第7章非线性系统

非线性动力学之一瞥_Lorenz系统

非线性动力学 非线性系统之一瞥——Lorenz系统 2013-01-30

0 前言 0.1非线性系统动力学 线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统;非线性系统就是这些量不满足叠加原理的系统。非线性系统在日常生活和自然界中不胜枚举,也远远多于线性系统。 非线性动力学是研究非线性系统的各种运动状态的定性和定量变化规律,尤其是系统的长时期行为。研究的对象主要有分叉、混沌和孤立子等。 0.2洛伦兹方程 洛伦兹方程是美国气象学家洛伦兹在模拟天气这一非周期性现象时确定,这个方程的三个变量分别模拟温度、湿度和压力。可以得出结论,初期微小的差别随着时间推移差别会越来越大,洛伦兹基于此提出长期的天气预报是不可能的。这也被视为研究非线性混沌理论的开始,所以洛伦兹系统在研究非线性系统中具有举足轻重的地位。本文借助洛伦兹系统对非线性进行简单的介绍。洛伦兹方程如下。 方程中,、和都为实参数。实参不同,系统的奇点及数目也是不同的。

1 奇点和稳定性 1.1 奇点 洛伦兹系统含有三个实参数,当参数变化,奇点的数目可能不同。首先,一定是系统的奇点。时,当时,系统仅有一个奇点;当时,系统还有另外两个奇点。 下面仅解时的两个非原点奇点。令 方程第一式得,第三式可得,将两式代入第二式得 即,。 1.2 奇点稳定性判别 下面根据Liapunov稳定性判别方法,找出系统在原点处大围渐进稳定的条件,取Liapunov函数。考虑,的情况。则有 将洛伦兹方程 代入上式,可得 变换为二次型,系数矩阵为

已知,,则系数矩阵负定的条件是。所以该系统是大围渐进稳定的条件是,前提是,。 Liapunov函数V总是存在的,只要构造出合适的Liapunov函数,就可以通过Liapunov稳定性定理直接判断奇点的稳定性,而不需要求解非线性方程组。有的Liapunov函数不易构造,则可以通过奇点处导算子的特征值来判断:若所有的特征值实部都小于0,则方程组在该奇点是局部渐进稳定的;若特征值实部至少有一个为正,该奇点是不稳定的。仍以洛伦兹系统为例,求出导算子的特征值。 特征矩阵的行列式(特征方程)为 特征值 显然,当,时,,,要使方程在原点处渐进稳定,必须小于0,因此 两边同时平方可得 因此

非线性系统分析

第八章非线性系统分析 8-1 概述 一、教学目的和要求 了解研究非线性系统的意义、方法,常见非线性特性种类。 二、重点 非线性概念,常见非线性特性。 三、教学内容: 1 非线性系统概述 非线性系统运动的规律,其形式多样,线性系统只是一种近似描述。 (1)非线性系统特征—不满足迭加原理 1)稳定性:平衡点可能不只一个,系统的稳定性与系统结构参数、初始 条件及输入有关。 2)自由运动形式,与初条件,输入大小有关。 3)自振,自振是非线性系统特有的运动形式,它是在一定条件下,受初 始扰动表现出的频率,振幅稳定的周期运动。 (2)非线性系统研究方法 1)小扰动线性化处理(第二章介绍) 2)相平面法-----分析二阶非线性系统运动形式 3)描述函数法-----分析非线性系统的稳定性研究及自振。 2、常见非线性因素对系统运动特性的影响: 1)死区:(如:水表,电表,肌肉电特性等等)

饱和对系统运动特性的影响: 进入饱和后等效K ↓??? ??↓↑↓↓,快速性差限制跟踪速度,跟踪误统最多是等幅振荡) (原来不稳,非线性系振荡性统一定稳定)原来系统稳定,此时系(%σ 死区对系统运动特性的影响: ?????↓ ↓↑↓动不大时)]此时可能稳定(初始扰[原来不稳定的系统,,振荡性声,提高抗干扰能力差),能滤去小幅值噪跟踪阶跃信号有稳态误 等效%(e K ss σ 可见:非线性系统稳定性与自由响应和初始扰动的大小有关。 2) 饱和(如运算放大器,学习效率等等) 3) 间隙:(如齿轮,磁性体的磁带特性等)

间隙对系统影响: 1) 间隙宽度有死区的特点----使ss e ↓ 2) 相当于一个延迟τ时间的延迟环节,%σ→↑ 振荡性 减小间隙的因素的方法: (1)提高齿轮精度 ; (2)采用双片齿轮; (3)用校正装置补偿。 5) 摩擦(如手指擦纸) 摩擦引起慢爬现象的机理 改善慢变化过程平稳性的方法1)2)3)?? ??? 、良好润滑、采用干扰补偿、增加阻尼,减少脉冲,提高平衡性 摩擦对系统运动的影响: 影响系统慢速运动的平稳性 6)继电特性: 对系统运动的影响:

非线性动力学练习题

2013 “非线性振动” 练习题 1、简述绘制相轨线的原理及其作用。 2、用小参数摄动法求 )1(220<<=+εεωx x x x 的一阶近似解。 3、 用多尺度法或均值法求 (第三章16) )1(320<<=+εεωx x x 的一阶近似解。 4、 用多尺度法求周期激励范德波尔方程 0)0(,)0(,cos )1(220220=-+=+-=+x F A x t F x x x x ω ωωεω 的非共振解。 5、 设运动微分方程为 )1(cos 220<<+-=+εωεωt F x x x 试求0ωω≈的主共振解。 6、 简述非线性单自由度保守系统自由振动的主要特点及与线性系 统的区别。 7、 简述非线性单自由度系统在简谐激励下的强迫振动特点。 8、 简述自激振动产生的主要原因及其特点。 9、 以两自由度非线性系统为例,简述非线性多自由度系统振动的 主要特点。 10、 简述分岔和混沌的概念。(考试从中选取5题)

1、简述绘制相轨线的原理及其作用。 答:绘制相轨迹线的原理如下: 将系统的动力学方程... +(x,)=0x f x 转化为以状态变量表示的状态方程组 ..==-(x,y) y x y f (1) 在利用上式消去微分dt,得到y x 和的关系式 ,=-dy f dx y (x y ) (2) 这个式子所确定的平面(x,y )上的各点的向量场,就构成了相轨迹族。 绘制相轨迹线的方法有两种,第一是等倾线法。等倾线法的原理如下,令方程(2)右边等于常数C ,得到(x,y)相平面内以C 为参数的曲线族 (x,y)+Cy=0f (3) (3)称作相轨迹的等倾线族,族内每一曲线上的所有点所对应的由方程(2)确定的向量场都指向同一方向。 第二种方法是李纳法。其原理如下: 适当选择单位使弹簧的系数为1,设单位质量的阻尼力为-(y)?,则有f(x,y)=x+(y)?。相轨迹微分方程为 +(y)=-dy x dx y ? (4) 在平面上做辅助曲线=-(y)x ? 。此辅助曲线即上述零斜率等倾线,过某个相点 P (x,y )作x 轴的平行线与辅助曲线交与R 点,再过R 点作y 轴的平行线与x 轴交于S 点,连接PS ,将向量PS → 逆时针旋转90度后的方向就是方程(4)确定的相轨迹切线方向。 相轨迹线可以帮助我们定性地了解系统在不同初始条件下的运动全貌。当系统是强非线性振动的时候,近似解析法(如小参数摄动法,多尺度法)不再适用,此时可以采用相轨迹法来研究。(相轨迹线的作用) 非线性动力学主要研究非线性振动系统周期振动规律(振幅,频率,相位的变化规律)和周期解的稳定条件。其研究内容主要有:保守系统中的稳定性及轨道扩散问题;振动的定性理论;非线性振动的近似解析方法;非线性振动中混沌的控制和同步问题;随机振动系统和参数振动系统问题等。

非线性电路设计

用Multisim实现非线性电路的仿真与设计 ————分段线性电阻电路 摘要 非线性电阻电路在工程科学中有广泛的应用,其设计方法也多种多样,本文首先通过最基本的线性电阻,二极管,电流源,直流电压源,直流电压源四种元器件设计凹凸电阻,然后以凹凸电阻作为基本的积木块,通过串联分解法与并联分解法的综合分析设计出符合要求的非线性的分段线性电路,并在Multisim 10.0上实现仿真。 关键词 非线性,分段线性,凹电阻,凸电阻 -------------------------------------------------------------- 1 引言 非线性是自然界中普遍存在的自然现象,正是非线性现象才构成了变化莫测的世界。自然界在相当多的情况下,非线性现象却起着很大的作用。非线性动力学的研究涉及非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。大多数的电子电路与系统本身是非线性的,若仅考虑线性特性则有很大的局限性,尤其它将阻碍对非线性系统特性的研究,而这种非线性系统的复杂性在信息的传输、编码、存储、安全等方面具有很大的优势。今天,世界各国有关研究非线性的组织已经意识到开发非线性动力系统的潜力,欧洲、美国、日本的科学家们也

正进行1些相关非线性的意义重大的项目研究。而分段线性电路系统则是非线性系统中最简单的一种情况,本文介绍了如何通过凹凸电阻的串联分解法和并联分解法设计出符合要求的分段线性电阻电路,并在Multisim 10.0实现仿真。 2 用Multisim 10.0设计如图1,图2的非线性电阻电路。 (图1)(图2) 2.1 凹电阻,凸电阻的实现。 ①凹电阻。当两个或两个以上元件串联时,电路的伏安特性图是各元件伏安特性图的电压之和。图3为一凹电阻,其对应的伏安特性曲线为图4所示。

第7章--非线性系统分析--练习与解答

第七章 非线性控制系统分析 习题与解答 7-1 设一阶非线性系统的微分方程为 3x x x +-= 试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。 解 令 x =0 得 -+=-=-+=x x x x x x x 3 2 1110()()() 系统平衡状态 x e =-+011,, 其中:0=e x :稳定的平衡状态; 1,1+-=e x :不稳定平衡状态。 计算列表,画出相轨迹如图解7-1所示。 可见:当x ()01<时,系统最终收敛到稳定的平衡状态;当x ()01>时,系统发散;1)0(-x 时,x t ()→∞。 注:系统为一阶,故其相轨迹只有一条,不可能在整个 ~x x 平面上任意分布。 7-2 试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。 (1) x x x ++=0 (2) ???+=+=2122112x x x x x x 解 (1) 系统方程为 图解7-1 系统相轨迹

?? ?<=-+I I >=++I ) 0(0: )0(0:x x x x x x x x 令0x x == ,得平衡点:0e x =。 系统特征方程及特征根: 2 1,221,21: 10,()2 2:10, 1.618, 0.618 () s s s j s s s I II ? ++==- ±?? ?+-==-+? 稳定的焦点鞍点 (, ) , , x f x x x x dx dx x x x dx dx x x x x x ==--=--= =-- =-+=αα β111 ??? ? ??? <-= >--=) 0(1 1 :II ) 0(1 1: I x x β αβ α 计算列表 用等倾斜线法绘制系统相平面图如图解7-2(a )所示。

非线性系统分析习题

非线性系统分析习题

第2章 2-1 电路如题图2-1所示,若11tanh 2u i =,2 23 22i i +=ψ,33ln u q =,试讨论对下列各组 变量:(1)2i 和3u ;(2)2i 和3q ;(3)2ψ和3u ;(4)2ψ和3q ;是否存在标准形式的状态方程?若存在,请导出该状态方程。 题图 2-1 2i 和3u 存在标准状态方程 323 3212222))2(tan (231 dt u i dt du u i u i i di s =--+=- 2-2 题图2-2所示电路,非线性电阻的特性为:2 2223R R R u u i -=,试导出电路的状态方程。 题图 2-2 L C C L C C L C L s C i L R u L u L dt di u u C i C du i C i C du 2212 222221 111 1)3(11dt 1 1dt --=--=-= 2-3 试确定下列函数是否满足全局Lipschitz 条件 (1)2 211212()[2]T f x x x x x x =--可能不满足 (2)2 2 2 112()[]x x T f x x e x e --=满足

2-4 Van der pol 方程可以用状态方程描述为 122 2112(1)x x x x x x ε=??=-+-? 试证明,任取初始条件1020x x ,,对于某些充分小的δ,状态方程在[0]δ上有唯一解。 2-5 考虑标量微分方程 0tan(()),(0)x x t x x == 试证明微分方程对于任意0x ,在区间[0,)∞上具有唯一解。 2-6 已知非线性系统的状态方程为 ? ?????????-----=???? ??????-t te x x x x x t dt dx dt dx 22212131 213tanh 43 试判断该状态方程是否有唯一解。 当00,0t t t ≥>时有唯一解 2-7 试求下列电路状态方程的平衡点。 (1)???????+-=-=dxy by dt dy cxy ax dt dx (0,0) (2)???????+-=++-=222 2y x y x dt dy y x x y dt dx (0,0) (3)???????-==3x x dt dy y dt dx (0,0);(1,0);(-1,0) (4)???????-==1sin 2x dt dy y dt dx ,2,1,0) ,1();k 1±±=-k k ππ,( (5)???????+-=-=+3 1dy by dt dy e dt dx y x (0,0);0,0d b )d b ,d b (); d b ,d b (≠>- -d

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

非线性电路中的混沌现象11011079

非线性电路中的混沌现象实验指导及操作说明书 北航实验物理中心 2013-03-09 教师提示:混沌实验简单,模块化操作,但内容较多,需要课前认真预习。

5.2 非线性电路中的混沌现象 二十多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性,有序与无序的统一,确定性与随机性的统一,大大拓宽了人们的视野,加深了对客观世界的认识。许多人认为混沌的发现是继上世纪相对论与量子力学以来的第三次物理学革命。目前混沌控制与同步的研究成果已被用来解决秘密通讯、改善和提高激光器性能以及控制人类心律不齐等问题。 混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。理论和实验都证实,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特性。混沌现象出现在非线性电路中是极为普遍的现象,本实验设计一种简单的非线性电路,通过改变电路中的参数可以观察到倍周期分岔、阵发混沌和奇导吸引子等现象。实验要求对非线性电路的电阻进行伏安特性的测量,以此研究混沌现象产生的原因,并通过对出现倍周期分岔时实验电路中参数的测定,实现对费根鲍姆常数的测量,认识倍周期分岔及该现象的普适常数 费根鲍姆(Feigenbaum)常数、奇异吸引子、阵发混沌等非线性系统的共同形态和特征。此外,通过电感的测量和混沌现象的观察,还可以巩固对串联谐振电路的认识和示波器的使用。 5.2.1 实验要求 1.实验重点 ①了解和认识混沌现象及其产生的机理;初步了解倍周期分岔、阵发混沌和奇异吸引子等现象。 ②掌握用串联谐振电路测量电感的方法。 ③了解非线性电阻的特性,并掌握一种测量非线性电阻伏安特性的方法。熟悉基本热学仪器的使用,认识热波、加强对波动理论的理解。 ④通过粗测费根鲍姆常数,加深对非线性系统步入混沌的通有特性的认识。了解用计算机实现实验系统控制和数据记录处理的特点。 2.预习要点 (1)用振幅法和相位法测电感 ①按已知的数据信息(L~20mh,r~10Ω,C0见现场测试盒提供的数据)估算电路的共振频率f。 ②串联电路的电感测量盒如图5.2-7所示。J1和J2是两个Q9插座,请考虑测共振频率时应如何连线?你期望会看到什么现象? ③考虑如何用振幅法和相位法测量共振频率并由此算得电感量?当激励频率小于、等于和大于电路的共振频率时,电流和激励源信号之间的相位有什么关系?

电力系统分析第七章例题(栗然)(DOC)

第七章习题 7-1:电力系统接线图示于图6-44a 。试分别计算f 点发生三相短路故障后0.2s 和2s 的短路电流。各元件型号及参数如下: 水轮发电机G-1:100MW ,cos ?=0.85,'' 0.3d X =;汽轮发电机G-2和G-3每台50MW ,cos ?=0.8, '' 0.14d X =;水电厂A :375MW ,''0.3d X =;S 为无穷大系统,X=0。变压器T-1:125MVA ,V S %=13; T-2 和T -3每台63MVA ,V S (1-2)%=23,V S (2-3)%=8,V S (1-3)%=15。线路L-1:每回200km ,电抗为0.411 /km Ω;L-2:每回100km ;电抗为0.4 /km Ω。 解:(1)选S B =100MVA ,V B = Vav ,做等值网络并计算其参数,所得结果计于图6-44b 。 (2)网络化简,求各电源到短路点的转移电抗 利用网络的对称性可将等值电路化简为图6-44c 的形式,即将G-2,T-2支路和G-3,T-3支路并联。然后将以f ,A ,G 23三点为顶点的星形化为三角形,即可得到电源A ,G 23对短路点的转移电抗,如图6-44d 所示。

23 0.1120.119 0.1120.1190.3040.1180.064 G X ?=++=+ (0.1180.064)0.119 0.1180.0640.1190.4940.112 Af X +?=+++ = 最后将发电机G-1与等值电源G 23并联,如图6-44e 所示,得到 139.0304 .0257.0304.0257.0123=+?=f G X (3)求各电源的计算电抗。 123100/0.85250/0.8 0.1390.337100 jsG f X +?=?= 853.1100 375 494.0=?=jsA X (4)查计算曲线数字表求出短路周期电流的标幺值。对于等值电源G123用汽轮发电机计算曲线数字表,对水电厂A 用水轮发电机计算曲线数字表,采用线性差值得到的表结果为 G123A G123A 0.2I =2.538 I =0.581 2I =2.260 I =0.589 t s t s ==时 时 系统提供的短路电流为 821.12078 .01 == S I

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

浅谈非线性电路理论和线性电路理论数字电路和模拟电路

数字电路研究型课题 课题:基于三极管的输入伏安特性曲线和输出伏安特性曲线,浅谈非线性电路理论和线性电路理论、数字电路和模拟电路 关键字:三极管数字电路模拟电路线性非线性 摘要:本文以三极管的特性为切入点,联系模拟电路与数字电路,浅谈了线性电路和非线性电路理论 正文: 一、三极管的组成结构: 三极管由三层半导体组成,有三个区、三个极、两个结结构图如图1 发射区发射极发射结 三个区集电区三个极集电极两个结 基区基区集电极 三极管在工作时一定要加上适当的直流偏置电压才能起放大作用。 图1 三极管结构 二、三极管的伏安特性曲线 输入特性曲线: I b=f(U be)?U ce=C B是输入电极,C是输出电极,E是公共电极。

I 是输入电流,U be是输入电压,加在B、E两电极之间。 b I 是输出电流,U ce是输出电压,从C、E两电极取出。 C 1. U ce=0V时,发射极与集电极短路,发射结与集电结均正偏,实际上是两个二极管并联的正向特性曲线。 2. 当U ce≥1V时,U cb= U ce- U be>0,集电结已进入反偏状态,开始收集载流子,且基区复合减少,I C / I B增大,特性曲线将向右稍微移动一些。但U ce再增加时,曲线右移很不明显。通常只画一条。 图2 输入特性曲线 输出特性曲线 I C=f(U ce)?I b=C 可以分为三个区域: 饱和区: (1) I C受U ce显著控制的区域,该区域U ce的数值较小,一般U ce<0.7V(硅管)。发射结正偏,集电结正偏 (2) U ces=0.3V左右 截止区:——I b=0的曲线的下方的区域 I =0 I c=I ceo b NPN:U be£0.5V,管子就处于截止态 通常该区:发射结反偏,集电结反偏。

《从非线性动力学到复杂系统》

《从非线性动力学到复杂系统》 段法兵 系统理论博士生课程

第一讲动态系统的发展 系统是一些相互关联的客体组成的集合,动态(动力dynamical)系统是系统状态变量,比如温度、位移、价格、信号幅值等,随着时间变化的。它的描述可以用微分方程或者离散方程。 微分方程历史悠久,可追溯到牛顿、伽利略、欧拉、雅克比等人,用以描述行星的运动轨迹。研究中发现即使满足牛顿引力定律的三体运动也非常复杂,其微分方程是非线性的,非线性是指不满足叠加定律的方程,解无法利用已知函数进行描述,如果能够描述的我们称为显式解。因此,庞加莱在1880年-1910年期间,试图利用解的拓扑几何性质来解释动态系统的运动规律,发现即使确定性系统,其运动规律也会出现随机性态,非常复杂(确定性系统是指其外力是确定的不随机,只要知道初始条件和演化方程,其运动是可预先确定的)。 非线性系统运动的复杂性:李雅普诺夫研究了系统平衡点?的稳定性?问题,随后本迪尔松等发现系统的解包含(1)平衡态(静止不动);(2)周期运动(比如行星)(3)拟周期,就是几个频率不可公约周期之和。 接着1975年Li和Yorke提出了混沌的概念,即系统的解是非周期的一种类似随机运动的现象,这其中就包含了洛伦兹提出的“蝴蝶效应”,根源在于这类非线性动力系统对于初始条件的极其敏感性,初始条件的微小变化导致了系统状态的巨大改变,从此有关非线性科学的发展异常迅速,形成了现代动力学理论,其最重要的贡献是揭示了一个简单的模型可能蕴含了无比复杂的动力学性态。 例子:Van der Pol(范德波尔)方程 1920年Van der Pol利用电子震荡管研究心脏的跳动问题,比如人工心脏起

非线性电路理论

非线性电路理论报告 蔡氏混沌电路分析 摘要 混沌是非线性系统中的常见现象。本文对产生混沌现象的最简单三阶自治电路-蔡氏电

路进行了研究,建立了数学模型,并根据建立的数学模型对其进行了仿真分析,仿真结果表明在一定的条件下该电路能够出现混沌双涡卷吸引子。 关键词:蔡氏电路;双涡卷混沌吸引子 1.引言 混沌是自然界客观存在的一种运动形式,混沌系统具有对初值特别敏感的特性。混沌信号具有随机信号的许多性质,然而混沌信号是确定性信号。由于混沌信号介于随机信号与一般确定性信号的特殊性而具有较高的应用价值,对混沌的研究已经从单纯的物理和数学上的理论研究走向了各种应用研究。目前,混沌成为控制、测量、保密通信、雷达及信号处理等诸多领域的研究热点。在电路与系统领域,由于蔡氏电路的提出,对混沌理论及其应用的研究也变得十分活跃。蔡氏混沌电路是一个物理结构及数学模型都相对简单的混沌系统,然而它也是一个典型的混沌电路,对蔡氏电路的研究有助于理解混沌的演化过程及其了解混沌相关特性。由于混沌动力学系统的复杂性,绝大多数混沌动力学系统难以用已知的函数表示其通解,所以通过数值计算对混沌行为的时空演化进行描述是研究混沌的一种重要方法。MATLAB软件是以矩阵计算为基础的数值计算、模型仿真的优秀数学工具。借助MATLAB 软件强大的数值计算及仿真能力,使得对许多复杂的混沌系统的研究变得相对容易和直观。 本文首先对蔡氏电路及MATLAB仿真工具进行了介绍,然后应用MATL AB软件对蔡氏混沌电路进行了仿真研究。 2. 蔡氏电路仿真 图1 蔡氏对偶电路图2 Rn的伏安特性曲线 蔡氏电路是一种物理结构和数学模型简单的混沌系统,该混沌系统也常被用来进行混沌理论及应用方面的研究。该电路使用三个储能元件和一个分段线性电阻,电路如图1所示。可以把电路分为线性部分和非线性部分。其中线性部分包括:电阻R0、两个电感L1和L2和电容C;非线性部分只有一个分段线性电阻Rn,其伏安特性如图2所示。流过L1的电流为i1,流过L2的电流为i2,C上的电压为Uc。对于图1,列出电路的状态方程如下

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性得概念; 2、掌握线性稳定性得分析方法; ?3、掌握奇点得分类及判别条件; ?4、理解结构稳定性及分支现象; 5、能分析简单动力系统得奇点类型及分支现象. 二、教学重点 1、线性稳定性得分析方法; ?2、奇点得判别。 三、教学难点 ?线性稳定性得分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 ?学习本章内容之前,学生要复习常微分方程得内容。 六、教学过程 本章只介绍一些非常初步得动力学分析方法,但这些方法在应用上就是十分有效得。 1、1相空间与稳定性 ?一、动力系统 在物理学中,首先根据我们面对要解决得问题划定系统,即系统由哪些要素组成。再根据研究对象与研究目得,按一定原则从众多得要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量得微分方程,这些微分方程构成得方程组通常称为动力系统。研究这些微分方程得解及其稳定性以及其她性质得学问称为动力学. 假定一个系统由n个状态变量,,…来描述。有时,每个状态变量不但就是时间t得函数而且也就是空间位置得函数。如果状态变量与时空变量都有关,那么控制它们变化得方

程组称为偏微分方程组.这里假定状态变量只与时间t有关,即X =X i(t),则控制它们 i 得方程组为常微分方程组。 ?????(1。1.1) … 其中代表某一控制参数.对于较复杂得问题来说,(i=l,2,…n)一般就是得非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于不明显地依赖时间t,故称方程组(1。1.1)为自治动力系统。若明显地依赖时间t,则称方程组(1、1、1)为非自治动力系统.非自治动力系统可化为自治动力系统. 对于非自治动力系统,总可以化成自治动力系统。 例如: 令,,上式化为 上式则就是一个三维自治动力系统。 又如: 令,则化为 它就就是三微自治动力系统、 对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。 能严格求出解析解得非线性微分方程组就是极少得,大多数只能求数值解或近似解析解。 二、相空间 ,X2,…Xn)描述得系统,可以用这n个状态变量为坐标轴支由n个状态变量=(X 1 起一个n维空间,这个n维空间就称为系统得相空间。在t时刻,每个状态变量都有一个确定得值,这些值决定了相空间得一个点,这个点称为系统状态得代表点(相点),即它代表了系统t时刻得状态。随着时间得流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线.它代表了系统状态得演化过程。 三、稳定性 把方程组(1。1.1)简写如下

非线性系统初步

第七章 非线性系统初步 7.1 引言 在物理世界中,理想的线性系统并不存在。严格来讲,所有的控制系统都是非线性系统。例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。实际上,所有的物理元件都具有非线性特性。如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。 本章首先介绍典型非线性环节的特性,然后介绍描述函数法分析非线性系统。 7.2 典型非线性环节 在控制系统中,典型的非线性特性包括饱和特性、死区特性、间隙特性和继电器特性等。了解这些典型非线性特性的物理概念及输入输出关系,是分析实际的非线性系统的前提。本节从物理概念入手,定性地分析几种典型非线性环节的特性。 7.2.1 饱和特性 控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性,其静特性如图7-1所示。图中)(t e 为输入信号,)(t x 为输出信号。可以看出当a t e a <<-)(时,输入输出关系为线性关系,增益为k 。而当a t e >)(时,进入饱和区。饱和特性的数学表达式为 ?? ???<-><=a t e ka a t e ka a t e t ke t x )()()() ()( (7-1) 从图7-1和式(7-1)可以看出,当输入信号超过线性区以后,输出量将会固定为一常量。放大器以及限幅器、限位器都具有这样的特性。 7.2.2 死区特性 控制系统中的测量元件、执行元件等一般都具有死区特性。例如一些测量元件对微弱的输入量不敏感,电动机只有在输入信号增大到一定程度的时候才会转动等等。死区特性如图7-2所示,图中)(t e 为输入信号,)(t x 为输出信号。可以看出当a t e a <<-)(时,输出量 图7-1 饱和特性

非线性电路发展趋势

非线性电路理论的发展趋势微波有源电路的设计和研制一直是微波技术研究领域中的主要工作,人们已在设计和研制各种微波有源电路的过程中积累了丰富的经验,并提出了不少成功的方法二,一仁.但是,直到八十年代初,大部分研究工作和设计方法采用的都是线性电路理论.而实 际上,有源器件都存在非线性,传统的线性电路理论难以满足分析和设计现代微波有源 电路的要求.微波有源器件的非线性一方面要影响整个系统的性能,而另一方面,有些电路如变频器和振荡器等又必须利用器件的非线性才能实现.虽然基于线性假设的小信号线性分析方法可以近似处理部分弱非线性电路(如放大器等),但不能处理振荡器、变频器等强非线性电路,也不能分析放大器的交调特性.现代微波有源电路的设计应采用非 线性电路理论困.一般来说,分析和设计微波有源非线性电路要比分析和设计无源线性 电路复杂得多,必须借助计算机辅助技术才能实现.自八十年代初以来,微波有源电路的非线性理论及其机辅分析和设计技术的研究已逐渐成为微波技术研究领域中的热 门,IEEE微波年会、欧洲微波会议和亚太微波会议等每次都有专题介绍这方面的研究工作。 电路理论是重要的基础理论,是研究电路的基本规律及其计算方法的学科。非线性电路理论长期以来一直是电路理论的一个重要分支,因为一切实际电路严格说来都是非线性的。然而,由于非线性电路理论的研究较线性理论的研究困难得多,其原因在于: (1)非线性电路要涉及求解非线性代数方程和非线性微分方程; (2)非线性电路不遵循叠加原理,现有的分析线性电路的方法不能直接用于分析非线性电路; (3)非线性元器件的种类和用途繁多,很难找到一个普适性的模型和方法。因此,在很长的一段时间内非线性电路理论进展缓慢。 尽管如此,世界各国的电路学者对非线性电路的研究兴趣仍然是与日俱增的。这是因为非线性电路在理论与实践上都具有十分重要的意义。实际上,许多现代电工技术,就其基本概念来说,都是以非线性的理论作为基础的。例如在通信系统中,调制、检波、混频、振荡等环节都是依靠非线性器件而工作的,甚至连“线性放大”也是依靠非线性器件来实现的,为此,人们设计了许多非线性器件以实现上述种种目的。还有一类问题,其中的非线性虽然不是有意设计出来的,但它是一种客观存在。在这种情况下,许多非线性现象用传统的电路理论已经无法解释,忽视非线性的传统做法再也不能适应新技术迅速发展的形势。因此,非线性电路的基础理论急需发展,以驾驭这些不同于线性电路的客观规律,避其所害,用其所利。 近年来,随着新型器件的不断出现、微电子与集成电路技术的发展,以及电子计算机在电子系统设计领域中的应用,非线性电路理论越来越显示出它的重要性,并日益受到重视。非线性电路理论与分析已经是信号、电路与系统专业的一门重要课程。在过去的三十多年时间里,世界上有许多学者在非线性电路理论的研究工作中作了大量的开创性工作,取得了丰硕的成果。可以预见在今后相当长的时期内,这将仍是一个活跃的科研领域。 非线性电路的研究现状 非线性电路的研究几乎是与线性电路平行的,并已经提出了许多具体方法。如:幂级数法,描述函数法,谐波平衡法,Volterra级数分析法等。但总的来说,由于非线性电路本身所包含的现象十分复杂,这些方法都有其局限性,不能成为分析和设计非线性

非线性动力学与混沌理论

非线性动力学和混沌理论 非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。 但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。 在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。 误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

非线性系统的一些动力学与控制问题

釜七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集南京,200410.28-29复杂非线性系统的一些动力学与控制问题。 陆启韶王士敏 f北京航空航天大学理学院北京10083) E-mail:qishaolu(岔hotraail.eom 摘要本文根据非线性动力学的研究现状和发展趋势,对复杂非线性系统动力学与控制的理论和应用研究中的一些重要问题进行探讨和展望 关键词非线性,复杂系统,动力学,控制 前言 非线性动力学研究非线性系统丰富的运动模式和演化过程,是非线性科学技术的重要理论基础。非线性动力学研究的最终目的在于深刻揭示非线性世界的复杂性和多样性。非线性系统运动的复杂性来源于多个方面,例如几何关系、本构关系、约束条件、拓扑结构、激励因素、耦合方式、时空尺度、演化机理等,它们都会带来复杂的运动模式。30多年来,尽管非线性动力学对单自由度简单振动系统和低维映射系统的研究已经取得一系列重要成果,发现了大量新的非线性现象。提出并发展了基本的理论方法,但是面对在理论和应用研究中遇到的高维复杂系统问题往往束手无策,仍然缺乏有效的分析策略和手段。因此,复杂非线性系统研究已成为当务之急。 本文根据当前非线性动力学的研究现状和发展趋势,针对复杂非线性系统动力学与控制的理论和应用研究中的一些重要问题进行探讨和展望,希望引起同行关注,共同开创该方面研究的新局面。1.多自由度非线性系统组合振动、全局分析和同步实际非线性振动系统通常是多自由度的,且存在多种外界激励,因此组合振动和模态相互作用是普遍的重要现象。对单自由度系统来说,组合共振只能在多种激励并存的情形下出现。但是对多自由度系统,由于可以存在内共振和自参数共振机理,因 ’国家自然科学基金(10172011)资助项目此在单个激励作用下也可能发生组合共振。内共振(或自参数共振)发生在其线性化系统的各模态的固有频率可以通约或接近通约的情况,其类型依赖于非线性项形式和相应的分岔类型。在没有内共振时,系统的共振响应只包含由外部激励直接激发的主共振或亚,超谐共振模态。但是内共振会引起与非线性项有关的间接激发模态,并导致多模态相互作用,产生诸如饱和、跳跃、锁相、周期调制、混沌调制等复杂现象,造成弹性结构中由高频激励引起的低频大幅共振事故。现在对多自由度系统的组合振动和模态相互作用动力学研究已经取得一些重要成果,并且扩展到梁、板、壳、弦线、悬索、传送带、流一固耦合结构等系统,涉及不同的本构关系(包括粘弹性材料、复合材料、智能材料等)、约束条件和控制方式,成为十分活跃的研究方向。但是,目前这方面的研究主要局限于具体问题,对于组合振动的一般规律和分析方法仍有待于深入探讨。 高维非线性振动系统的全局动力学分析是十分重要且难度很大的问题。目前仍然主要依靠数值模拟手段.成功地用于全局分析的理论方法不多,主要是高维Melnikov方法和Shilnikov方法。近年来,人们发现了大重新的非线性动力学现象,除了混沌激变、瞬态混沌、奇怪混沌不变集之外,还有超混沌、Wada吸引域、筛形吸引域、混沌鞍等,需要从机理上予以明确阐述。因此,当务之急是将动力系统理论、强非线性系统

相关文档
最新文档