 一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过 实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了、例题与方法指导 例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10 厘米和 12厘米. 求阴影部分的面积。 思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白” 三角形(△ ABG、△BDE、△ EFG)的面积之和。

例 2 如右图,正方形 ABCD 的边长为 6 厘米,△ ABE 、△ ADF 与四边形 AECF 的面积 彼此相等,求三角形 AEF 的面积 . 1 ∴四边形 AECF 的面积与△ ABE 、△ ADF 的面积都等于正方形 ABCD 的 。 3 在△ ABE 中,因为 AB=6.所以 BE=4,同理 DF=4,因此 CE=CF=2, ∴△ ECF 的面积为 2×2÷ 2=2。 所以 S △ AEF=S 四边形 AECF-S △ECF=12-2=10(平方厘米)。 例 3 两块等腰直角三角形的三角板,直角边分别是 10 厘米和 6 厘米。如右图那样 在等腰直角三角形 ABC 中 ∵AB=10 ∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积 =S △ ABG-S △ BEF=25-8=17(平方厘米)。 例 4 如右图, A 为△ CDE 的 DE 边上中点, BC=CD ,若△ ABC (阴影部分)面积为 5 平方厘米 . 求△ ABD 及△ ACE 的面积 . 思路导航: 取 BD 中点 F ,连结 AF.因为△ ADF 、△ ABF 和△ ABC 等底、等高, 所以它们的面积相等,都等于 5 平方厘米 . ∴△ ACD 的面积等于 15 平方厘米,△ ABD 的面积等于 10 平方厘米。 又由于△ ACE 与△ ACD 等底、等高,所以△ ACE 的面积是 15 平方厘米。 思路导航: ∵△ ABE 、△ ADF 与四边形 AECF 的面积彼此相等, 重合 . 求重合部分(阴影部分)的面积。 思路导航: C

方格图中不规则图形的面积计算

方格图中不规则图形的面积计算 教学内容:教材P100例五及练习二十二第7~11题。 教学目标: 知识与技能:初步掌握“通过将不规则图形近似地看作可求面积的多边形来求图形的面积”。 过程与方法:用数格子方法和近似图形求积法估测不规则图形的面积。 情感、态度与价值观:培养学生的语言表达能力和合作探究精神,发展学生思维的灵活性。 教学重点:将规则的简单图形和形似的不规则图形建立联系。 教学难点:掌握估算的习惯和方法的选择。 教学方法:迁移式、尝试、扶放式教学法。 教学准备:师:多媒体、树叶、透明方格纸。生:树叶若干片、方格纸一张。 教学过程 一、情境导入 出示图片:秋天的图片。并谈话导人:秋天一到,到处都是飘落的树叶,老师想把这美丽的树叶带入数学课里来研究,我们可以研究它的什么呢? 学生回答,并根据学生的回答板书课题:树叶的面积。 出示一片树叶,先让学生指一指树叶的面积是哪一部分?指名几名学生上台指一指。 引导学生思考:它是一个不规则的图形,那么面积如何计算呢? 学生通过交流,会想到用方格数出来,如果想不到教师可以提醒学生。 二、互动新授 1.出示教材第100页情境图中的树叶。 引导思考:这片叶子的形状不规则,怎么计算面积呢? 让学生思考,并在小组内交流。 学生可能会想到:可以将树叶放在透明方格纸上来计数。 对学生的回答要给予肯定,并强调还是要用一个统一的标准的方格进行计数。 演示教材第100页情境全图:在树叶上摆放透明的每格1平方厘米方格纸。 引导学生观察情境图,说一说发现了一些什么情况? 学生可能会看出:树叶有的在透明的厘米方格纸中,出现了满格、半格,还出现了大于半格和小于半格的情况。 2.自主探索树叶的面积。 明确:为了计算方便,要先在方格纸上描出叶子的轮廓图。 先让学生估一估,这片叶子的面积大约是多少平方厘米。 让学生自主猜测。 再让学生数一下整格的:一共有18格。 引导思考:余下方格的怎么办? 小组交流讨论,汇报。

不规则图形面积的求法九年级中考复习

不规则图形面积的求法 (九年级中考复习) 山东省沂水县高桥镇初级中学 王瑞辉 276411 求不规则图形面积的基本思路是通过分割、重叠、等积替换等方法把不规则图形转化为规则图形或规则图形面积的和差。 一、等积替换 (1)三角形等积替换 依据:等底等高的三角形面积相等或全等的三角形面积相等。 例1、如图1所示,半圆O 中,直径AB 长为4,C 、D 为半圆O 的三等分 点.,求阴影部分的面积. 解:连结OC 、OD , 由C 、D 为半圆O 的三等分点知:∠COD=60°,且∠ADC=∠DAB=30°, ∴CD ∥AB ,所以ODC ADC S S ??=(同底等高的三角形面积相等) ∴==扇形阴影OCD S S ππ323602602=?? 例2、如图2所示,在矩形ABCD 中,AB=1,以AD 为直径的 半圆与BC 切于M 点,求阴影部分面积. 解:由AB =1,半圆与BC 相切,得AD =2 取AD 的中点O ,则OD =BM =1。连结OM 交 BD 于E; 则△OED ≌△MEB ∴MEB OED S S ??= (全等三角形面积相等) ∴==扇形阴影OMD S S 4 3601902ππ=?? (2)弓形等积替换 依据:等弧所对的弓形面积相等。 例3、 在RT △ABC 中,∠B=90°,AB=BC=4,AB 为直径的⊙O 交AC 于点D, 求图中两个阴影部分的面积之和. 解:连结BD ,由AB 为⊙O 的直径得∠ADB =90°, RT △ABC 中∠B =90°AB =BC =4, 得∠A =45°且AC =42,AD =BD =CD =22 ∴A D BnD S S 弓形m 弓形= ∴CDB 1 1S CD BD 2222422 S ?????阴影==== 例4、点A、B、C、D是圆周上四点,且? AB +?CD =?AC +?BD , 弦AB=8,CD=4,求两个阴影部分的面积之和。 A 图2 图4

最新五年级不规则图形面积计算

五年级不规则图形面积计算 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:

实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 一、例题与方法指导 例1 如右图,甲、乙两图形都是正方形,它们的边长分 别是10厘米和12厘米.求阴影部分的面积。 思路导航: 阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。 例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF 与四边形AECF的面积彼此相等,求三角形AEF的面积. 思路导航:

∵△ABE、△ADF与四边形AECF的面积彼此相等, ∴四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD的1 3 。 在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。 所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。 例3 两块等腰直角三角形的三角板,直角边分别是10厘米 和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。思路导航: 在等腰直角三角形ABC中 ∵AB=10 ∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积=S△ABG-S△BEF=25-8=17(平方厘米)。 例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC (阴影部分)面积为5平方厘米. 求△ABD及△ACE的面积. B

几种不规则图形面积的解题方法

对于不规则图形面积的计算问题,一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。常用的基本方法有: 1. 直接求面积:这种方法是根据已知条件,从整体出发直接求出组合图形面积。 例1:求下图阴影部分的面积(单位:厘米)。 解答: 通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为: (平方厘米) 2.相加、相减求面积:这种方法是将组合图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加或相减求出该图形的面积。 例2:正方形甲的边长是5厘米,正方形乙的边长是4厘米,阴影部分的面积是多少? 解答: 两个正方形的面积:5×5+4×4=41(平方厘米) 三个空白三角形的面积和:(5+4)×5÷2+4×4÷2+5×(5-4) ÷2=33(平方厘米) 阴影部分的面积:41-33=8(平方厘米) 除了以上这两种方法,还有其他的几种方法,同学们不妨了解了

解。 3.等量代换求面积:一个图形可以用与它相等的另一个图形替换,如果甲乙大小相等,那么求出乙的大小,就知道甲的大小;两个图形同时增加或减少相同的面积,它们的差不变。 例3:平行四边形ABCD的边BC长8厘米,直角三角形ECB的直角边EC长为6厘米。已知阴影部分的总面积比三角形EFG的面积大8平方厘米,平行四边形ABCD的面积是多少? 解答: 阴影部分的总面积比三角形EFG的面积大8平方厘米,分别加上梯形FBCG,得出的平行四边形ABCD比三角形EBC的面积大8平方厘米。 平行四边形ABCD的面积:8×6÷2+8=32(平方厘米) 4.借助辅助线求面积:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法求面积。 例4:下图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2平方厘米,CD的长是多少? 解答: 结合已知条件看图,很难有思路,连接DA,就可以发现:三角形ABE 比三角形CDE的面积大2平方厘米,分别加上三角形DAE得到的三角形ABD 比三角形CDA的面积大2平方厘米。 (4×4÷2-2)×2÷4=3(厘米)

最新五年级不规则图形面积计算

五年级不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形?我们的面积及周长都有相应的公式直接计算?如下表:

实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这 些图形通过实施害际卜、剪拼等方法将它们转化为基本图形的和、差关 系,问题就能解决了。 一、例题与方法指导 例1如右图,甲、乙两图形都是正方形,它们的边长分别是 10厘米和12厘米?求阴影部分的面积。 思路导航: 阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白 三角形(△ABG、壬DE、AEFG )的面积之和。 例2 如右图,正方形ABCD的边长为6厘米,A ABE、A ADF

与四边形AECF的面积彼此相等,求三角形AEF的面积.思路导航:

???△BE> △ADF与四边形AECF的面积彼此相等, 二四边形AECF的面积与厶ABE .△ADF的面积都等于正方形 ABCD 的1。 3 在A ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2 , ???△CF的面积为2X2吃=2。 所以S A AEF=S 四边形AECF-S △ECF=12-2=10 (平方厘米)。 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合?求重合部分(阴影部分)的面积。 思路导航: 在等腰直角三角形ABC中 ??AB=10 ??EF=BF=AB-AF=10-6=4 , ?阴影部分面积=S A ABG-S ^3EF=25-8=17 (平方厘米) 例4 如右图,A为△CDE的DE边上中点,BC=CD,若A ABC (阴影部分)面积为5平方厘米.

不规则图形面积的计算方法

不规则图形面积的计算方法 教授对象:校区:年级:五科目:数学授课教师: 课题不规则图形面积计算所用课时 1.5 h 学习目标掌握不规则图形面积公式 授课时间 重点难点面积公式的应用 学习过程 不规则图形面积计算 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 一、例题与方法指导 例1、如右图,甲、乙两图形都是正方形,它们的边长分别是10厘 米和12厘米.求阴影部分的面积。 思路导航: 阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白” 三角形(△ABG 、△BDE 、△EFG )的面积之和。 例2、如右图,正方形ABCD 的边长为6厘米,△ABE 、△ADF 与四边形AECF 的面积彼此相等,求三角形AEF 的面积. 思路导航: ∵△ABE 、△ADF 与四边形AECF 的面积彼此相等, ∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13 。 在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF 的面积为2×2÷2=2。 所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。 例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。 思路导航: 在等腰直角三角形ABC 中 ∵AB=10 ∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。 例4、如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米. 求△ABD 及△ACE 的面积. 思路导航: 取BD 中点F ,连结AF.因为△ADF 、△ABF 和△ABC 等底、等高, B C

五年级奥数专题:不规则图形面积计算(含答案)

不规则图形面积计算 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 一、例题与方法指导 例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10 厘米和12厘米.求阴影部分的面积。 思路导航:

阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG 、△BDE 、△EFG )的面积之和。 例2 如右图,正方形ABCD 的边长为6厘米,△ABE 、△ADF 与四边形AECF 的面积彼此相等,求三角形AEF 的面积. 思路导航: ∵△ABE 、△ADF 与四边形AECF 的面积彼此相等, ∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13 。 在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF 的面积为2×2÷2=2。 所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。 例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样 重合.求重合部分(阴影部分)的面积。 思路导航: 在等腰直角三角形ABC 中 ∵AB=10 ∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。 例4 如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米. 求△ABD 及△ACE 的面积. 思路导航: 取BD 中点F ,连结AF.因为△ADF 、△ABF 和△ABC 等底、等高, 所以它们的面积相等,都等于5平方厘米. ∴△ACD 的面积等于15平方厘米,△ABD 的面积等于10平方厘米。 B C

《不规则图形的面积-》教学设计

《不规则图形的面积》教学设计(1课时) 大寨小学王博 一、教学容:本节课选自人民教育小学数学五年级上册第六单元《多边形面积》100页例5,求不规则图形面积。 二、教材分析:估算不规则图形面积是人教版五年级上册第六单元的容,因为学生是第一次接触此类容,所以主要是利用方格图作为背景进行估计与计算。估计边界比较复杂的不规则图形的面积,需要“凑整”(割、补、添加、舍去等)。学生往往容易出错,可采用以大化小的策略,同时培养学生认真仔细的习惯。因选取的角度、采用的方法不同,学生得到的结果会不同。所以,结果突出估算只要在一定围即可。 三、学情分析:长期以来,小学数学几何图形面积计算的容已经形成一种共识,即计算规则图形的面积,也就是常说的能用公式进行计算的图形。但新数学课程标准中则增加了估计与计算不规则图形的面积,之所以增加是因为生活量不规则图形的存在,需要学生有较强的估计能力,即能根据图形的形状,会用各种方法迅速估计出这个图形的面积,甚至能直觉地估计出图形的面积。 四、教学目标 (一)知识与技能 初步掌握“通过将不规则图形近似地看作可求面积的多边形来求图形的面积”。 (二)、过程与方法 用数格子方法和近似图形求积法估测不规则图形的面积。 (三)情感、态度与价值观

培养学生的语言表达能力和合作探究精神,发展学生思维的灵活性。 五、教学重难点 教学重点:将规则的简单图形和形似的不规则图形建立联系。 教学难点:掌握估算的习惯和方法的选择。 六、教学策略 在实际生活中,经常会接触到各种各样的不规则图形,有很多图形进行分割后仍难以找到基本的图形,这就给学生解决问题设置了障碍,需要学生灵运用各种方法去尝试解决问题。 ①分割法。 对于有些不规则的图形,我们可以想办法把它分割成几个已学过的规则的图形,先求出规则图形的面积,然后把得出的各图形面积相加,求出不规则图形的面积。 ②方格法。 对于有些不规则的图形,可以用透明方格纸覆盖在这个图形上,再分别数出位于图形轮廓线完整的格数和不完整的格数,规定多半格看成整格,少半格舍去,整格和多半格的个数的和就是所求图形近似地的面积。 七、教学准备(多媒体课件) 八、教学过程 (一)导入新课 师:出示图片:秋天的图片。并谈话导人:秋天一到,到处都是飘落的树叶,老师想把这美丽的树叶带入数学课里来研究,我们可以研究它的什么呢? 生:我们可以求树叶的面积。

不规则图形面积的解答方法

不规则图形面积的解答方法 一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。 二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可。 三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下图,欲求阴影部分的面积,通过分析发现它是一个底2,高4的三角形,就可以直接求面积了。 四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。

五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便。 六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半. 七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。 八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.

不规则图形的面积计算

图形的面积计算 一、基础题:公式法、公式的灵活运用 练习: 1梯形中的阴影部分的面积是150平方厘米,求梯形的面积 2.已知平行四边形的面积是48平方厘米,求阴影部分的面积 3.如果用铁丝围成一个平行四边形,需要用铁丝多少厘米 4.求阴影部分面积 5. 梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分的面积。 第三题 第二题 第一题9 68 12 25 第五题图C B 第四题图 8 6.求出图中梯形ABCD的面积,其中BC=56厘米。(单位:厘米) 二、不规则图形的面积 在图形面积计算时,经常会到一些无法直接求或不规则的图形,这时我们需要转换解题思维,根据图形的基本关系,运用分解、平移、旋转、割补、添辅助线等方法,把不规则图形转化为规则图形。下面介绍几种常见的面积计算方法 一、“大减小” 例1.求右图中阴影部分的面积(单位:厘米)

解析:阴部部分的面积=“大减小” =两正方形面积-空白部分面积 =(4×4+3×3)-(4+3)×4÷2 =11平方厘米 练习 1 如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米。求阴影部分的面积。 2.求阴影部分的面积 3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如下图那样重合。求重合部分(阴影部分)的面积。 第3题 第2题 第1题 F C B A 12 10 E D C B A 二、“补” 例1.四边形ABCD 是一个长10厘米,宽6厘米的长方形,三角形ADE 的面积比三角形CEF 的面积大10平方厘米,求CF 的长。 解析:假设三角形EFC 为1,四边形ECBA 为2,三角形ADE 为3。给1、3同时补上2,它们的面积差不会发生改变 图形3的面积-图形1的面积=10 (图形3+图形2)-(图形1+图形2)=10 即 长方形ABCD 的面积-三角形ABF 的面积=10 那么,三角形ABF 的面积=60-10=50=AB ×BF ÷2 可算出 BF=10厘米,所以CF=10-6=4厘米 例2.如图,四边形ACEF 中,角ACE=角EFA=90°,角CAF=45°,AC=8厘米,EF=2厘米,求四边形ACEF 的面积 解析:分别延长AF 、CE ,交于B 点

不规则图形面积计算

图形的面积 班级姓名 例1:如右图,甲、乙两图形都是正方形,它们的边长分别 是10厘米和12厘米.求阴影部分的面积。 C 例2:如右图,正方形ABCD的边长为6厘米,△ABE、△ADF B 与四边形AECF的面积彼此相等,求三角形AEF的面积. 例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。 如右图那样重合.求重合部分(阴影部分)的面积。 例4:如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴 影部分)面积为5平方厘米.求△ABD及△ACE的面积. 二、巩固训练

1. 如右图,在正方形ABCD中,三角形ABE的面积是8平方厘米, 它是三角形DEC 的面积的4 5 ,求正方形ABCD的面积。 2. 如右图,已知:S△ABC=1,AE=ED,BD=2 3 BC.求阴影部分的面积。 3. 如右图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的 长DG为5厘米,求它的宽DE等于多少厘米? 4. 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5 平方米,BC=10米,求阴影部分面积. 例1:如右图,在一个正方形内,以正方形的三 条边为直径向内作三个半圆.求阴影部分的面积。 例2. 如右图,正方形ABCD的边长为4厘米,分别以 B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。 D

例3:如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE 半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。 例4. 如右图,直角三角形ABC中,AB是圆的直径,且AB=20厘米, 如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。 1. 如右图,两个正方形边长分别是10厘米和6厘米,求阴影部分的面积。 2. 如右图,将直径AB为3的半圆绕A逆时针旋转60°,此时AB到达AC的位置,求阴影部分的面积(取π=3).

不规则几何图形面积计算方法

不规则几何图形面积计算方法 有一次坐车,曾与一位大学一年级的学生坐邻座。 问她现在还学不学数学,她说正学呢,学微积分。 问微积分有什么用,她想了想,说:“可以求不规则图形的面积”。 我将手拍在我们前面座椅的靠背上,问:“用你高中以前的知识,你怎么求我的手掌印的面积?” 她马上说:“这没有办法求。我们求面积都是求的规则图形的面积。这个没有办法求。” 她没有用过新课程下的数学教材。对于用过新课程下的数学教材的学生来说,这样的问题,小学生应当能够解决了。 新世纪小学数学教材安排了探索不规则图形及物体的测量方法,如,“估计自己脚印的面积”的活动,“学生可以在脚印上画出透明的正方形格子,由此进行估计。对于感兴趣的学生,教师还可以引导他们计算出鞋印覆盖住的整方格数,得到鞋印面积的不足近似值;再计算出被鞋印接触过的所有方格数,得到鞋印面积的过剩近似值,鞋印的实际面积介于二者之间。根据经验,学生还可能认识到方格分得越细,不足近似值和过剩近似值越接近,这种认识实际上蕴涵了微积分的基本思想。[1]”大方格不能 上文说“根据经验,学生还可能认识到……”,似乎是编写者“一厢情愿”的猜度。我们看到下面的材料,想来你会体会到编写者这样设计的意义和价值。这是一位教师在上课中的实录节选。 例2[2] 求一块不规则图形的面积. 这与数学中的常规问题是不同的,我们在数学中面对的一般都是规则图形,可以直接用公式计算,或者通过适当割补后再用公式计算.如何解决这一问题呢?我们把它交给学生,竟然得到了如下一些成果: 方法1 将图形放在坐标纸上,也即将图形分割,看它有多少个“单位面积”. 方法2 将图形从内外两个方面用规则图形(或规则图形的组合)逼近. [1]义务教育课程标准实验教科书·数学教师教学用书(四年级上册)·致教师(一),北京师范在学出版社, [2]试谈以人为本的三维课堂教学,https://www.360docs.net/doc/d23904369.html,/jyzx/Print.asp

不规则图形面积的计算

不规则图形面积的计算(一) 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米. 求阴影部分的面积。

解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形 (△ABG、△BDE、△EFG)的面积之和。 又因为S甲+S乙=12×12+10×10=244, 所以阴影部分面积=244-(50+132+12)=50(平方厘米)。 例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积. 解:因为△ABE、△ADF与四边形AECF的面积彼此相等,所以四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD 在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF的面积为2×2÷2=2。 所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。 例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。

解:在等腰直角三角形ABC中 ∵AB=10 ∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积=S△ABG-S△BEF=25-8=17(平方厘米)。 例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积. 解:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米. 所以△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。 又由于△ACE与△ACD等底、等高,所以△ACE的面积是15平方厘米。 例5 如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘

不规则图形面积的求法

不规 求不规则图形面积的基本思路是通过分割、重叠、等积替换等方法把不规则图形转化为规则图形或规则图形面积的和差。 一、等积替换 (1)三角形等积替换 依据:等底等高的三角形面积相等或全等的三角形面积相等。 例1、如图1所示,半圆O 中,直径AB 长为4,C 、D 为半圆O 的三等分点.,求阴影部分的面积. 解:连结OC 、OD , 由C 、D 为半圆O 的三等分点知:∠COD=60°,且∠ADC=∠DAB=30°, ∴CD ∥AB ,所以ODC ADC S S ??=(同底等高的三角形面积相等) ∴= =扇形阴影OCD S S ππ3 2360 2 602 = ?? 例2、如图2所示,在矩形ABCD 中,AB=1,以AD 为直径的 半圆与BC 切于M 点,求阴影部分面积. 解:由AB =1,半圆与BC 相切,得AD =2 取AD 的中点O ,则OD =BM =1。连结OM 交 BD 于E; 则△OED ≌△MEB ∴MEB OED S S ??= (全等三角形面积相等) ∴= =扇形阴影OMD S S 4 360 1 902 ππ= ?? (2)弓形等积替换 依据:等弧所对的弓形面积相等。 例3、 在RT △ABC 中,∠B=90°,AB=BC=4,AB 为直径的⊙O 交AC 于点D, 求图中两个阴影部分的面积之和. 解:连结BD ,由AB 为⊙O 的直径得∠ADB =90°, RT △ABC 中∠B =90°AB =BC =4, 得∠A =45°且AC =,AD =BD =CD = ∴A D BnD S S 弓形m 弓形= ∴C D B 11S C D B D 42 2 S ????阴影== = 例4、点A、B、C、D是圆周上四点,且 AB + C D = A C + BD , 弦AB=8,CD=4,求两个阴影部分的面积之和。 解:作⊙ O 的直径BE 连结AE ,则∠BAE =90°, A B A E =+半圆; A 图 2 图4

不规则图形面积汇总

计算图19-1中阴影部分面积是多少平方厘米?(圆的半径r=10厘米,∏取3.14) 分析:要计算图19-1中阴影部分的面积,关键在于处理图中空白部分的面积。 利用割补进行转化,把空白部分转移到圆的边缘。如图19-2所示,这样阴影部分面积就可以转化为4 1圆面积加上两个 正方形的面积来计算。 解 ∏×102×4 1+102×2=25∏+200=78.5+200=278.5 图19-3大小两圆相交部分面积是大圆面积的 15 4,是小圆面积的 5 3,量得小圆的半径是5厘米,问大圆的半径是多少 厘米? 分析:因为已知阴影部分与大圆,小圆的面积比,所以可以先求出两圆面积的比,继而求出它们的半径比。, 解 设阴影部分的面积为1.则小圆面积是4 15,小圆面积是 3 5。于是: 大圆面积:小圆面积= 4 15: 3 5= 4 9=( 2 3)2 5×2 3=7.5厘米 如图19-4,正方形面积是8平方厘米。求阴影部分的面积是多少平方厘米? 分析:这道题按常规思路是:要求阴影部分的面积,用正方形的面积减去一个四分之一圆的面积。因此,只要知道圆的半径,问题就得到解决了。但是,从题中的已知条件知道,圆的半径是不可能求出的,问题难以得解。这时,就必须改变解题思路,重新审题和分析图形,从图中不难看到,正方形的边长等于圆的半径,进而可以推出a ×a=r ×r=8平方厘米。所以,在求四分之一圆的面积时,就不必按常规的方法,去求解圆的半径,而直接用8平方厘米代替r ×r 的面积,四分之一圆的面积是3.14×8× 4 1=6.28平方厘米,则阴影部分的面积就是8-3.14×8× 4 1=1.72平方厘米。 如图19-7,求空白部分的面积是正方形面积的几分之几? 分析:因为圆和正方形它们的对称性,可以先画出两条辅助线帮助分析,即将正方形分成4个全等的小正方形。先看上面的两个小正方形,从圆中可知,A=B ,C=D 。故有A+D=B+C 。这样,可以得到阴影部分的面积与空白部分的面积是正方形面积的二分之一。 求图19-8中阴影部分的面积。 分析:阴影部分的面积是以边长为20的正方形与半径为20的4 1圆面积差减去边长为10的正方形与半径为10的4 1圆

相关文档
最新文档