转炉烟气净化及煤气回收系统中炉口微差压的自动控制 (1)

转炉烟气净化及煤气回收系统中炉口微差压的自动控制 (1)
转炉烟气净化及煤气回收系统中炉口微差压的自动控制 (1)

煤气净化工艺工艺流程..

煤气净化工艺工艺流程及主要设备煤气净化设施 1概述 煤气净化车间生产规模按2×65 孔5.5m 捣固焦炉焦炉年产130万t 干全焦配套设计。焦炉煤气处理量为75300m3/h(标况)。 煤气净化车间由冷凝鼓风工段、脱硫工段、硫铵工段(含蒸氨系统)、终冷洗涤及粗苯蒸馏工段、油库及其相关的生产辅助设施组成。 2设计原则 对煤气净化车间本着经济、实用、可靠的原则,在满足国家环保、 职业卫生与安全、能源等法规要求的前提下,尽量简化工艺流程,并 合理配备工艺装备,以节省投资和工厂用地。 3设计基础数据 a)煤气量基础数据 焦炉装煤量(干基):206.98t/h 煤气产量:340Nm3/t(干煤) b) 煤气净化指标 表1 煤气净化指标表 序号指标名称单位净化前指标净化后指标 1 NH3g/m36~8 ≤0.05 2 H2S g/m35~7 ≤0.2 3 苯g/m324~40 ≤4 4 焦油g/m3≤0.02 5 萘g/m3≤0.3 4原材料及产品指标

4.1焦油——符合YB/T5075-2010 2号指标 序号指标名称质量指标 1 密度(20℃),g/cm3 1.13~1.22 2 甲苯不溶物(无水基),% ≤9 3 灰分,% ≤0.13 4 水分,% ≤4.0 5 粘度(E80) ≤4.2 6 萘含量(无水基),% ≥7.0(不作考核指标) 4.2硫酸铵—符合GB535-1995一级品 序号指标名称质量指标 1 氮N含量(以干基计),% ≥21 2 含水,% ≤0.3 3 游离酸含量,% ≤0.05 4.3粗苯—符合YB/T5022-1993 序号指标名称质量指标(溶剂用) 1 密度(20℃),g/ml ≤0.900 2 75℃前馏出量(重),% ≤3 3 180℃前馏出量(重),% ≥91% 室温(18~25℃)下目测无可见的不 4 水分: 溶解的水 4.4洗油指标 序号指标名称指标 1 密度(20℃),g/ml 1.03~~1.06 2 馏程(大气压760mmHg),%

转炉煤气回收管理规定标准范本

管理制度编号:LX-FS-A81861 转炉煤气回收管理规定标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

转炉煤气回收管理规定标准范本 使用说明:本管理制度资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 第一章总则 第一条目的 转炉煤气含有大量的CO,热值高,是一种优于发生炉煤气的优质气体燃料。将符合回收标准的转炉煤气收集到储气柜加以利用,是公司降本增效的重要举措,也是公司经济效益提升的一个增长点。为确保转炉煤气的高效回收,最大限度地增加煤气回收量,特制定转炉煤气回收管理规定。 第二条适用范围 本规定适用于-----各相关单位 第三条相关文件

《动力管理规定》 第四条名词解释 无 第二章管理区域划分 第五条-----管理区域 以转炉干法除尘器处的煤气冷却器去转炉煤气柜一侧的盲板阀为分界点,转炉至干法除尘器、放散塔和连接煤气冷却器一侧的煤气管道(含去转炉煤气柜一侧的盲板阀及法兰)和附属设施由大型材厂管理、维护;厂区煤气主管道去放散塔点火使用的煤气管道,主管道接出的支线管道第一道阀门(不含阀门和法兰)法兰后去放散塔的管道和附属设施由大型材厂管理、维护。 第六条动力厂管理区域 以转炉干法除尘器处的煤气冷却器去转炉煤气柜

科技项目技术方案烟气余热回收

中国华电集团公司科技工程技术方案

一、工程背景 自电力企业改革后,从体制上根本打破了电力企业集发、输、配、售于一体的局面,火电厂在新的经营模式下面临着日渐

严峻的考验。尤其是近年来煤炭市场放开后,电煤价格的持续上涨,而电、热价格则一路平行。煤炭价格的上涨,使得火电厂的生产成本急剧上升,导致我厂电热价格与成本倒挂问题越发突出,加剧了火电厂的经营困境。在这种情况下,企业如何扭转负债经营的不利局面,成为当务之急,用新技术、新工艺、新方法,挖潜改造,提高机炉热效率、节能减排势在必行。 现锅炉排烟温度按照经典的控制酸露腐蚀条件的设计规范 设计,计算排烟温度已经留有设备保护的余地。目前设计条件下的排烟温度高于酸露点温度的15-18度,实际上排烟温度的计算方面也因为招标对经济指标要求而存在潜在的上 升空间。以国内300MW机组的实际运行的负荷、排烟温度状况,几乎没有一家能够按照设计指标运行。造成排烟温度升高的原因是多方面的。随着运行时间的延长,排烟温度因空预器设备的末端腐蚀而局部积灰、系统阻力增加、过量空气系数增加、排烟温度升高;空气预热器漏风、夏季空气温度升高、煤种变化也使得锅炉远离校核煤种等因素都会引发排烟温度升高。 排烟损失是影响锅炉效率的主要因素,电站锅炉的排烟温度为120~140℃,每降低排烟温度16-20℃,可提高锅炉热效率1%。对于一台300MW的发电机组,平均每年可节约标煤约6000吨。

另外,利用烟气余热提高空预前空气温度和脱硫塔后烟温,可减轻空预器和烟道腐蚀;降低脱硫塔前烟温还可减少脱硫工艺前的喷水量。 要回收低温烟气的余热,就必须有经济和可靠的技术。 国内较早就开始了烟气余热回收技术的开发,并有些技术相继成熟得到应用,但这些技术多停留在早期粗放的阶段,在系统可靠性和余热回收经济性方面都存在明显的不足。 通过合金、陶瓷或塑料等抗低温腐蚀材料做换热材料来进行余热回收的优点是可以将排烟温度降低到烟气酸露点以下,但由于这些材料的导热系数、造价和使用寿命等限制,余热回收的经济性不佳。另外,当换热材料表面发生酸露凝结时,设备表面会形成导热系数更差的粘性灰垢,该类致密的粘性积灰与换热材料表面结合力很强,较难通过吹灰系统清除,甚至使系统堵灰严重而无法正常运行。 传统低温省煤器技术较简单、成熟,但其不仅余热回收的效益低,而且只适于回收排烟温度较高的余热,否则受热面腐蚀和堵灰问题会很严重。该系统如果设计不当,还有发生凝结水汽化的风险。 相变式低温省煤器是为了控制烟道换热器的低温腐蚀而开发,其通过控制中间传热介质(水-汽)的相变参数来控制传热量和烟道换热器壁温,从而提高了系统的可靠性,并可自动将排烟温度降低到最佳的温度。

烟气余热回收换热器具体分析

烟气余热回收热换热器具体分析 随着我国经济的快速发展,能源的价格在日益上涨,能源库存也在日益减少,我们不断在发掘新型能源。工业锅炉是我国主要的热能动力设备,针对工业锅炉的使用特点(排烟余热回收潜力大的特点),烟气余热回收换热器应运而生。 电站锅炉排烟温度一般在110℃到160℃;大中型锅炉在正常运行时,排烟损失占到锅炉燃料输入热量的4%到8%;排烟温度每降15℃—20℃,可提高锅炉效率1%左右;排烟温度是锅炉热损失中最大的一项。 影响排烟温度的因素: (1)燃料的性质 (2)受热面积的状况(积灰、结垢、结焦等等) (3)过量空气系数、漏风率 (4)低温腐蚀因素 那么在降低排烟温度方面有什么措施呢,经过研究发现,降低排烟温度的方法是使用烟气余热换热器,在锅炉尾部烟道适当的位置增加烟气余热回收换热装置。根据不同需求可以在不同工序位置安装烟气回收装置(除尘前、除尘后、垂直烟道、水平烟道等)。 烟气余热回收换热器的优势有哪些? (1)提高锅炉的循环效率,降低煤耗; (2)改善除尘效率(烟气余热回收装置在除尘前安装时) (3)减少脱硫塔蒸发量,节约用水。 值得注意的是,在安装烟气余热换热器后,会带来一些问题,如:低温腐蚀、磨损、积灰、烟气阻力等等。 一、低温腐蚀 烟气水露点:烟气中水蒸气含量一般为10%—15%,分压为0.01到0.012MPa,水蒸气的露点温度为45—54℃。 酸露点:当烟气中有SO3存在并与水蒸气发生作用生成硫酸蒸汽时,烟气中硫酸蒸汽的露点温度称为酸露点或烟气露点。它比水露点高很多,通常在90—130℃,对于高硫煤产生的烟气或富氧燃烧,酸露点甚至能达到140—160℃。

转炉煤气高效回收和利用

转炉煤气的高效回收和利用 冉松李红文 摘要:本文介绍了水钢通过逐步改造,不断的提高转炉煤气回收量,充分利用二次能源,减少污染,改善环境,实现转炉煤气的高效回收和利用 关键词:转炉煤气技术改造回收利用技能培训 一、前言 转炉煤气作为炼钢生产过程中的副产品,是钢铁企业的重要二次能源,转炉煤气回收占转炉工序能源回收总量的80%以上,是实现负能炼钢和降低工序能耗的关键环节。 水钢很重视转炉煤气吨钢回收率,转炉煤气的高效回收和合理利用,不仅能降低炼钢工序能耗,缩减生产成本,为实现大气零污染奠定了基础,而且能极大的降低废气排放量,使企业中较为严重的大气污染得到有效控制,周边环境得到改善,实现清洁生产。 水钢有两座炼钢,6座转炉,年生产能力超过500万吨,转炉冶炼过程中,碳氧反应产生含有大量CO的烟气,如果直接排放,对能源造成浪费及对大气环境有极大污染。提高转炉煤气回收率,满足煤气系统供需平衡,减少排放,水钢一直不断的探索和实践,水钢的目标是吨钢回收率130 m3。 通过努力,找出了影响转炉煤气回收率的原因,在于回收系统本身以及与煤气输送、加压系统等不匹配和煤气用户的开发滞后等。水钢通过努力,采取了一系列的技术改造和优化措施,提高转炉煤气回收量和使用量,取得了良好的效果。 二、实施技术改造和优化措施 (一)、技术改造

1、两座气柜间新增一根联络管 两座气柜之间原采用一根DN800管道连接,两气柜间管道总厂为1.5km,大概有200m为DN700管道。气工艺图如下: 随着用户用量的增加和煤气管道的长时间运行,煤气管道在输送能力上出现许多问题,表现在:用户煤气需求量加大,二炼钢的转炉煤气全部收回后,任然不能满足用户的需求,需要3万m3煤气柜进行补给,但是由于管道输送能力影响,3万m3气柜的转炉煤气不能全部输送到8万m3煤气,并且出现放散。造成煤气回收量低,又影响了用户的正常生产,为实现安全、高效生产,减少转炉煤气放散对环境的污染,提高转炉煤气回收量。动力厂利用技改大修,在两座气柜间新增加一根DN600管道。工艺如下:

转炉煤气回收管理规定(2021)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 转炉煤气回收管理规定(2021)

转炉煤气回收管理规定(2021)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 第一章总则 第一条目的 转炉煤气含有大量的CO,热值高,是一种优于发生炉煤气的优质气体燃料。将符合回收标准的转炉煤气收集到储气柜加以利用,是公司降本增效的重要举措,也是公司经济效益提升的一个增长点。为确保转炉煤气的高效回收,最大限度地增加煤气回收量,特制定转炉煤气回收管理规定。 第二条适用范围 本规定适用于-----各相关单位 第三条相关文件 《动力管理规定》 第四条名词解释 无 第二章管理区域划分

第五条-----管理区域 以转炉干法除尘器处的煤气冷却器去转炉煤气柜一侧的盲板阀为分界点,转炉至干法除尘器、放散塔和连接煤气冷却器一侧的煤气管道(含去转炉煤气柜一侧的盲板阀及法兰)和附属设施由大型材厂管理、维护;厂区煤气主管道去放散塔点火使用的煤气管道,主管道接出的支线管道第一道阀门(不含阀门和法兰)法兰后去放散塔的管道和附属设施由大型材厂管理、维护。 第六条动力厂管理区域 以转炉干法除尘器处的煤气冷却器去转炉煤气柜一侧的盲板阀为分界点,盲板阀(不含盲板阀及法兰)去转炉煤气柜一侧的煤气管道,转炉煤气柜及加压站等附属设施,转炉煤气柜去厂区煤气主管道的煤气管道及附属设施由动力厂管理。 第三章各单位职责 第七条------职责 (一)、负责组织配置好转炉煤气回收相关操作人员,并明确岗位职责;操作人员熟悉所属区域工艺流程;制定转炉煤气回收大型材厂安全技术操作规程并按规程执行;检查所属区域相关设备处于良好状态保证具备转炉煤气回收条件。

2020新版转炉煤气回收安全操作规程

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020新版转炉煤气回收安全操 作规程 Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

2020新版转炉煤气回收安全操作规程 1、从事转炉煤气回收系统相关的人员必须经煤气专业知识培训,并经考试合格后方可上岗。 2、在煤气区域工作的作业人员,应携带一氧化碳检测报警仪,进入涉及煤气的设施内,必须保证该设施内氧气含量不低于19.5%,作业时间要根据一氧化碳的含量确定,动火必须用可燃气体测定仪测定合格;设施内一氧化碳含量高(大于50ppm)或氧气含量低(小于19.5%)时,应佩戴空气或氧气呼吸器等隔离式呼吸器具;设专职监护人员。 3、转炉煤气回收运行中的巡检应两人同行,并定时检查各处持续排水器状况。涉及煤气区域的报警设施、通信及通风设施应确保正常运行。 4、风机工、司炉工对各自区域除尘管道及风机系统各人孔、风

机机壳、轴封、软连接、眼镜阀检查,确保密封良好。 5、风机工负责转炉烟气回收过程的信息传递,做好风机运行的监护工作,同时对转炉生产异常情况向三组阀通报。 6、司炉工定期清理勾头部位积灰,防止堵塞重力脱水器水封,造成风管短路。定期清理防爆板或防爆阀门,保持风管畅通。 7、司炉工定期对高压喷枪进行清理,降低烟气含尘量及烟气温度,溢流水槽、水封必须保证正常水位,确保烟气回收质量。 8、转炉煤气活动烟罩或固定烟罩应采用水冷却,罩口内外压差保持稳定的微正压。烟罩上的加料孔、氧枪、副枪插入孔和料仓等应密封充氮,保持正压;同时对烟罩粘钢要及时清理,以防造成堵塞,使水封抽空。 9、转炉烟气回收期间,煤气点火停止,关闭单炉座转炉煤气阀门。 10、煤气设备设施检修作业,必须制定检修作业方案、停气和吹扫方案。落实安全措施和应急处置措施;办理相关作业许可证,做好安全确认,做到统一指挥。

烟气余热回收技术方案样本

烟气余热回收技术 方案

烟气余热回收利用改造项目 技术方案 ***节能科技有限公司 二O一二年

一、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在160-180℃,平均热效率在88%,(标准应不高于160℃)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。有着显著的节能效益。主要原理:1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,因此对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。加装烟气冷凝器的主要

目的就是经过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),而且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。 瑞典AIREC公司是世界上唯一一家 钎焊式模块化非对称流量板式换热器的 专业生产制造商,凭借独到的设计理 念,雄厚的产品开发能力和多年行业丰 富的实践经验使AIREC成为在非对称流量换热领域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真空和高温的环境下,板片用铜或镍焊接在一起,具有很高的机械强度,更大的传热面积,更高的效率,更轻便小巧。AIREC经过继承CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,气体/液体应用

瑞典爱瑞科烟气余热回收装置介绍

北京烟气冷凝余热回收改造工程 ——广源小区西区锅炉房

原理
? (一)、热能回收装置原理 燃料中含有大量氢元素,燃烧产生大量水蒸汽。每1NM3天然气可以产生1.55KG水 蒸汽,具有可观的汽化潜热,大约为3600KJ,占天然气的低位发热量的10%左右。在排 烟温度较高时,水蒸汽不能冷凝发出热量,随烟气排放,热量被浪费。同时,高温烟气也 带有大量热量,一起排放。 烟气冷凝热能回收装置,利用温度较低的水或空气冷却烟气,实现烟气温度降低,靠 近换热面区域,烟气中水蒸汽冷凝,同时实现烟气放热和水蒸汽汽化潜热释放,加热水或 空气,实现热能回收,明显提高锅炉热效率。 (二)、锅炉热效率提高1NM3天燃气燃烧生产理论烟气量约10.3 NM3(大约12.5KG)。 以过量空气系数1.3为例,产生烟气14 NM3(大约16.6KG)。取烟气温度200℃降低至 40℃,放出物理显热约1600KJ,水蒸汽冷凝率取50%,放出汽化潜热约1850 KJ,总计 放热3450 KJ,约是天然气低位发热量的10%。若取80%烟气进入热能回收装置,可以 提高热能利用率8%以上,节省天然气燃料近10%。实际运行中,水蒸汽冷凝率超过 60%,天然气节省可达12%以上。
?
培训资料

北京市场背景
? 由于举办奥运会,6环以内基本以燃气锅炉为主,目前约有3000座锅炉房,1.8万台燃气 锅炉。 北京市燃气集团09年1月19 日发布消息,2008 年北京市天然气用量达到52 亿立方米。 为实现绿色奥运,净化北京的大气环境, 天然气作为清洁能源其使用得到快速增长。目 前,北京城市燃气管网长度已超过一万多公里。08 年由于奥运因素,太阳宫、郑常庄、 京丰三大燃气电厂,首次向北京城市热网供热。 2009年首都能源与经济运行调节工作会议表示,在今年内,北京市东城、西城、崇文、宣 武城四区内剩余的燃煤锅炉将全部改造,未来由燃气锅炉替代。 为进一步改善首都大气环境质量,确保市政府各阶段控制大气污染措施中燃煤锅炉改用清 洁燃料任务的顺利完成,市政府决定对有锅炉改造任务的单位给适当资金补助。
?
?
?
培训资料

转炉煤气全回收实验

2015年12月8日下午,能源管理中心邬琦、苗亚君在炼钢厂风机房刘主任的配合下,对炼钢厂转炉煤气全回收项目进行第一次实验,实验对象为炼钢1#转炉,1#转炉回收煤气期间,其他两座转炉停止回收煤气,实验期间1#转炉共回收四炉煤气,具体数据如下: 序号回收起点(co 回收量(m3)Co平均浓度吹炼时间浓度) 1 20%802140%13分27秒 2 16%810048% 3 16%807048.2%13分54秒 4 16%808752.8% 根据实验数据可知,以co浓度为16%开始回收时,回收量在8000~8100m3之间,此时吨钢回收量为95m3/t左右,炼钢风机房co分析仪显示平均co浓度在48%-52.8%之间(第一组数据co浓度40%为人工选取三个节点计算,存在误差),四炉回收结束后,在煤气柜内取样化验co浓度,结果为40%(人工化验),与炼钢分析仪存在差异。

炼钢厂通过对第一次实验报告数据进行统计分析后,认为在吹炼过程中实时调节二文喉口开度可提高转炉煤气回收量,具体改进方案如下: 将吹炼过程分为四个阶段,每个阶段喉口开度通过自动化程序设定一个固定值,如下表。 吹炼时间(min)喉口开度(mm) 0-4 200 4-12 260 12-停吹260 停吹后190 通过以上改进措施,炼钢厂风机房工作人员和能管中心相关人员于2015年12月13日下午对炼钢1#转炉进行第二次回收实验,具体数据如下: 回收量(m3)Co平均浓度吹炼时间序号回收起点(co 浓度) 1 16%7801 47% 12分22秒 2 16%772 3 46.3% 12分58秒 3 16%8145 48.3% 12分31秒备注:煤气柜人工化验co浓度为43%

焦炉煤气净化工艺流程的选择

焦炉煤气净化工艺流程的选择 (2011-01-24 13:14:42) 标签: 分类:焦化类 煤化工 杂谈 笑看人生 摘要:本文对我国煤气净化工艺的发展进行了回顾,提出了我国焦炉煤气净化工艺发展的方向以及选择工艺流程的原则。并推荐采用的焦炉煤气净化工艺流程以及各单元中应采用的行之有效的环保、节能技术。 1 焦炉煤气净化工艺的历史回顾 我国焦炉煤气净化发展是与炼焦工业的发展紧密相连的。建国以前,我国焦化工业几乎是一片空白。建国以来,随着炼焦工业的发展,煤气净化工艺从无到有,蓬勃发展,技术水平和装备水平得到了不断提高。概括起来,大体上经历了三个阶段。第一个阶段是从20世纪50年代末到60年代中期,我国焦化厂的焦炉煤气净化工艺主要是以50年代从原苏联引进的工艺为基础、消化翻板饱和器法生产硫铵的老流程,以当时的武钢焦化厂、包钢焦化厂、鞍钢化工总厂、太钢焦化厂、马钢焦化厂等一批大型厂为代表。但该工艺存在流程陈旧、能耗高、环保措施不健全、装备水平低等问题。主要表现在初冷采用立管冷却器,冷却效率低;硫铵装置设备庞大,煤气阻力大,产品质量差,设备腐蚀严重;没有配套建设脱硫装置,终冷系统不能闭路,对大气和水体污染严重;在粗苯蒸馏系统采用蒸汽法,不但耗用大量蒸汽,产品质量也得不到保证。第二阶段是从60年代中期至70年代末期,随着我国自行设计的58型焦炉不断推广及炭化室高5.5米焦炉的诞生,对煤气净化工艺开展了与石油、化工行业找差距进行技术革新的阶段。在广大技术人员的努力下,在此期间我们将初冷流程改为二段冷却;开发了多种油洗萘代替终冷水洗萘;研制成功了终冷水脱氰生产黄血盐,解决了终冷水的污

煤气回收量计算

转炉煤气回收量计算 一、转炉煤气回收吨钢 90m3;日产钢量3300t; 转炉煤气热值:1400大卡h/m3; 每天产煤气量 297000m3=12375m3/h×1400大卡h/m3=1732.5万大卡/h 转炉煤气每小时的热量折算标准煤: 1732.5万大卡/h÷7000大卡 =2475Kg/h=2.475t/h (注:标煤热值为7000大卡/Kg)1度电需0.333kg标煤 二、转炉煤气回收供发电效益计算: 理论计算值:1kg标煤发电3.0KW.h;(5m3转炉煤气=1kg标煤) 长沙利能计算:转炉煤气发电消耗标煤:42.04t标煤/天×1300元/t=54652元/天 年发电2800万Kwh 计算式:煤气量 8750m3/h×8000h=7000万m3/年(余出3625m3/h) 7000万×1400÷7000=14000000Kg标煤=14000t标煤/年=42.04t标煤/t天 注:理论上:煤气烧锅炉变为蒸汽属于二次转换,锅炉热效率80%,蒸汽消耗损失 5%;其他损失未计在内。 三、生产白灰费用计算分析: 白灰窑需用18000m3/h 高炉煤气(现在用12500m3/h); 白灰产量300t/天(设计值);外购白灰价格:240元/t; 每天需用标煤计算: 18000×650÷7000=1671.4Kg=1.6714t×24h=40.113t/天 生产1吨白灰需要0.1337t标煤。 1t白灰需要668m3转炉煤气1t 白灰需要标煤费用:0.1337t×1300元/t煤=173.81元/t白灰 每天需要标煤计算:0.1337t×300t/天=40.11t 40.11t×1300元/t标煤=52143元/天 生产白灰价值:300t×240元/t=72000元/天(另外白灰节省4000m3/h转炉煤气) (注:白灰价格240元/t;石灰石43元/t是采购部提供的采购价;标煤价格1300元/t)因煤气是富余产品,都燃烧放散,煤气平衡调整好后能满足白灰窑使用,因此未增加燃料费用。 白灰窑用转炉煤气: 从5万煤气柜要架设DN1000专用管道620m。(投资约60万元) 转炉煤气供白灰窑与发电对比: 1、白灰窑每天能耗:0.1337t×300t/天=40.11t×1300元/t标煤=52143元/天 煤气发电每天能耗:42.04t标煤/天×1300元/t=54652元/天

转炉煤气回收安全操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 转炉煤气回收安全操作规 程(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4147-69 转炉煤气回收安全操作规程(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、从事转炉煤气回收系统相关的人员必须经煤气专业知识培训,并经考试合格后方可上岗。 2、在煤气区域工作的作业人员,应携带一氧化碳检测报警仪,进入涉及煤气的设施内,必须保证该设施内氧气含量不低于19.5%,作业时间要根据一氧化碳的含量确定,动火必须用可燃气体测定仪测定合格;设施内一氧化碳含量高(大于50ppm)或氧气含量低(小于19.5%)时,应佩戴空气或氧气呼吸器等隔离式呼吸器具;设专职监护人员。 3、转炉煤气回收运行中的巡检应两人同行,并定时检查各处持续排水器状况。涉及煤气区域的报警设施、通信及通风设施应确保正常运行。 4、风机工、司炉工对各自区域除尘管道及风机系统各人孔、风机机壳、轴封、软连接、眼镜阀检查,

烟气余热回收

烟气余热回收 目录 前言 烟气余热回收的方法 编辑本段前言 近十年来,由于能源紧张,随着节能工作进一步开展。各种新型,节能先进炉型日趋完善,且采用新型耐火纤维等优质保温材料后使得炉窑散热损失明显下降。采用先进的燃烧装置强化了燃烧,降低了不完全燃烧量,空燃比也趋于合理。然而,降低排烟热损失和回收烟气余热的技术仍进展不快。为了进一步提高窑炉的热效率,达到节能降耗的目的,回收烟气余热也是一项重要的节能途径。 烟气是一般耗能设备浪费能量的主要途径,比如锅炉排烟耗能大约在15%,而其他设备比如印染行业的定型机、烘干机以及窑炉等主要耗能都是通过烟气排放。烟气余热回收主要是通过某种换热方式将烟气携带的热量转换成可以利用的热量。 编辑本段烟气余热回收的方法 烟气余热回收途径通常采用二种方法:一种是预热工件;二种是预热空气进行助燃。烟气预热工件需占用较大的体积进行热交换,往往受到作业场地的限制(间歇使用的炉窑还无法采用此种方法)。预热空气助燃是一种较好的方法,一般配置在加热炉上,也可强化燃烧,加快炉子的升温速度,提高炉子热工性能。这样既满足工艺的要求,最后也可获得显著的综合节能效果。 此外国内从五十年代开始在工业炉窑上采用预热空气的预热器,其中主要形式为管式、圆筒辐射式和铸铁块状等形式换热器,但交换效率较低。八十年代,国内先后研制了喷流式,喷流辐射式,复台式等换热器,主要解决中低温的余热回收。在100度以下烟气余热回收中取得了显着的效果,提高了换热效率。但在高温下仍因换热器的材质所限,使用寿命低,维修工作量大或固造价昂贵而影响推广使用。 21世纪初国内研制出了陶瓷换热器。其生产工艺与窑具的生产工艺基本相同,导热性与抗氧化性能是材料的主要应用性能。它的原理是把陶瓷换热器放置在烟道出口较近,温度较高的地方,不需要掺冷风及高温保护,当窑炉温度1250-1450℃时,烟道出口的温度应是1000-1300℃,陶瓷换热器回收余热可达到450-750℃,将回收到的的热空气送进窑炉与燃气形成混合气进行燃烧,可节约能源35%-55%,这样直接降低生产成本,增加经济效益。 陶瓷换热器在金属换热器的使用局限下得到了很好的发展,因为它较好地解决了耐腐蚀,耐高温等课题,成为了回收高温余热的最佳换热器。经过多年生产实践,表明陶瓷换热器效果很好。它的主要优点是:导热性能好,高温强度高,抗氧化、抗热震性能好。寿命长,维修量小,性能可靠稳定,操作简便。是目前回收高温烟气余热的最佳装置。目前,陶瓷换热器可以用于冶金、有色、耐材、化工、建材等行业主要热工窑炉。 烟气余热回收的其它方式:

转炉煤气回收安全操作规程

编号:CZ-GC-05224 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 转炉煤气回收安全操作规程 Safe operation procedures for converter gas recovery

转炉煤气回收安全操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程 在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重 的会危及生命安全,造成终身无法弥补遗憾。 1、从事转炉煤气回收系统相关的人员必须经煤气专业知识培训,并经考试合格后方可上岗。 2、在煤气区域工作的作业人员,应携带一氧化碳检测报警仪,进入涉及煤气的设施内,必须保证该设施内氧气含量不低于19.5%,作业时间要根据一氧化碳的含量确定,动火必须用可燃气体测定仪测定合格;设施内一氧化碳含量高(大于50ppm)或氧气含量低(小于19.5%)时,应佩戴空气或氧气呼吸器等隔离式呼吸器具;设专职监护人员。 3、转炉煤气回收运行中的巡检应两人同行,并定时检查各处持续排水器状况。涉及煤气区域的报警设施、通信及通风设施应确保正常运行。 4、风机工、司炉工对各自区域除尘管道及风机系统各人孔、风机机壳、轴封、软连接、眼镜阀检查,确保密封良好。

5、风机工负责转炉烟气回收过程的信息传递,做好风机运行的监护工作,同时对转炉生产异常情况向三组阀通报。 6、司炉工定期清理勾头部位积灰,防止堵塞重力脱水器水封,造成风管短路。定期清理防爆板或防爆阀门,保持风管畅通。 7、司炉工定期对高压喷枪进行清理,降低烟气含尘量及烟气温度,溢流水槽、水封必须保证正常水位,确保烟气回收质量。 8、转炉煤气活动烟罩或固定烟罩应采用水冷却,罩口内外压差保持稳定的微正压。烟罩上的加料孔、氧枪、副枪插入孔和料仓等应密封充氮,保持正压;同时对烟罩粘钢要及时清理,以防造成堵塞,使水封抽空。 9、转炉烟气回收期间,煤气点火停止,关闭单炉座转炉煤气阀门。 10、煤气设备设施检修作业,必须制定检修作业方案、停气和吹扫方案。落实安全措施和应急处置措施;办理相关作业许可证,做好安全确认,做到统一指挥。 11、检修作业前应对作业人员进行针对性的安全教育和安全交

冷凝燃气锅炉烟气余热回收利用研究

冷凝燃气锅炉烟气余热回收利用研究 摘要近些年来,随着经济社会的快速发展,国家对环境保护、节约资源、能源综合利用等提出了较高的要求。在北京市集中供热系统中,燃气锅炉得到了广泛的应用,而燃气锅炉所排放的烟气具有较高的温度,可以采取有效措施来降低烟气排放温度,并实现对烟气余热的有效回收,其不仅可以使燃气锅炉的供热效率得到有效提升,而且还可以达到比较理想的节能效果。本文将会以北京市某热源厂为例来对冷凝燃气锅炉烟气余热回收利用技术进行探究。 关键词冷凝燃气锅炉;烟气余热;回收利用 如今,随着燃气锅炉在供热行业中的广泛应用,与燃煤锅炉相比具有热效率更高、污染更小等特点。在锅炉中天然气燃烧过程中,将会有大概92%左右能量转化为热量、7%左右为排烟热损失、1%左右表面散热损失掉。因此,做好烟气余热回收利用工作就显得尤为重要。通常情况下,很大一部分烟气中的余热存在于水蒸气中,在回收显热、降低烟气温度的同时,会有效回收烟气中的水蒸气潜热,从而实现烟气全热的正回收。烟气余热回收利用主要是以天然气为驱动源,借助回收型热泵机组,就能够使锅炉排烟从80℃降至30℃,从而使大量的水蒸气冷凝潜热被回收,这样既可以达到节省燃气锅炉燃气耗量的目的,而且还可以降低PM2.5雾霾形成物的排放,达到节能减排的双重效果。 1 冷凝燃气锅炉烟气余热回收利用技术 1.1 利用换热器烟气余热回收技术 在烟气余热回收利用技术中,换热器是比较常用的设备,对其进行科学、合理的选择尤为关键,根据换热方式的差异,可以将烟气余热回收利用方式划分为直接接触式换热型、间接接触式换热型[1]。 (1)直接接触式换热器。直接接触式换热通常是以直接接触的方式来实现两种介质相互传热传质的过程。通常情况可以根据接触结构的不同划分为折流盘型、多孔板鼓泡型和填料型如图1所示。因为我国供热供回水温度相对比较高,导致直接接触式换热型换热器在烟气余热回收利用过程中并未得到广泛的应用。(2)间接接触式换热器。间接换热通常是指在被壁面分隔来的空间里冷热介质可以实现独立流动,并通过壁面来使实现冷热介质的换热。在烟气余热回收利用技术中,常用的间接接触式换热器有热管换热器、翅片管换热器和板式换热器. 1.2 利用热泵回收烟气余热技术 在燃气锅炉中,天然气燃烧过程中所产生的烟气露点在55—65℃之间,在进行回收烟气冷凝余热阶段,一般要求供热回水温度在烟气露点温度范围以内。一旦供热回水温度超过了烟气露点温度,则需要借助热泵回收烟气冷凝余热来实现预热供热回水。目前,在烟气余热回收利用过程中,吸收式热泵回收烟气余热

转炉煤气回收的安全措施

编号:AQ-JS-03995 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 转炉煤气回收的安全措施 Safety measures of converter gas recovery

转炉煤气回收的安全措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1、概述 转炉煤气的产生是间歇式的,集中在吹炼期,在吹炼期内的不同时期,其成分也不同,而且与回收设备的操作及煤气的回收条件有关。每吨钢转炉煤气具有的能量约为100万kJ,回收利用这些能量的方法有燃烧法和未燃法,国外主要发展未燃法以回收煤气。未燃法有3种净化除尘方法:一是日本的OG除尘法,二是德国克鲁伯公司的最小气量除尘法,三是法国的IC敞口烟道法。石钢转炉炼钢厂采用的是OG除尘法回收煤气,1998年4月1日正式回收煤气,并在一年多的实践过程中保证了安全可靠运行,回收了资源,降低了生产成本。 煤气具有爆炸、着火、使人中毒三大危险,当回收和使用煤气不当时,就可能发生上述事故。充分地了解转炉煤气特性,掌握转炉煤气的回收与使用工艺过程,熟悉回收系统设备的功能,避免各类事故的发生和正确处理发生的事故,对于保证人身安全,保护国家财产,减少损

失和缩小事故面有很大的意义。 2、转炉煤气的特性 转炉未燃法产生的煤气主要成分为一氧化碳及少量的氢,不同的操作工艺回收煤气中的一氧化碳含量也不同,一般为40%~70%。一氧化碳是无色、有微臭的气体,重度为1.25kg/m3,比空气稍轻。转炉煤气与空气或氧气(从氧枪中漏出之纯氧)混合,在特定条件下会产生速燃,使设施中的压力突然增高而造成设备损坏和人身事故。冶金企业常用的煤气为焦炉煤气、高炉煤气、转炉煤气,而转炉煤气的一氧化碳含量远高于焦炉与高炉煤气的一氧化碳含量,且毒性大,回收操作过程不连续,尤其更应引起我们的重视和注意。 3、回收工艺中的安全保证措施 (1)转炉煤气进行回收的前提条件是要保证除尘系统的运行完好,高效率地捕集转炉烟气中的尘粒,使得煤气的质量满足用户需要。转炉烟气净化除尘与煤气回收设施是一套紧密相连、密切相关的系统。生产中要做到一级、二级文氏管按设计和规程规定值供水,以保证除尘效果,确保喷水管路畅通及雾化效果;二文RD阀板与炉口微差压应

某钢铁企业转炉煤气回收氧含量超标分析及对策

某钢铁企业转炉煤气回收氧含量超标分析及对策 转炉煤气富含一氧化碳,是一种中等热值的气体燃料。将其排放于空气中,不仅浪费且会导致严重的大气污染。因此,转炉煤气的回收利用对改善环境,节约能源具有重点意义。 在转炉煤气回收系统中,煤气柜柜前管道氧含量超标(氧含量大于2%)现象时有发生。这种超标可能引发煤气爆炸,是制约煤气回收系统连续运行的重大安全隐患。笔者结合生产实践,对氧含量超标原因作了分析,并介绍了解决方案和结果。 煤气回收系统工艺流程 在转炉吹炼过程中,由于剧烈的氧化反应,会有大量的高温炉气从炉口逸出,炉气中含有86%左右的CO和少量的CO2。炉气出炉口后,与少量空气(一般通过炉口微差压控制系统将空气过剩系数控制为0.1)发生燃烧,燃烧后的烟气中仍含有60%~70%的CO。 为了回收烟气中的CO,需配备转炉煤气净化及回收系统,主要包括炉口微差压自动调节、R-D喉口、三通阀、氧气及一氧化碳分析仪(三通阀阀前管道、煤气柜柜前管道、煤气柜中各有一套分析仪)等设备。 下文将以安徽某钢铁企业为例,结合该厂转炉煤气回收氧含量超标现象和该厂生产实践,分析其氧含量超标原因,并介绍该厂采取的解决措施。 氧含量超标现象和原因分析 该钢铁企业氧含量超标现象大多是出现在煤气回收结束时,表现为三通阀前煤气中氧含量正常(氧含量小于2%),而到煤气柜柜前突然上升(达到2%~10%)。且超标现象的出现通常具有不定期性,每月发生3~6次。 1.氧含量超标原因 经过长时间的现场跟踪,分析查明超标的原因为:转炉吹炼后期铁水中碳含量较低,氧气与铁水中的碳反应不够剧烈,少量的氧气被一次风机直接吸走混入煤气中;另一方面,由于氧分析仪响应时间和三通阀动作时间过长,等三通阀接到分析仪氧含量超标指令从回收状态完全转换到放散时,已有一定量的含氧量很高的煤气进入煤气柜柜前管道,造成柜前管道氧含量超标。

煤气净化系统工艺的优化与改进

煤气净化系统工艺的优化与改进 崔长青 (北京众联盛化工工程有限公司) 摘要对焦化厂的煤气净化工艺提出了13点改进意见,并详细介绍了改进的方法。 关键词冷鼓脱硫硫铵洗脱苯蒸氨 Optimization and Improvement of Coke Oven Gas-cleaning System Cui Changqing Zhu Changjiang (Beijing ZHONGLIANSHENG chemical engineering CO.,LTD.) ABSTRACT Thirteen improvement of Coke Oven Gas-cleaning System were developed. And the modified methods were presented in detail. KEY WORD Condense-blast, Desulfurization, Ammonia sulfate,Crude benzol recovery ,Ammonia Distilling 0前言 结合焦化企业多年的生产实践及我公司在焦化、化工设计领域丰富的工程设计经验,我公司在为国内某焦化企业三期100万吨/年焦化工程的设计中,对煤气净化车间的冷鼓、脱硫、硫铵、洗脱苯及蒸氨工段在生产工艺上进行了一些优化设计,得到了业主的一致好评。本文就设计工作中对工艺流程、设备布置进行的修改及其必要性进行详细论述。 1该企业一、二期工艺流程简述 1.1冷鼓工段 自气液分离器来的荒煤气经过初冷器后将煤气温度冷却至22℃,后经电捕焦油器进一步脱除焦油后进入煤气鼓风机,加压后煤气进入后续工段。 气液分离器分离出的液相自流进入机械化氨水澄清槽进行静止分层。上层的氨水溢流至循环氨水槽,由循环氨水泵抽送至荒煤气管冷却荒煤气,并自循环氨水泵后抽取部分氨水至初冷器喷洒冲洗使用。多余的氨水溢流至剩余氨水槽,用剩余氨水泵抽送至蒸氨工段。中层的焦油溢流至焦油中间槽,再次静止分离脱水后泵送至焦油槽贮存、外售。底层的焦油渣定期运往煤场掺混炼焦。 每台初冷器下部设有两台初冷器水封槽(初冷器上、下段各对应一台),煤气冷凝液及初冷器冲洗液经水封槽溢流至上、下段冷凝液循环槽,然后分别由上、下段冷凝液循环泵送至初冷器上下段喷淋,如此循环使用,多余部分由下段冷凝液循环泵送至机械化氨水澄清槽。并在下段冷凝液循环槽内设有蒸汽盘管加热。 1.2脱硫工段 脱硫采用PDS+栲胶为催化剂、煤气中的氨为碱源的湿式氧化法、两级脱硫、再生塔再生、熔硫釜生产硫磺的脱硫工艺。 来自冷鼓工段的粗煤气依次串联进入两个脱硫塔下部与塔顶喷淋下来的脱硫液逆流接触进行洗涤后,煤气经捕雾段除去雾滴后全部送至硫铵工段。 从脱硫塔中吸收了H2S和HCN的脱硫液经脱硫塔液封槽溢流至溶液循环槽,用溶液循

相关文档
最新文档