Extragalactic sources towards the central region of the Galaxy

Extragalactic sources towards the central region of the Galaxy
Extragalactic sources towards the central region of the Galaxy

Mon. Not. R. Astron. Soc. 000, 1–24 (0000)
Printed 5 February 2008
A (MN L TEX style ?le v2.2)
Extragalactic sources towards the central region of the Galaxy
Subhashis Roy1 A. Pramesh Rao1 & Ravi Subrahmanyan2 1
National Centre for Radio Astrophysics (TIFR), Pune University Campus, Post Bag No.3, Ganeshkhind, Pune 411 007, India. 2 Australia Telescope National Facility, CSIRO, Locked bag 194, Narrabri, NSW 2390, Australia
arXiv:0712.0258v1 [astro-ph] 3 Dec 2007
We have observed a sample of 64 small diameter sources towards the central ?6? < l < 6? , ?2? < b < 2? of the Galaxy with the aim of studying the Faraday rotation measure near the Galactic Centre (GC) region. All the sources were observed at 6 and 3.6 cm wavelengths using the ATCA and the VLA. Fifty nine of these sources are inferred to be extragalactic. The observations presented here constitute the ?rst systematic study of the radio polarisation properties of the background sources towards this direction and increases the number of known extragalactic radio sources in this part of the sky by almost an order of magnitude. Based on the morphology, spectral indices and lack of polarised emission, we identify four Galactic HII regions in the sample. Key words: Galaxy: center – techniques: polarimetric – radio continuum: ISM – Galaxy: HII regions
ABSTRACT
1
INTRODUCTION
Since extragalactic sources are located outside the Galaxy, the effect of ISM on the propagation properties of electromagnetic waves from these objects can be modelled without distance ambiguities as in the cases of pulsars, and thereby allowing us to observe the integrated effect of the medium along large (~20 kpc) line of sight distance. Unfortunately, only a few extragalactic sources have been identi?ed within the central few degrees of the Galaxy (?6? < l < 6? , ?5? < b < 5? ), which limits their usefulness as probes to study the Galactic Centre (GC) ISM. High obscuration at optical wavelengths and the confusion due to the high concentration of stars at infrared wavelengths have prevented identi?cation of extragalactic sources in this region. High angular resolution studies at centimetre wavelengths (e.g., Becker et al. (1994) at 5 GHz and Zoonematkermani et al. (1990) at 1.4 GHz) have identi?ed compact radio sources, but in the presence of a large number of Galactic sources near the Galactic Centre (GC), identifying the extragalactic sources is non-trivial, and only about half a dozen extragalactic sources in this region have been identi?ed (Bower et al. 2001). To study the Faraday rotation measure (RM) near the centre of the Galaxy (?6? < l < 6? , ?2? < b < 2? ), we have selected a sample of 64 small diameter (< 10 ) sources (see Sect. 1.1) in the region, which we have studied with high angular resolution at 6 cm (C band) and 3.6 cm (X band) with the ATCA and the VLA. All the sources were studied for linear polarisation and the width of the frequency channels were chosen to avoid bandwidth depolarisation up to a RM of 15,000 rad m?2 . Though the NVSS (Condon et al.
1998) was capable of detecting polarised emission from sources, in those cases where the RM is high (> 350 rad m?2 ) its bandwidth of 50 MHz would cause bandwidth depolarisation. Our observations, for the ?rst time, provide reliable measurements of the polarisation properties of the sources in the region. These observations have almost an order of magnitude higher sensitivity (in Stokes I) and up to 3 times higher resolution as compared to the previous VLA Galactic plane survey (GPS), and this high sensitivity together with higher resolution has helped to identify the Galactic sources in the initial sample. In this paper, we provide information on the morphology, polarisation fraction, spectral indices and rotation measure of these sources, and in a companion paper (henceforth Paper II) draw inferences about the magnetic ?eld in the GC region.
1.1
Sample selection
E-mail: roy@ncra.tifr.res.in c 0000 RAS
We surveyed the literature and formed a sample of possible extragalactic radio sources in the central ?6? < l <6? , ?2? < b <2? of the Galaxy. These sources were selected on the basis of their small scale structure ( 10 ) and non-thermal spectra (α ?0.4, S(ν) ∝ να ). For the sources to have detectable linear polarisation and so be useful for the RM study, an estimate of the polarisation fraction of the sources are required. However, in the absence of any reliable information on their polarisation fraction in the literature, we assumed the unresolved sources to be polarised at the mean polarisation fraction of extragalactic small diameter sources of 2.5% (Saikia & Salter 1988). Sources with measured ?ux density greater than 10 mJy at 5 GHz were selected. The source catalogues used for this selection were VLA images of the GC region at 327 MHz (LaRosa et al. 2000), the VLA survey of the Galactic plane (GPS)

2
Subhashis Roy, A. Pramesh Rao & Ravi Subrahmanyan
using the AIPS task RM. In this equation, n is an integer, λ is the wavelength, and φ0 denotes the intrinsic polarisation angle (i.e., when the observing frequency tends to in?nity). If the rms residuals exceed four times the expected rms noise, the ?tted values were rejected. Since there were 16 frequency channels per 128 MHz band of the ATCA data, we tried to measure the RM from the ATCA observations in two ways by using the AIPS task RM. (i) Since AIPS task RM cannot ?t more than four frequency channels to measure RM, in order to maximise signal to noise ratio as well as to check for high RM in the data, we divided the central 12 frequency channels of 4.8 and 5.9 GHz band into 3 equal parts. Polarisation angles were measured from ?rst and third part of each of these bands, and these were used as input to the AIPS task RM. This allowed us to measure RM as high as 30,000 rad m?2 . (ii) If the RM measured by the previous method is not very high (i.e., 2000 rad m?2 , and was the case for all except one source), data from each of the 4.8, 5.3, 5.9 and 8.5 GHz band were averaged and polarisation angle measured from each of these bands. These polarisation angle images and their error maps were used as the input to the AIPS task RM. We used the VLA in its BnA con?guration to observe the relatively weak sources in the sample. The default continuum mode, which provides a single frequency channel of bandwidth 50 MHz in each IF band, was used. Observations were centred at frequencies 4.63, 4.88, 8.33 and 8.68 GHz. 27 new sources, G353.410?0.360, G354.815+0.775, G355.424?0.809, G355.739+0.131, G356.905+0.082, G358.149?1.675, G358.156+0.028, G358.643?0.034, G358.605+1.440, G358.930?1.197, G359.392+1.272, G359.2?0.8 (Mouse), G359.604+0.306, G359.717?0.036, G359.710?0.904, G359.871+0.179, G0.404+1.061, G1.826+1.070, G2.922+1.028, G3.347?0.327, G3.748?1.221, G3.928+0.253, G4.005+0, G4.619+0.288, G4.752+0.255, G5.791+0.794 and G5.852+1.041 were observed on 11th and 13th February 2001 in two different bands. Moreover, the source G353.462?0.691 from ATCA observations was found to be almost unpolarised in the 6 cm band, and was re-observed on 11th February with the VLA. To unwrap possible nπ wrap in polarisation angles measured between two frequencies, 5 more sources from the ATCA pilot run, G358.002?0.636, G1.035+1.559, G359.844?1.843, G359.911?1.813 and G2.143+1.772 were re-observed on the 2nd day (13th Feb, 2001) of the VLA observations. From these sources, we re-observed G359.604+0.306 and G359.717?0.036 with the ATCA on 12th April 2002 to uniquely determine their RM. The secondary calibrators used for the observation were the same as in the ATCA observations. Polarisation calibration was performed using the unpolarised source 3C84. 3C286 was used as the primary ?ux density calibrator and to estimate the instrumental phase difference between the two circularly polarised (RR and LL) antenna signals. Each source was observed for typically 5 minutes at 2 different hour angles. All the data were calibrated and processed using the AIPS package. The source G356.905+0.082 has a compact core, which is weakly polarised, and an extended highly polarised halo. Due to zero spacing problem, the 8.5 GHz image of the halo could have missing ?ux density problems. Since the polarised intensity per beam of the core is similar to the contribution by the halo, which has small scale structures in polarised image and is not properly sampled at 8.5 GHz, we could not reliably estimate the RM from the core or the halo. Therefore, we have not provided its RM in Table 6.
c 0000 RAS, MNRAS 000, 1–24
at 1.4 GHz (Zoonematkermani et al. 1990), (Helfand et al. 1992) and at 5 GHz (Becker et al. 1994). Sources observed by Lazio & Cordes (1998) and the 365 MHz Texas survey (Douglas et al. 1996) were also used for this purpose. In those cases where no ?ux density estimates were available at 5 GHz, the ?ux densities at this frequency was estimated by extrapolating the 1.4 GHz ?ux densities using spectral indices measured between 327 MHz and 1.4 GHz. A total of 64 sources were found that satis?ed all of the above criteria.
2
OBSERVATIONS AND DATA REDUCTION
Details of array con?gurations, frequencies used and the date of radio observations are in Table 1. The ATCA observations were made using a 6 km array con?guration. Twelve sources, G357.435?0.519, G357.865?0.996, G358.002?0.636, G358.982+0.580, G359.388+0.460, G359.568+1.146, G359.844?1.843, G359.911?1.813, G0.537+0.263, G1.028?1.110, G1.035+1.559, G2.143+1.772 were observed on 06 Feb 2000 during the pilot run of the project. We observed 24 more sources G353.462?0.691, G354.719?1.117, G354.740+0.138, G356.000+0.023, G356.161+1.635, G356.567+0.869, G356.719?1.220, G358.591+0.046, G358.917+0.072, G359.546+0.988, G359.993+1.591, G0.313+1.645, G0.846+1.173, G1.505?1.231, G1.954?1.702, G2.423-1.660, G4.005+1.403, G4.188?1.680, G4.256?0.726, G4.898+1.292, G5.260?0.754, G5.358+0.899, G5.511?1.515 and G6.183?1.480 on 30th September and 02nd, 06th and 08th October, 2000. To unwrap possible nπ wrap in polarisation angles measured between two frequencies, 4 more polarised sources from the pilot run G357.865?0.996, G359.388+0.460, G0.537+0.263, G1.028?1.110 were re-observed on 06th or 08th Oct 2000. For the same reason, 4 sources from the pilot run G359.388+0.460, G359.911?1.813, G0.537+0.263, G2.143+1.772 along with G359.993+1.591 were re-observed on 12th April 2002. All these observations were made using the multi-channel continuum observing mode, and the data were acquired in 16 independent frequency channels covering 128-MHz bands centred at the observing frequencies. Each target source was typically observed for a total of 40–50 minutes. Since we used an E-W array con?guration, multiple-snapshot mode was used to get a satisfactory uv-coverage and each source was observed ≈10 times equally spaced in hour-angle. The sources 1741?312 and 1748?253 were used to calibrate the antenna based amplitudes and phases (secondary calibrators), and their ?ux densities were measured based on the observation of the primary ?ux density calibrator PKS B1934?638. This source (polarisation fraction 0.2%) was also used to determine antenna based polarisation leakages. The calibration and editing of the ATCA data was performed using MIRIAD. Calibrated data was converted into Stokes I, Q, U, V, and further analysis were carried out using AIPS. Maps made at different frequencies for a particular source were convolved to the same resolution. The Polarisation angle (φ) being given by φ=0.5 tan?1 (U/Q) (where, signs of Q and U are considered separately to unambiguously determine the value of φ), we divided the Stokes U image by the Q image and measured the polarisation angle and its error (AIPS task COMB). Finally, the polarisation angle images at different frequency bands were ?tted to the equation, φ = RM.λ2 + φ0 + nπ (1)

Extragalactic sources towards the Galactic Centre
Table 1. Journal of observations Epoch Telescope Array con?guration 6A 6B 6B 6B 6B BnA BnA 6B Obs. time (hours) 10 12 12 12 12 06 06 11 Frequency (GHz) 4.80 & 5.95 4.80 & 5.95 4.80 & 5.95 5.31 & 8.51 5.31 & 8.51 4.63 & 4.88 8.33 & 8.68 5.06 & 5.70 No. of sources observed 12 12 12 14 13 28 32 08
3
06 Feb 2000 30 Sept 2000 02 Oct 2000 06 Oct 2000 08 Oct 2000 11 Feb 2001 13 Feb 2001 12 Apr 2002
ATCA ATCA ATCA ATCA ATCA VLA VLA ATCA
3
RESULTS
Based on the ATCA data, 24 sources were found to have at least one polarised component. Images of these sources are shown in Fig. 3. The FWHM sizes of the beams in the ATCA images are ≈6 × 2 , and the typical RMS noise is 0.23 mJy/beam in Stokes I and about 0.15 mJy/beam in Stokes Q and U. These images show 7 of the 24 sources to have a single unresolved component and the remainder are either partially resolved or have multiple components. Of the sources observed using the VLA, 21 have at least one polarised component. Images of these sources along with 2 polarised phase calibrators are shown in Fig. 4. The FWHM sizes of the beams in the VLA images are ~2 × 1.5 and the RMS noise is typically 75 μJy/beam. In these images, four sources appear as single unresolved components. Since 1741?312 and 1748?253 have been observed by both ATCA and the VLA, but 1741?312 has a faint emission around the compact source as seen in higher resolution VLA maps, we have presented its properties in Stokes I from the VLA data. Stokes I images of the sources in the sample that were not detected to have polarised emission are shown in Fig. 5 and Fig. 6 respectively. The properties of the 24 polarised sources observed with ATCA are presented in Table 2 and 21 sources observed with VLA are in Table 3. In these tables, the following conventions are used. Column 1: the source name using Galactic co-ordinates (l ± b). Column 2: the component designation; ‘N’ denotes Northern, ‘S’ denotes Southern, ‘E’ denotes Eastern and ‘W’ denotes Western, ‘C’ denotes central, ‘EX’ denotes highly extended and ‘R’ denotes ring type. Columns 3 and 4: Right ascension (RA) and Declination (DEC) of the radio intensity peaks of the components in J2000 co-ordinates. Column 5: the deconvolved size of the components with their major and minor axes in arc-seconds and the position angle (PA) in degrees (formatted as major axis × minor axis, PA). A few sources that are observed to have multiple resolved components in the 8.5 GHz images are, however, not well resolved in the 4.8 GHz images. For these sources, we have measured the size parameters of the components from the 8.5 GHz images and we put a ‘*’ symbol beside these measured parameters. Columns 6 and 7: the corresponding peak and total ?ux density of the components at 4.8 GHz in units of mJy beam?1 and mJy respectively. Column 8: total ?ux density of the component at 4.8 GHz as measured by the VLA GPS survey. Column 9: percentage polarisation of the components. Column 10: spectral indices of the components measured between 8.5 and 4.8 GHz. A few of the sources are extended over several synthesised beam-widths and for these sources we have convolved the 8.5 GHz images to the resolution at 4.8 GHz and then made spectral index images. The spectral indices of the inc 0000 RAS, MNRAS 000, 1–24
dividual components are measured from these images, we put an ‘s’ beside the spectral index for these extended sources. Columns 11 and 12: spectral indices between 4.8 and 1.4 and between 1.4 and 0.3 GHz respectively. Column 13: the source classi?cation; ‘EG’ denotes an extragalactic source (based on the morphology), and G denotes a Galactic source. Several sources show the morphology typical of FR?I or FR?II sources and this is noted along with the extragalactic classi?cation. Sources which appear unresolved (deconvolved source size << beam size) are denoted by U, slightly resolved (deconvolved source size beam size) by SR, double by D and T denotes a triple source consisting of a pair of lobes and a core. C+E denotes a ?at spectrum core with extended emission either in the form of a lobe or jet. If there are several objects in the ?eld which appear to be unrelated, we label the object as M. For computing spectral indices in Table 2 and 3, the 1.4 GHz ?ux densities of the sources have been taken from the VLA GPS and the NRAO VLA Sky Survey (NVSS) (Condon et al. 1998). If the measured ?ux density of a component in the GPS differs from that in the NVSS by more than 20%, we have put a ‘?’ mark beside the computed spectral indices (column 11). We have visually examined the NVSS images of these sources and if we ?nd that the source is not in a confused region of the image we have used the ?ux density from NVSS to compute the spectral index; in such cases, we put ‘(N)’ beside the measured spectral index. For the source G359.871+0.171, the 1.4 GHz ?ux density has been assumed to be the same as that measured by Lazio et al. (1999) at 1.5 GHz and we put ‘(L)’ beside its measured spectral index between 4.8 and 1.4 GHz. For a few sources in the list, the 1.4 GHz ?ux density in unknown. In these cases, we put a ‘**’ in column 11 and enter the spectral index between 4.8 and 0.3 GHz in column 12 with ‘(0.3/4.8)’ written below. The P-band ?ux densities of the sources have been taken from the Texas survey at 365 MHz (Douglas et al. 1996). However, the Texas survey is known to have large uncertainty in ?ux densities for sources near the Galactic plane and which is more near the complex GC region. Therefore, if any source is detected in the GC image at 330 MHz (LaRosa et al. 2000), we have used their ?ux density to compute the spectral index (column 12 in Table 2, 3 and column 11 in Table 4, 5) and put ‘GC’ in parenthesis beside the spectral index measured. For 5 sources the ?ux densities at 330 MHz have been taken from Roy & Rao (2002), and we put ‘(GM)’ beside the spectral index in column 12. We have also taken the ?ux densities of 3 sources at 330 MHz from S. Bhatnagar (private communication) and put ‘(GM1)’ in column 12. Many of the sources resolved at frequencies of 1.4 GHz and above appear unresolved in the low frequency Texas survey. For these sources, we only compare their integrated ?ux densities between 1.4 and 0.3 GHz, and put ‘(i)’ beside the measured spectral index in column 12. In Table 4 & 5 we present the properties of the sources which are not detected in polarised emission. These tables are similar to Table 2 & 3, except that we have omitted the column representing percentage polarisation (column 9 in Table 2 & 3). For the four Galactic HII regions we have identi?ed, we write ‘G?HII’ in column 12 of this Table. The measured RM towards 44 sources (65 components) and 2 secondary calibrators are given in Table 6, which is arranged as follows: Column 1: the source name in Galactic co-ordinates (Gl±b). Column 2 & 3: RA (J2000) and DEC (J2000) of the source components. The co-ordinates of these components are based on the peak in the polarised intensity (if the peak in the polarised intensity do not coincide with the peak in total intensity, the component position

4
Subhashis Roy, A. Pramesh Rao & Ravi Subrahmanyan
will be slightly different than what is given in Table 2 & 3 based on the peak in total intensity). Column 4 & 5: the measured RM (in rad m?2 ) and the error in these measurements at the position of the peak in the polarised emission. Depolarisation fraction is de?ned as the ratio of the polarisation fraction of any component between lower to that at higher frequency, and in column 6 we provide the depolarisation fraction (D) of the source components between 4.8 and 8.5 GHz. Column 7: Percentage error in the depolarisation fraction (?(D) in %). Assuming that the emission mechanism is synchrotron, the orientation of the electric ?eld in the radiation has been used to infer the orientation of the magnetic ?eld in the plasma and we provide the direction of this magnetic ?eld (θ) and the error in this measurement (?θ) in columns 8 & 9 respectively. Column 10: Reduced Chi-square (χ2 ) of the ?t of Equation 1 to the measured polarisation angles. We show an example of bad ?t (χ2 =17) in Fig. 1, and one example of good ?t (χ2 =0.2) in Fig. 2. Column 11: Measured polarisation angles at different frequencies. The observed frequencies (in MHz) and the measured polarisation angles (in degrees) are tabulated in pairs, and each frequency, polarisation angle pair are separated by commas. The source G359.2?0.8 (Mouse) is a known Galactic nonthermal source. Since this source is known to be within 5 kpc from the Sun (Uchida et al. 1992), the RM towards this object is expected to be quite small. To check if observations con?rm its low RM, we observed this source. From Table 6, its RM is indeed measured to be very small (?5 ±18 rad m?2 ). However, our samples are selected to measure the RM introduced by the GC region, but this source only samples the local ISM, and its RM is not used in any further analysis. 3.1 Accuracy of the spectral index measurements
200
180
160
140 Polarisation angle (°)
120
100
80
60
40 .0010
.0015
.0020
.0025
.0030
.0035
.0040
.0045
λ2 (m2)
Figure 1. An example of bad ?t of Equation 1 to the measured polarisation angles vs. square of wavelength plot (reduced χ2 =17). The polarisation angles are measured towards the source G358.002?0.636.
The errors in the derived spectral indices depend on the accuracies of the ?ux densities at different frequencies. One of the drawbacks of a Fourier synthesis array is that if a source is resolved on the shortest interferometer baseline, its ?ux density will most likely be underestimated in the image. In the GC region, where the sky density of sources is high and emission at various size scales may co-exist, confusion could be a signi?cant source of errors in imaging and hence in ?ux density estimates. Because our radio observations are performed at relatively high frequencies, the contribution from extended Galactic synchrotron background is negligible. Additionally, most of the sources in our sample have small angular sizes and, therefore, the problem of missing ?ux density should be minimal. The ATCA and VLA observations were both made using a single array at both the frequencies. Since problem of any missing ?ux density increases with increase in observing frequency, this might result in an underestimation of the source spectral index. We have detected extended emission of up to ~10 scale in our 4.8 GHz images of G353.410?0.360, G355.424?0.809, G355.739+0.131, G356.905+0.082, G358.149?1.675, G358.643?0.034, G359.2?0.8 (Mouse), G359.717?0.036, G0.313+1.645 and G5.791+0.794. To examine for any missing ?ux density at 8.5 GHz, we ?rst restricted the Fourier Transform of the CLEAN components of the 4.8 GHz images to the uv-range of the 8.5 GHz visibilities. A comparison of the corresponding images with the original 4.8 GHz images (without the restriction in visibility coverage) shows that except for G353.410?0.360, G355.739+0.131, G356.905+0.082, G358.643?0.034, G358.149?1.675, G359.2?0.8 (Mouse) and G359.717?0.036, the missing ?ux density is less than 10% of the total ?ux density, and the corrsesponding error in their spectral
150
100
Polarisation angle (°)
50
0
?50 .0010
.0015
.0020
.0025 .0030 λ2 (m2)
.0035
.0040
.0045
Figure 2. An example of good ?t of Equation 1 to the measured polarisation angles vs. square of wavelength plot (reduced χ2 =0.2). The polarisation angles are measured towards the source G356.567+0.869.
c 0000 RAS, MNRAS 000, 1–24

Extragalactic sources towards the Galactic Centre
indices between 8.5 and 4.8 GHz is less than 0.25. Among the above 7 sources, 4 have been identi?ed as HII regions. The spectral indices between 8.5 and 4.8 GHz of the 2 remaining extragalactic sources G356.905+0.082 and G358.149?1.675 and the Galactic non-thermal source G359.2?0.8 (Mouse) (Table 3) have been measured only for the compact components (e.g., core and hot spots). For other sources, the error in the measured ?ux densities are expected to be about 5%, and the corresponding error in their spectral indices between 8.5 and 4.8 GHz is about 0.1. Owing to extended emission and enhanced source confusion near the GC, images made from radio interferometers and with sparse spatial frequency coverage suffer from systematic errors. To estimate the errors in the source ?ux densities in the GPS and Texas survey, we compared the 1.4 GHz ?ux densities of our sample sources as measured by the GPS and the NVSS and found that the differences in ?ux density measurements were about 20 per cent. 20% differences in ?ux density contributes an error of about 0.15 in the measured spectral index between 4.8 and 1.4 GHz. We also compared the ?ux densities of the 12 sources which are detected in both the Texas survey and in the 330 MHz VLA GC image (LaRosa et al. 2000) and noticed that the difference is almost a factor of two for six of these sources. The errors in the ?ux density measurents from the GC image are expected to be relatively smaller and, therefore, if the 0.3 GHz ?ux density of a source is taken from the Texas survey, an error ~0.5 can occur in its spectral index measurement between 1.4 and 0.3 GHz. We note that other than the missing ?ux density problem, there are several other systematic errors which could lead to erroneous measurement of spectral indices. One of these errors is source variability, which we discuss below. 3.2 Effect of source variability
5
tially from variability. Among these sources G1.028?1.110, G1.035+1.559, G359.604+0.306, G359.717?0.036 and G359.993+1.591 are extended (more than few arc seconds in angular size). Consequently, their variability timescale will be many years, and they are not considered to be variable in this paper. Among the rest of the sources, G357.865?0.996, G359.388+0.460, G0.537+0.263, G359.911?1.813, G2.143+1.772 were observed with ATCA on days, where certain frequency band was common to both the epochs. On comparing the ?ux densities of these sources in the same band (with appropriate correction of ?ux densities from their measured spectral indices due to change of frequency), from both the observing days, it was found that only the ?ux density of the source G357.865?0.996 has changed by more than 10%. Unfortunately, such a method could not be applied for the remaining 2 sources G358.002?0.636 and G359.844?1.843. Since, G359.844?1.843 is a steep spectrum source (Table 2), the emission from it is likely to be originated from extended region (e.g., from jets), and the variability timescale is large. However, G358.002?0.636 is a rather ?at spectrum source (core dominated), and could be variable. We note that the ?t of Equation 1 to its polarisation angles is bad (Reduced χ2 =17, Table 6), and one possible reason for this is source variability. Consequently, the measured RM of G357.865?0.996 and G358.002?0.636 is excluded from the sample used to derive statistical estimates of the RM introduced by the GC region. We do not consider the effect of variability on the spectral indices of sources estimated from other catalogues (i.e., other than α8.5/4.8 ). 3.3 Contribution of the intrinsic Faraday rotation to the measured RM
Estimation of source spectral indices and the RM requires multifrequency observations. Most of our multifrequency observations were separated by a time period, which varies from a few days to an year or two. Any source variability in these timescale will affect the measured spectral indices and possibly the measured RM. However, we note that the variability of the extragalactic sources at frequencies higher than a few GHz is often intrinsic in nature (Wagner & Witzel 1995) and in some cases caused by interstellar scintillation (ISS) (Lovell et al. 2003). The typical variability timescale for intrinsic variability is from a few hours to years (Wagner & Witzel 1995), and from hours to months in the case of ISS (Lovell et al. 2003). However, only the core dominated objects with ?at spectrum (α > ?0.5) can show signi?cant variability in timescale of days or less (Wagner & Witzel 1995). Among the sources observed, only G356.905+0.082, G357.865?0.996, G358.002?0.636, G0.537+0.263, G3.928+0.253 falls into this category. Among them, the multifrequency observations of G356.905+0.082 and G3.928+0.253 were separated by only 2 days, and the probability of signi?cant variability at this timescale is believed to be low. As described below, G357.865?0.996 is variable, G0.537+0.263 does not appear to be variable, and we do not have data to check for variability of G358.002?0.636. We note that variability in timescale of few hours could not be identi?ed for any of our sources. We identify 12 sources from Sect. 2, G357.865?0.996, G358.002?0.636, G359.388+0.460, G359.604+0.306, G359.717?0.036, G359.844?1.843, G359.911?1.813, G359.993+1.591, G0.537+0.263, G1.028?1.110, G1.035+1.559, G2.143+1.772, towards which our observations were separated upto 2 years, and their measured properties could suffer substanc 0000 RAS, MNRAS 000, 1–24
When the polarised emission from the source reaches the observer, rotation of the polarisation angle could occur (i) within the source, (ii) in the Inter Galactic Medium (IGM) or (iii) in the ISM of the Galaxy. Compared to the ISM of our Galaxy, the electron density of the IGM is very small, and consequently the Faraday rotation introduced by the IGM is negligible. However, if the synchrotron electrons are mixed with thermal electrons at the source, or, if there is an intervening galaxy, the ISM of which introduces RM, or if there is cluster of galaxies along the line of sight, there can be Faraday rotation introduced outside our Galaxy. As discussed by Gardner & Whiteoak (1966); Kronberg et al. (1972); Vallee (1980), the polarisation angle could deviate from the λ2 law due to the following three mechanisms. (i) If the synchrotron optical depth becomes signi?cant at some frequency, the polarisation direction makes a transition from parallel to perpendicular to the projected magnetic ?eld. (ii) If there are multiple unresolved emission components with differing spectral indices and polarisation characteristics, it can cause complex wavelength dependent variations in polarisation angle. (iii) If there are signi?cant gradients in Faraday rotation across or through the emission region of the source, then also polarisation angle can have complex dependence on the observing wavelength. The polarisation angles of the source G358.002?0.636 deviates signi?cantly from the λ2 law, and other than source variability (Sect. 3.2), it could have been caused by one of the above processes. In the case of Faraday rotation outside the Galaxy, the Faraday screen is likely to be located several orders of magnitude farther away than the GC ISM. As a result, emission from different parts of the source is viewed within one synthesised beam, the linear scale of which is much larger than what is sampled in our ISM. At such length scales (~1 kpc), the magnetic ?eld within the in-

6
Subhashis Roy, A. Pramesh Rao & Ravi Subrahmanyan
tervening Faraday screen is likely to be uncorrelated. As a result, there is differential Faraday rotation within the beam, which gives rise to source depolarisation. From the data, the RM towards the source G358.917+0.072 is found to be the highest with a measured value of 4768 rad m?2 , and it shows a high depolarisation fraction (0.3 between 4.8 and 8.5 GHz), which is likely to be caused by differential Faraday rotation (Kronberg et al. 1972). Following the arguments given above, if the reduced χ2 of the ?t is greater that 4.6, the probability of occurrence of which is less than 1% (Bevington 1969) or any of the source component shows a depolarisation fraction of less than 0.6 (Table 6) between 4.8 and 8.5 GHz, we suspect that there is signi?cant RM introduced outside the Galaxy and the RM towards those components have not been used any further in this or in deriving the properties of the Faraday screen in Paper II. We note that the intrinsic RM of most of the extragalactic sources are quite small ~ 10 rad m?2 (SimardNormandin & Kronberg 1980) and the RMs measured from our sample is quite high (~ 1000 rad m?2 ), and consequently the RM introduced outside the Galaxy should have little effect on the RMs of most of the sources in our sample.
c 0000 RAS, MNRAS 000, 1–24

Table 2: Measured parameters of the polarised sources from the ATCA data
Source α8.5/4.8 ?1.2 ?1.1 EG–SR ?0.9 ?0.6 ?1.0 ?1.1 ?1.0 ?1.5 ?1.6 ?1.0 ?1.0 ?0.4 ?1.4 ?0.9 3 1.6 4 14 12 ?0.6 ?0.9 149 ?1.2 ?0.8 13 11 10 16 ?0.8 ?0.6 ?0.26 ?1.05 ?0.65? ?0.2 ?0.2 ?0.9 ?0.66 ?0.6 ?0.55 (GC) ?0.8 71 2.4×0.9, 153 1.3×0.0, 142 23 40 79 26 45 121 1.6 6 6 24 0.64 ?1.1 ?1.1 ?1.2 0.0 2.3×0.0, 17 1.7×0.0, 85 3.7×2.6, 119 50 02 02 67 02 09 0.44 ?0.8 ?1.0 ?0.73 ?1.0 (GC) EG–U EG–D 17 07 11 32 08 21 ?0.7 ?0.1 ?1.3 ?0.55? ?0.65 ?0.7 ?0.8 ?0.9 (i) ?0.8 ?0.5 ?0.6(i) ?1.1 (GM) EG–T ?1.0? ?0.8 (i) α4.8/1.4 α1.4/0.3 N S E C W 79.2 5.6 11 E W N S 14 11 7 1 74 1.5 E W C C C C C E W E C W C N S 17 52 22.51 17 52 22.81 ?28 37 34.1 ?28 37 42.1 17 45 52.48 ?28 20 26.6 17 40 00.27 17 40 00.65 17 40 01.08 ?27 48 11.6 ?27 48 15.9 ?27 48 22.0 3.4×2.1, 144* 2.3×0.9, 155* 2.3×0.0, 131* 2.5×0.0, 175 17 39 26.49 17 39 26.94 ?28 06 18.2 ?28 06 12.6 1.2×0.0, 176 1.5×0.0,46 17 52 33.1 ?29 56 44.8 0.6×0.0, 01 132 17 52 30.91 ?30 01 06.6 1.4×1.0, 74 154 181 17 42 21.47 ?29 13 00.9 0.5×0.0, 178 39 41 17 42 44.00 ?29 49 16.0 0.3×0.0, 2 99 101 17 43 17.87 ?30 58 18.7 0.4×0.0, 165 277 283 17 42 27.41 17 42 27.96 ?32 22 08.3 ?32 22 15.3 3.4×2.1, 141 2.0×1.8, 102 19 24 30 35 17 33 44.85 17 33 45.82 ?31 22 33.6 ?31 22 51.2 6.1×4.4, 119 3.4×1.3, 140 11 21 31 46 17 29 42.63 17 29 43.80 ?31 18 02.1 ?31 18 05.6 3.1×1.0, 81 2.4×0.7, 101 21 44 38 69 17 35 39.74 17 35 40.15 17 35 40.40 ?32 18 54.2 ?32 18 57.0 ?32 18 59.0 2.3×1.2, 103* 0.9×0.0, 24* 1.3×1.1, 107* 30 29 36 42 34 38 34.7 7 9 6 0.8×0.0, 146 4.3×1.6, 0 61 14
Cmp
Sma j × Smin , PA Sp Notes St mJy 67 13 S5 mJy 52.6 % Poln. 2.6 8
354.740+0.138
RA (J2000) 17 31 56.99 17 31 57.00
DEC (J2000) ?33 18 34.1 ?33 18 41.6
c 0000 RAS, MNRAS 000, 1–24
356.000+0.023
356.161+1.635
EG–D
356.567+0.869
?0.9 (i)
EG–D
356.719?1.220
?0.9 (i)
EG–D
358.002?0.636
?0.3 ?1.2 (GC) ?0.4 (GC) ?0.9 (GC) ?0.9 (GC) ?0.5 (GC)
EG–U EG–U EG–U EG–SR EG–U EG–D
358.917+0.072
359.388+0.460
359.844?1.843
359.911?1.813
359.993+1.591
0.313+1.645
EG–T
0.537+0.263
Extragalactic sources towards the Galactic Centre
1.028?1.110
1.035+1.559
?0.86 (GC)
EG–T
7
N C S
17 42 01.90 17 42 03.42 17 42 05.22
?27 13 10.3 ?27 14 16.3 ?27 15 10.2

8
Source α8.5/4.8 α4.8/1.4 α1.4/0.3
Cmp
RA (J2000) 17 53 55.37 17 53 59.21 17 43 51.24 17 49 31.68 17 49 32.30 13 ?0.84 ?0.8 ?1.0 ?0.8 ?0.84 (i) EG–D 18 01 44.34 18 01 45.97 18 01 47.04 17 58 11.76 17 58 13.00 18 10 ?0.8 18 00 31.50 ?24 47 21.3 0.7×0.5, 68*; 0.6×0.4, 84* 24 31 62 02 85 04 4 33 6 45 ?0.4 ?1.2 ?0.8 66 89 ?25 38 49.1 ?25 38 44.7 1.0×0.0, 165 1.7×0.5, 63 08 13 09 17 ?0.8 ?1.5 ?26 10 43.6 ?26 10 17.6 ?26 10 02.0 1.8×0.7, 25 1.4×0.6, 22 6.7×4.2, 16 29 06 04 44 06 16 ?1.4 ?0.7 <-2.0 ?0.5 ?1.3 (i) ?24 46 58.5 ?24 46 45.7 1.7×0.0, 163 52 01 71 03 4 ?0.8 ?0.7 ?0.8 (i) EG–D ?26 10 59.6 0.8×0.4, 150 45 48 4.5 EG–U ?1.5 ?1.25 ?1.1 ?28 15 53.8 ?28 17 21.3 1.8×0.8, 109 0.7×0.0, 13 30 23 56 25 17 12 EG–D ?1.7 ?1.0 ?0.43 ?0.7 ?1.3 (i)
DEC (J2000)
Sma j × Smin , PA Sp St mJy S5 mJy % Pol. Notes
1.505?1.231
E W C S N S C N E W C
2.143+1.772
4.005+1.403
4.188?1.680
FR-II
4.256?0.726
5.260?0.754
?0.45
EG–U
5.358+0.899 W S N 18 03 59.28 18 03 59.43 ?24 56 45.6 ?24 56 30.8 5.3×1.0, 01 17 54 27.78 ?23 52 36.2
E
17 54 27.34
?23 52 33.8 1.4×0.0, 8*; 1.7×0.5, 7* 0.8×0.2, 40*
?0.85 ?0.9 ?0.6 ?0.8 ?0.8 ?1.1 ?1.0? ?0.9
?0.95 (i)
EG–T
Subhashis Roy, A. Pramesh Rao & Ravi Subrahmanyan
5.511?1.515
?1.1
EG–D
6.183?1.480
?1.2 (i) 14
N 18 05 18.04 ?24 20 26.7 3.6×1.6, 09 08 10 S 18 05 18.04 ?24 20 45.5 3.6×0.9, 08 19 24 Note: In Table 2, 3, 4 and 5 of this paper, the symbols shown below indicate the following ‘*’ – size of the object estimated from 8.5 GHz map s – Spectral index estimated by dividing images made at different frequencies G – Galactic source EG – Extragalactic source U – Unresolved source SR – Slightly resolved D – Double source T – Tripple C+E – Flat spectrum core with extended emission. M – Multiple sources in the ?eld ? – 1.4 GHz GPS ?ux density differs from NVSS by more than 20% (N) – 1.4 GHz ?ux density taken from NVSS (L) – Flux density taken from Lazio et al. (1999) ** – 1.4 GHz ?ux density unknown
EG–D
c 0000 RAS, MNRAS 000, 1–24

RA DEC Sma j × Smin , PA Sp (J2000) (J2000) (GC) – P band ?ux density taken from (LaRosa et al. 2000) (GM) – P band ?ux density taken from Roy & Rao (2002) (GM1) – P band ?ux density taken from S. Bhatnagar (private communication) (i) – Spectral index estimated from integrated ?ux densities of components Cmp α8.5/4.8 α4.8/1.4 α1.4/0.3 St mJy S5 mJy % Pol. Notes
Source
c 0000 RAS, MNRAS 000, 1–24
Table 3: Measured parameters of the polarised sources from VLA data
Source α8.5/4.8 ?0.9 ?1.2 ?1.4 ?1.0 (N) ?1.0 ?1.0 ?0.9 α4.8/1.4 0.4×0.2, 165 0.8×0.5, 71 0.5×0.4, 176 5 20 12 32 1.4 3 ?0.1 0.2 0.4? ?1.0 s ?1.0 s ?0.8 s 2.7×1.3, 57 1.5×1.0, 167 1.5×1.1, 176 3.6×0.4, 179 0.1×0.0, 22 369 370 40 43 6.5 1.0 11 22 1.1 24 6.8 18.2 8.2 20.2 98
Cmp
Sma j × Smin , PA Sp S5 mJy St mJy 103 % Poln. 0.6
α1.4/0.3 ?0.7 ?0.9 (i)
Notes EG–U EG–D
353.462?0.691 17 29 36.26 17 29 36.64 17 37 32.54 17 37 32.07 17 37 31.40 17 37 43.79 17 44 23.58 ?31 16 36.0 ?31 31 13.7 ?33 14 36.7 ?33 14 50.7 ?33 15 10.4 ?32 53 52.1 ?32 53 51.7
C
RA (J2000) 17 31 55.40
DEC (J2000) ?34 49 59.9
354.815+0.775
E W
355.424?0.809
N C S
?0.9
FR-II
356.905+0.082
C
?0.4 (GM)(i) ?0.5 (i)
FR-I C+E
357.865?0.996 (1741?312) 17 47 45.32 17 47 48.13 17 47 50.13 ?31 23 37.4 ?31 23 15.2 ?31 23 03.9 2.1×1.4, 124 0.3×0.0, 18 0.7×0.4, 60 8.9 7.4 13 57 7.6 98 31 5.2 8.9 4.5 6.9 5.1 3.2×2.2, 20 11.3 22 14.8 24.5 20.4 20.2
C
358.149?1.675
E C W
25 12 13 21 26
?1.0 s 0.1 s ?0.8 s ?0.9 ?0.1 ?0.8
?1.0 (N)
?0.77
FR-II
358.156+0.028
?0.6 30 1.5 4.2 ?0.86 ?0.6 s ?0.7 s 16 20 13 ?0.6 ?0.7 ?0.4 (i)
N C S 17 47 46.36 17 47 47.54 17 39 12.44 17 39 13.46 17 47 15.78 ?29 58 01.0 ?28 47 02.7 ?28 46 53.7 ?30 28 17.8 ?30 28 11.7 1.5×0.9, 27 2.6×1.3, 22 2.2×1.2, 33 2.8×1.5, 40
17 41 02.91 17 41 02.90 17 41 02.67
?30 29 22.1 ?30 29 27.3 ?30 29 36.1 0.5×0.5, 113 0.5×0.0, 04 1.5×0.7, 39 23.7 1.7 3.0
?1.0 (GC)
FR-II
358.930?1.197
E W
?1.4 (GC)
EG–D
359.392+1.272
E W
?0.9 (N)
?0.76 (GC)
FR-II
Extragalactic sources towards the Galactic Centre
359.2?0.8 (Mouse) 359.604+0.306 17 43 28.39 17 43 28.77 17 43 29.26
C
0.3 ** 12
?0.3 (GC) (i) ?0.8 (GC) (i) (0.3/4.8) 2.8×1.0, 77 0.7×0.1, 81 1.4×0.9, 14 2.6 2.5 6.7 7.7 2.7 10.8
G FR-II
9
E C W
?29 06 47.6 ?29 06 47.0 ?29 06 47.1
? 3.3 7.6
?1.0 ?0.1 ?1.0

10
Source α8.5/4.8 α4.8/1.4 α1.4/0.3
Cmp
RA (J2000) 17 48 27.73 17 48 28.58 17 48 29.39 15 5 34 11 ?1.3 ?1.3 ?1.3 ?1.0 ?1.1 s ?1.1 s ?1.2 ?1.0 ?0.8 (i) ?0.86 ?0.6 ?1.0?(i) ?0.9 (GC) ?0.8 ?0.8 ?1.3 ?0.5 (L) ?0.4 (L) ?1.0 (L) ?0.26 (GC) FR-II 17 44 36.22 17 44 36.84 17 44 37.08 17 42 27.93 17 42 28.25 17 45 47.67 17 45 47.17 17 48 29.18 17 48 29.09 17 54 38.31 17 51 51.26 ?25 24 0.0 0.0×0.0, 0 446 446 2.6 ?26 13 50.9 1.7×0.9, 168 4.8 10.3 6 20 ?25 54 15.8 ?25 54 18.0 1.1×0.9, 37 0.6×0.5, 11 13.8 21.3 16.7 25.4 6 8 ?26 49 05.6 ?26 49 21.5 1.8×1.3, 176 0.9×0.0, 08 7.5 9.8 20.2 16.4 8 23 ?28 02 08.5 ?28 02 10.9 0.4×0.1, 130 0.7×0.1, 97 13.5 07.5 14.8 10.0 ?28 57 14.9 ?28 57 11.5 ?28 57 09.7 1.7×0.0, 78 0.2×0.0, 11 1.5 7.9 41 2.2 8.1 46 ?29 39 10.3 ?29 39 10.9 ?29 39 11.8 4.0×1.9, 67 0.4×0.0, 52 5.5×2.5, 90 2.4 0.7 2.3 23 0.7 23.6 23 ** FR-II? ?1.4 ?1.5 ?1.7 ?0.75 (GC) (0.3/4.8)
DEC (J2000)
Sma j × Smin , PA Sp St mJy S5 mJy % Pol. Notes
359.710?0.904
E C W
359.871+0.179
E C W
0.404+1.061
E W
EG–D
1.826+1.070
N S
?0.9 (i)
FR-II
2.922+1.028
N S
?0.94
EG–D
3.347?0.327
C
?1.1? ?1.0
?1.2 (GM) 0.1 (GM1)
EG–SR EG–U
3.745+0.635 (1748?253) 17 58 58.66 17 58 59.75 17 53 43.37 17 55 33.41 ?24 43 30.6 1.2×1.1, 143 26 46 ?25 26 10.3 0.2×0.0, 178 120 122 67.9 33.2 ?26 20 02.1 ?26 19 56.8 0.4×0.0, 27 0.0,0.0, 00 11.3 2.8 12.9 3.1 10
C
Subhashis Roy, A. Pramesh Rao & Ravi Subrahmanyan
3.748?1.221
E W
?1.3 0.1 2 7 0.2 ?1.3
?1.0?(N) (i)
?0.77 (GM)
EG–D
3.928+0.253
C
** ?1.1?
4.752+0.255
C
0.0 (GM1) (0.3/4.8) ?0.8
EG–U EG–SR EG–T ?1.0?(N) ?0.8
5.791+0.794
E C W 17 55 00.75 17 55 00.80 ?23 22 32.4 ?23 22 52.0 1.5×0.4, 01 3.4×1.2, 119
17 55 48.31 17 55 48.60 17 55 48.82
?23 33 21.9 ?23 33 21.1 ?23 33 20.5 3.1×1.3, 77 1.9×0.0, 77 1.6×1.5, 68
17.7 10.8 12.7 9.2 2.8
64 13.9 49 21.8 12.8
17 17 30 12 24
?1.4 s ?1.0 s ?1.3 s ?1.0 ?1.5
5.852+1.041
N S
?0.9 ?0.75
?1.1 (i)
EG–D
Table 4: Measured parameters of the unpolarised sources from the ATCA data Cmp N Sma j × Smin , PA DEC (J2000) ?34 00 30.0 0.4×0.0, 01 Sp 92 St 91 S5 α8.5/4.8 ?0.8 α4.8/1.4 ?0.8 α1.4/0.3 ?0.6 (i) Notes EG–D
c 0000 RAS, MNRAS 000, 1–24
Source
354.719-1.117
RA (J2000) 17 36 57.84

Source α8.5/4.8 ?1.2 – – – 17 ?0.8 ?0.9 ?1.6 ?1.1 ?1.3 ?0.8 ?1.1 ?1.1? ?1.0 ?0.8 (GC) ?0.4 ?1.0 ?0.9 ?0.8? ?0.5 (GC) ?0.8 ?1.0? ?1.1 (GC) EG–U EG–U EG–U EG–U EG–U EG–U ?0.5 EG–U ?0.4 (GC) ?0.6? EG–U ?0.5 (GC) ?0.8 EG–SR ?0.6 (GM) ?1.1 α4.8/1.4 α1.4/0.3 S C C C C C C C C C 17 51 57.26 ?24 04 24.9 0.9×0.0, 26 51 52 17 57 43.61 ?27 42 02.0 0.6×0.3, 11 46 46 17 56 49.65 ?28 07 37.4 0.7×0.0, 171 60 60 17 43 05.43 ?27 36 05.2 1.3×0.0, 7 43 46 17 40 41.56 ?28 48 10.7 0.0×0.0, 0 35 35 17 42 02.71 ?30 06 41.7 1.0×0.0, 26 25 25 17 40 07.79 ?28 42 03.0 0.4×0.4, 38 113 114 17 40 54.52 ?29 29 50.6 0.3×0.0, 7 44 44 17 41 26.32 ?31 23 30.3 6.0×2.0, 167 49 73 1.2×0.0, 01 06 07
Cmp
RA (J2000) 17 36 57.19
DEC (J2000) ?34 00 37.6
Sma j × Smin , PA Sp St S5 Notes
357.435-0.519
358.982+0.580
c 0000 RAS, MNRAS 000, 1–24
359.568+1.146
358.591+0.046
359.546+0.988
0.846+1.173
1.954-1.702
2.423-1.660
4.898+1.292
Table 5: Estimated parameters of the unpolarised sources from the VLA data Cmp C EX EX C R C C 17 55 07.96 17 54 38.87 ?25 27 30.7 ?24 49 21.7 17 45 05.08 ?29 11 45.0 17 36 38.76 ?29 21 26.4 17 42 29.08 ?30 06 34.6 ~20×20, 0.4×0.0, 17 ~22×20, – 1.0×0.0, 165 0.8×0.3, 10 17 34 34.24 ?32 28 34.3 ~12×10, 28 07 39 12 08 22 2.6×2.1, 51 149 Sma j × Smin , PA Sp St 469 256 169 40 1981 092 25 21 28 S5 155 155 48 α8.5/4.8 0.0 ?0.1 ?1.2 ?0.8 ?1.3 ?0.8 ?1.1 α4.8/1.4 0.1 0.1 0.4 ?0.7 – ?0.8 ?0.9? – ?0.45 ?0.7 α1.4/0.3 Notes G–HII G–HII G–HII EG–U G–HII EG–M EG–SR
Source
353.410-0.360
RA (J2000) 17 30 26.14
DEC (J2000) ?34 41 44.9
355.739+0.131
358.643-0.034
358.605+1.440
359.717-0.036
4.005+0
Extragalactic sources towards the Galactic Centre
4.619+0.288
1
11
2
?ux density of the component near the bottom of its map (Fig. 6) ?ux density of the component near the top of its map (Fig. 6)

12
-33 18 25
Subhashis Roy, A. Pramesh Rao & Ravi Subrahmanyan
G354.740+0.138 IPOL 4800.000 MHZ
G356.000+0.023 IPOL 4800.000 MHZ
30
-32 18 45
DECLINATION (J2000)
35
50 DECLINATION (J2000)
-31 17 50
G356.161+1.635 IPOL 4800.000 MHZ
40
55
DECLINATION (J2000)
55
18 00
19 00
45
05
05
50
10
10
17 31 57.6 57.4 57.2 57.0 56.8 56.6 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 6.1946E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128) 56.4
15
17 35 41.0
40.5 40.0 39.5 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 3.5624E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128)
39.0
17 29 44.5
44.0 43.5 43.0 42.5 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 4.3791E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128)
42.0
G356.719--1.220 IPOL 4800 MHZ -30 58 05
G356.567+0.869 IPOL 4800.000 MHZ
G358.002--0.636 IPOL 4800.000 MHZ
-32 22 00
-31 22 25
10 05 15
30
DECLINATION (J2000)
35 DECLINATION (J2000)
10
40
DECLINATION (J2000)
20
45
15
50
25
55
20 30
23 00
25
05 17 33 46.5 45.5 45.0 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 2.0850E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128) 46.0 44.5
17 42 28.4
28.2 28.0 27.8 27.6 27.4 27.2 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 2.4151E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128)
G359.388+0.460 IPOL 4800.000 MHZ
27.0
26.8
17 43 18.6
18.4 18.2 18.0 17.8 17.6 17.4 RIGHT ASCENSION (J2000) Peak contour flux = 2.7688E-01 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192) Pol line 1 arcsec = 1.2500E-03 JY/BEAM
17.2
17.0
G358.917+0.072 IPOL 4800.000 MHZ
G359.844--1.843 IPOL 4800.000 MHZ -30 00 55
-29 49 05
-29 12 50
10
55
01 00
DECLINATION (J2000)
DECLINATION (J2000)
15
13 00
DECLINATION (J2000)
05
05
20
10
10
25
15
17 42 44.6
44.4 44.2 44.0 43.8 43.6 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 9.9553E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128)
43.4
15 17 42 22.0
21.8 21.6 21.4 21.2 21.0 RIGHT ASCENSION (J2000) Peak contour flux = 3.8831E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192) Pol line 1 arcsec = 1.2500E-03 JY/BEAM
20.8
17 52 31.6
31.4 31.2 31.0 30.8 30.6 RIGHT ASCENSION (J2000) Peak contour flux = 1.5443E-01 JY/BEAM Levs = 3.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192) Pol line 1 arcsec = 1.2500E-03 JY/BEAM
30.4
Figure 3. 4.8 GHz ATCA continuum images of the polarised sources with the polarisation vectors representing the projected electric ?eld superposed on them. Typical rms noise in Stokes I is about 0.23 mJy/beam and about 0.15 mJy/beam in Stokes Q and U. Typical beamsize of these images are ≈6 × 2 .
c 0000 RAS, MNRAS 000, 1–24

Extragalactic sources towards the Galactic Centre
G359.911--1.813 IPOL 4800.000 MHZ
G0.313+1.645 IPOL 4800.000 MHZ
13
-29 56 35
G359.993+1.591 IPOL 4800.000 MHZ
-27 48 00
-28 06 06 08 10 12 14 16 18 20 25 22 DECLINATION (J2000) 10 05
40 DECLINATION (J2000)
45
DECLINATION (J2000)
15
20
50
55
24 26 30
17 52 33.8
33.6 33.4 33.2 33.0 32.8 RIGHT ASCENSION (J2000) Peak contour flux = 1.3186E-01 JY/BEAM Levs = 3.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192) Pol line 1 arcsec = 1.2500E-03 JY/BEAM
32.6
32.4
17 39 27.4
27.2 27.0 26.8 26.6 26.4 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 1.3038E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128)
26.2
17 40 01.5 01.0 00.5 39 60.0 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 1.7530E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128)
G1.035+1.559 IPOL 4800.000 MHZ
G0.537+0.253 IPOL 4800.000 MHZ -28 20 15
-28 37 25
G1.028--1.110 IPOL 4800.000 MHZ
-27 13 00
30
30
20
DECLINATION (J2000)
DECLINATION (J2000)
DECLINATION (J2000)
35
14 00
25
40
30
30
45
15 00
35
50
30
40 17 45 53.2
52.8 52.6 52.4 52.2 RIGHT ASCENSION (J2000) Peak contour flux = 7.0774E-02 JY/BEAM Levs = 4.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192) Pol line 1 arcsec = 1.2500E-03 JY/BEAM
53.0
52.0
51.8
17 52 23.4
22.8 22.6 22.4 22.2 RIGHT ASCENSION (J2000) Peak contour flux = 4.0007E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192) Pol line 1 arcsec = 1.2500E-03 JY/BEAM
23.2
23.0
22.0
17 42 06
05 04 03 02 01 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 5.0230E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
G2.143+1.772 IPOL 4800.000 MHZ -26 10 45
G4.005+1.403 IPOL 4800.000 MHZ
G1.505--1.231 IPOL 4800.000 MHZ -28 15 30
-24 46 40
45
50
45
16 00
55 DECLINATION (J2000)
15
DECLINATION (J2000)
30
11 00
DECLINATION (J2000)
50
55
45
05
47 00
17 00
10
15
05
30
10
15
17 54 00 53 59 58 57 56 RIGHT ASCENSION (J2000) Peak contour flux = 2.9948E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192) Pol line 1 arcsec = 1.2500E-03 JY/BEAM 55 54
17 43 51.8
51.6 51.4 51.2 51.0 50.8 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 4.5318E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
50.6
17 49 32.5 32.0 31.5 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 5.1955E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
31.0
Figure 3. Continued
c 0000 RAS, MNRAS 000, 1–24

14
Subhashis Roy, A. Pramesh Rao & Ravi Subrahmanyan
G5.260--0.754 IPOL 4800.000 MHZ
G4.188--1.680 IPOL 4800.000 MHZ
G4.256--0.726 IPOL 4800.000 MHZ
-26 10 00
-24 47 10
-25 38 35
15 DECLINATION (J2000)
DECLINATION (J2000)
DECLINATION (J2000)
15
40
20
45
30
25
50
30
45
55
35
18 01 47.5
47.0 46.5 46.0 45.5 45.0 44.5 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 2.9239E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
44.0
39 00 17 58 13.5
12.5 12.0 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 1.3449E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
13.0
11.5
18 00 32.2
32.0 31.8 31.6 31.4 31.2 31.0 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 6.5684E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
30.8
30.6
G5.511--1.515 IPOL 4800.000 MHZ
G6.183--1.480 IPOL 4800.000 MHZ
-24 56 25
-24 20 20
30
25
35
30 DECLINATION (J2000)
G5.358+0.899 IPOL 4800.000 MHZ
DECLINATION (J2000)
40
-23 52 25
35
45
30 DECLINATION (J2000)
40
50
35
45
40
55
50
45
57 00
55
18 03 60.0
17 54 28.2 27.8 27.6 27.4 27.2 27.0 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 3.1390E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192) 28.0 26.8
59.6 59.4 59.2 59.0 58.8 58.6 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 6.2588E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
59.8
18 05 18.6
18.4 18.2 18.0 17.8 17.6 17.4 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 1.2500E-03 JY/BEAM Peak flux = 1.9096E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
Figure 3. Continued
c 0000 RAS, MNRAS 000, 1–24

Extragalactic sources towards the Galactic Centre
G355.424--0.809 IPOL 4760.100 MHZ -33 14 35
15
40
45
DECLINATION (J2000)
G353.462--0.691 IPOL 4760.100 MHZ -34 49 55
50
56 57 58 DECLINATION (J2000)
-32 53 47 48 49 DECLINATION (J2000) 50 51 52 53 54
G354.815+0.775 IPOL 4760.100 MHZ
55
15 00
59 50 00 01 02 03
05
10
55
04 05 17 31 55.7 55.5 55.4 55.3 55.2 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 9.8027E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 55.6 55.1
56 17 29 36.9 36.6 36.5 36.4 36.3 36.2 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 1.8204E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 36.8 36.7 36.1 36.0
15 17 37 32.8 32.6 32.4 32.2 32.0 31.8 31.6 31.4 31.2 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 1.0686E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
G358.156+0.028 IPOL 4760.100 MHZ -30 29 18
G356.905+0.082 IPOL 4760.100 MHZ -31 30 50
20
55
22
31 00
24
05 DECLINATION (J2000)
DECLINATION (J2000) 26
10
G358.149--1.675 IPOL 4760.100 MHZ -31 23 00 05 DECLINATION (J2000) 10 15 20 25 30 35
28
15
30
20
32
25
34
30
36
35 17 37 45.0 44.5 44.0 43.5 43.0 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 4.1907E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 42.5
40 17 47 50 49 48 47 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 1.3556E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 46 45
38
17 41 03.2
03.0 02.8 02.6 02.4 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 2.3702E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
G359.2-0.8 IPOL 4760.100 MHZ -29 57 40 -28 46 50 -30 28 06 08 10 DECLINATION (J2000) 12 14 16 18 20 22 24 17 47 47.8 47.2 47.0 46.8 46.6 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 8.9001E-03 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 47.6 47.4 46.4 46.2 10 G358.930--1.197 IPOL 4760.100 MHZ 45 52 50 DECLINATION (J2000) DECLINATION (J2000) 54 56 58 47 00 02 04 06 15.0 14.5 14.0 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 1.6453E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 15.5 13.5 17 39 13.6 13.4 13.2 13.0 12.8 12.6 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 6.9187E-03 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 12.4 12.2 G359.392+1.272 IPOL 4760.100 MHZ
55
58 00
05
15 17 47 16.0
Figure 4. 4.8 GHz VLA continuum maps of the polarised sources with the polarisation vectors superposed on them. Typical rms noise in Stokes I is about 90 μJy/beam and about 75 μJy/beam in Stokes Q and U. Typical beamsize of these images are ≈2 × 1.5 .
c 0000 RAS, MNRAS 000, 1–24

16
Subhashis Roy, A. Pramesh Rao & Ravi Subrahmanyan
-28 57 06 G359.604+0.306 IPOL 4760.100 MHZ 08 DECLINATION (J2000) G359.710--0.904 IPOL 4760.100 MHZ -29 39 04 DECLINATION (J2000) 06 08 10 12 14 16 29.4 29.2 29.0 28.8 28.6 28.4 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 6.6578E-03 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 28.2 18 17 48 29.5 29.0 28.5 28.0 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 2.4146E-03 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 27.5 18 17 44 37.2 37.0 36.8 36.6 36.4 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 4.1368E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 36.2 10 G359.871+0.179 IPOL 4760.100 MHZ
-29 06 42 DECLINATION (J2000) 44 46 48 50 52 17 43 29.6
12 14 16
G1.826+1.070 IPOL 4760.100 MHZ
-26 49 05
G2.922+1.028 IPOL 4760.100 MHZ -25 54 12
-28 02 05 06 07 DECLINATION (J2000) 08 09 10 11 12 13 14 15 17 42 28.5
DECLINATION (J2000)
G0.404+1.061 IPOL 4760.100 MHZ
10
13 14 15
15
DECLINATION (J2000)
16 17 18 19 20 21 22
20
25
28.4 28.3 27.8 27.7
28.2 28.1 28.0 27.9 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 1.3505E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
17 45 47.8
47.6 47.4 47.2 47.0 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 9.8535E-03 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
17 48 29.5
29.4 29.3 29.2 29.1 29.0 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 2.1305E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
28.9
28.8
-26 13 47
G3.347--0.327 IPOL 4760.100 MHZ
G3.928+0.253 IPOL 4760.100 MHZ -25 26 06
48
07
49
08
DECLINATION (J2000)
50
G3.748--1.221 IPOL 4760.100 MHZ
51
-26 19 55 DECLINATION (J2000) 56 57 58 59 20 00 01 02 03 04
38.5 38.4 38.3 38.2 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 4.8289E-03 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 38.1
DECLINATION (J2000)
09
10
52
11
53
12
54
13
55 17 54 38.6
14
05 17 58 59.8
59.4 59.2 59.0 58.8 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 1.1330E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
59.6
58.6
58.4
17 53 43.6
43.5 43.4 43.3 43.2 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 1.2020E-01 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
43.1
Figure 4. Continued
c 0000 RAS, MNRAS 000, 1–24

Extragalactic sources towards the Galactic Centre
G5.852+1.041 IPOL 4760.100 MHZ
17
-23 22 30
35 DECLINATION (J2000)
G4.752+0.255 IPOL 4760.100 MHZ -24 43 26 27
40
-23 33 14
28 DECLINATION (J2000) 29
G5.791+0.794 IPOL 4760.100 MHZ
16 DECLINATION (J2000) 18 20
45
30 31 32 33 34 35 17 55 33.7 33.6 33.5 33.4 33.3 33.2 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 2.6332E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 33.1
50
22 24 26 17 55 49.2 49.0 48.8 48.6 48.4 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 1.7783E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 48.2 48.0
55
17 55 01.3 01.201.101.000.900.800.700.600.500.4 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak flux = 9.1680E-03 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
G3.745+0.635 IPOL 4885.100 MHZ -25 23 52
-31 16 15
G357.864--0.996 IPOL 4760.100 MHZ
54
20
56
25
DECLINATION (J2000)
58
DECLINATION (J2000)
30
24 00
35
02
40
04
45
06
50
08 17 51 51.7 51.4 51.3 51.2 51.1 51.0 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak contour flux = 4.4563E-01 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 51.6 51.5 50.9 50.8
55 17 44 24.2 24.0 23.8 23.6 23.4 23.2 23.0 22.8 22.6 RIGHT ASCENSION (J2000) Pol line 1 arcsec = 2.5000E-03 JY/BEAM Peak contour flux = 3.6981E-01 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
Figure 4. Continued
c 0000 RAS, MNRAS 000, 1–24

18
Subhashis Roy, A. Pramesh Rao & Ravi Subrahmanyan
BOTH: G358.982+0.580 IPOL 4800.000 MHZ 0 10 20 30 40
BOTH: G354.719-1.117 IPOL 5952.000 MHZ 0 20 40
60
BOTH: G357.435-0.519 IPOL 4800.000 MHZ 0 20
40
BOTH: G358.591+0.046 IPOL 4800.000 MHZ 0 10 20
-34 00 20
-31 23 00
-29 29 30
25
15
DECLINATION (J2000)
DECLINATION (J2000)
30
DECLINATION (J2000)
-30 06 35
45
DECLINATION (J2000)
30
40
35
30 00
45
45
40
24 00
50
15
45 17 36 58.5 58.0 57.5 57.0 RIGHT ASCENSION (J2000) Grey scale flux range= -2.24 76.34 MilliJY/BEAM Cont peak flux = 7.6344E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128)
15 17 41 27.5 27.0 26.5 26.0 25.5 RIGHT ASCENSION (J2000) Grey scale flux range= -0.98 50.17 MilliJY/BEAM Cont peak flux = 5.0169E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 40, 48, 64, 80, 96, 128) 25.0
17 42 03.4
03.2 03.0 02.8 02.6 02.4 RIGHT ASCENSION (J2000) Grey scale flux range= -4.46 27.72 MilliJY/BEAM Cont peak flux = 2.7716E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128)
02.2
02.0
17 40 55.4
55.2 55.0 54.8 54.6 54.4 54.2 54.0 RIGHT ASCENSION (J2000) Grey scale flux range= -0.93 43.20 MilliJY/BEAM Cont peak flux = 4.3203E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 40, 48, 64, 80, 96, 128)
53.8
53.6
BOTH: G359.546+0.988 IPOL 4800.000 MHZ 0 10 20
30
BOTH: G359.568+1.146 IPOL 4800.000 MHZ 0 50 100
BOTH: G0.846+1.173 IPOL 4840.000 MHZ 0 10 20
30
40
-28 48 00
-28 41 30
-27 35 45
36 00
05 DECLINATION (J2000)
45
15 DECLINATION (J2000)
DECLINATION (J2000)
10
42 00
30
45
15
15
37 00
20
30
15
25 17 40 42.4
30
41.8 41.6 41.4 41.2 41.0 RIGHT ASCENSION (J2000) Grey scale flux range= -2.63 35.56 MilliJY/BEAM Cont peak flux = 3.5557E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128)
42.2
42.0
40.8
17 40 09.0
08.0 07.5 RIGHT ASCENSION (J2000) Grey scale flux range= -1.2 112.3 MilliJY/BEAM Cont peak flux = 1.1231E-01 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 40, 48, 64, 80, 96, 128)
08.5
07.0
17 43 11
10 09 08 07 06 RIGHT ASCENSION (J2000) Grey scale flux range= -0.93 41.66 MilliJY/BEAM Cont peak flux = 4.1658E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
05
04
BOTH: G1.954--1.702 IPOL 4840.000 MHZ 0 20 40
BOTH: G2.423--1.660 IPOL 4840.000 MHZ 0 10 20 30
BOTH: G4.898+1.292 IPOL 4840.000 MHZ 0 20
40
40
-24 04 00
-27 41 45
-28 07 20
05
50
25
10
15
DECLINATION (J2000)
DECLINATION (J2000)
30 DECLINATION (J2000)
55
20
35
42 00
25
40
05
30
45
35
10
40
50
15
55
45
50
17 56 50.5 50.0 49.5 49.0 RIGHT ASCENSION (J2000) Grey scale flux range= -0.65 58.25 MilliJY/BEAM Cont peak flux = 5.8255E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
17 57 44.5
43.5 43.0 RIGHT ASCENSION (J2000) Grey scale flux range= -0.96 44.94 MilliJY/BEAM Cont peak flux = 4.4937E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
44.0
17 51 58.5
58.0 57.5 57.0 56.5 RIGHT ASCENSION (J2000) Grey scale flux range= -0.73 50.35 MilliJY/BEAM Cont peak flux = 5.0346E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 128, 160, 192)
56.0
Figure 5. 4.8 GHz continuum images of the unpolarised sources observed with the ATCA. Typical rms noise in Stokes I is about 0.23 mJy/beam, and beamsize ≈6 × 2 .
c 0000 RAS, MNRAS 000, 1–24

Extragalactic sources towards the Galactic Centre
BOTH: G358.643--0.034 IPOL 4760.100 MHZ 0 2 4 6
19
-30 06 05 BOTH: G355.739+0.131 4760.100 MHZ 0 10 BOTH: G353.410--0.360 IPOL 4760.100 MHZ 0 50 100 20
10
-32 28 20
15
-34 41 00 25 DECLINATION (J2000) 15 DECLINATION (J2000) DECLINATION (J2000)
20
25
30
30
30
35
45
35
40
42 00
45
15
40
50
17 30 33
32 31 30 29 28 27 RIGHT ASCENSION (J2000) Grey scale flux range= -8.3 146.8 MilliJY/BEAM Cont peak flux = 1.4680E-01 JY/BEAM Levs = 3.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
26
25
17 34 35.0
34.8 34.6 34.4 34.2 34.0 33.8 33.6 RIGHT ASCENSION (J2000) Grey scale flux range= -0.58 28.44 MilliJY/BEAM Cont peak flux = 2.8437E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
33.4
33.2
55 17 42 30.5
30.0 29.5 29.0 28.5 RIGHT ASCENSION (J2000) Grey scale flux range= -1.817 7.507 MilliJY/BEAM Cont peak flux = 7.5069E-03 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
28.0
27.5
BOTH: G359.717--0.036 IPOL 4760.100 MHZ 0 5 10
-29 10 15
BOTH: G358.605+1.440 IPOL 4760.100 MHZ 0 10 20
30
30
BOTH: G4.005+0 IPOL 4760.100 MHZ 0 2 4
-29 21 20
6
8
45 DECLINATION (J2000)
22
11 00
-25 27 30
DECLINATION (J2000)
24
26
15
DECLINATION (J2000)
45
28
30
30
28 00
45
32
15
34 17 36 39.2 39.1 39.0 38.9 38.8 38.7 38.6 38.5 RIGHT ASCENSION (J2000) Grey scale flux range= -0.51 37.90 MilliJY/BEAM Cont peak flux = 3.7896E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320) 38.4 38.3
12 00 17 45 07.0 06.5 06.0 05.5 05.0 04.5 04.0 RIGHT ASCENSION (J2000) Grey scale flux range= -2.54 11.60 MilliJY/BEAM Cont peak flux = 1.1597E-02 JY/BEAM Levs = 1.000E-03 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
20
17 54 39.5
39.0 38.5 38.0 37.5 37.0 36.5 36.0 RIGHT ASCENSION (J2000) Grey scale flux range= -0.411 9.332 MilliJY/BEAM Cont peak flux = 9.3323E-03 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
35.5
35.0
BOTH: G4.619+0.288 IPOL 4760.100 MHZ 0 5 10
15
-24 49 14
16
18 DECLINATION (J2000)
20
22
24
26
28
17 55 08.4
08.3 08.2 08.1 08.0 07.9 07.8 07.7 RIGHT ASCENSION (J2000) Grey scale flux range= -0.43 22.09 MilliJY/BEAM Cont peak flux = 2.2087E-02 JY/BEAM Levs = 3.000E-04 * (-2, -1, 1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 96, 128, 160, 192, 224, 256, 320)
07.6
07.5
Figure 6. 4.8 GHz continuum image of the unpolarised sources observed with the VLA. Typical rms noise is about 90 μJy/beam, and beamsize of ≈2 × 1.5 .
c 0000 RAS, MNRAS 000, 1–24

20
Table 6: Estimated RM towards the background sources towards the GC region
Source Name ?(D) (%) 14 15 25 10 11 17 15 15 17 16 20 18 12 23 23 1.3 151 0.4 5.5 51 27 6.7 7.6 1.8 3.3 163 6.5 0.2 13 109 119 4.9 4.4 6.4 3.9 2.5 3.8 79 112 73 4.6 5.1 5.6 0.5 3.0 0.2 8512 11±4.0, 5952 39±2.0, 5312 49±1.8, 4804 63±1.8 8512 54±4.0, 5952 83±2.3, 5312 ?73±2.5, 4804 ?62±2.5 8512 33±4.8, 5952 89±2.6, 5312 ?66±2.3, 4804 ?36±2.3 8512 39±4.1, 5952 ?46±3.8, 5312 04±3.1, 4804 41±2.9 8512 61±4.7, 5952 ?58±1.8, 5312 ?36±1.6, 4804 ?08±1.4 8512 68±5.0, 5952 ?58±3.9, 5312 ?29±3.4, 4804 ?14±2.6 8512 ?37±3.7, 5952 31±2.4, 5312 70±2.1, 4804 ?72±1.8 8512 ?83±6.6, 5952 70±2.5, 5312 46±2.4, 4804 27±2.6 8512 82±6.7, 5952 56±3.6, 5312 27±3.2, 4804 16±2.8 8512 14.7±0.3, 5952 ?24.3±0.3, 5312 45.8±0.3, 4804 ?59.3±0.4 167 37 3.5 4.6 4.0 1.1 8685 ?58±3.1, 8335 ?60±3.9, 4885 25±2.1, 4635 47±1.9 8685 ?20±5.4, 8335 ?07±3.8, 4885 70±2.8, 4635 85±2.4 153 2.7 0.1 8685 57±2.6, 8335 55±2.4, 4885 42±2.6, 4635 39±2.5 49 122 5.8 8.1 4.6 2.7 8512 39±4.1, 5952 ?46±3.8, 5312 04 ±3.1, 4804 41±2.9 8512 ?85±6.2, 5952 ?33±4.6, 5312 07 ±3.8, 4804 44±4.8, 4764 52±5.7 123 5.7 2.3 8540 ?83±5.4, 8484 ?67±5.5, 4885 74±4.8, 4635 94± 3.7 θ ?θ
RA (J2000) 1011 1193 858 ?99 16 17 23 25 29 30 27 23 34 35 37 41 2.9 0.8 1.1 1.2 1.1 1.0 1.4 0.9 1.1 0.9 1.1 0.9 0.9 0.8 611 574 328 439 720 679 681 629 960 ?511 ?464 1883 32 45 0.7 0.8 0.5
DEC (J2000)
RM
D
χ2 Measured polarisation angles at different frequencies
353.462-0.691
17 31 55.40
?34 49 59.9
Error on RM 30
354.740+0.138
17 31 56.96 17 31 57.00
?33 18 33.72 ?33 18 42.12
354.815+0.775
17 29 36.653
?32 53 51.88
355.424-0.809
17 37 32.514 17 37 31.413
?33 14 36.88 ?33 15 09.56
356.000+0.023
17 35 40.37 17 35 40.05 17 35 39.74
?32 18 59.03 ?32 18 55.83 ?32 18 54.23
356.161+1.635
17 29 43.86 17 29 43.64 17 29 42.71
?31 18 04.77 ?31 18 04.77 ?31 18 02.37
356.567+0.869
17 33 45.73
?31 22 50.38
Subhashis Roy, A. Pramesh Rao & Ravi Subrahmanyan
356.719-1.220
17 42 27.90 17 42 27.52
?32 22 14.04 ?32 22 09.64
357.865-0.996 (1741-312) 869 ?22 276 346 13 18 24 7 28 88 26 18 1.0 1.0 17 06 0.3 10 95 71 94 0.9 1.1 05 17 112 117 1.3 5.1 3.9 4.9 3.4 0.9 1.0 1.4 09 12 18 142 156 102 2.6 3.6 5.1 533 469 4768 ?905 ?05 4.0 0.4 0.3 2.4 0.5 1.3 9.4 1.0 13 1.4 09 76 2.0 17
17 44 23.580
?31 16 35.970
358.002-0.636
17 43 17.87
?30 58 18.73
8685 50±1.7, 8335 51±2.2, 5988 ?79±2.6, 5920 ?83±2.6, 4836 ?01±2.5, 4764 06±1.9 8685 46±2.5, 8335 56±2.5, 4885 48±1.7, 4635 47±1.6 8685 85±3.7, 8335 88±3.3, 4885 ?55±1.9, 4635 ?46±1.9 8685 34±4.9, 8335 41±5, 4885 87±2.1, 4635 ?84±2.1 8685 57±1.3, 8335 62±1.2, 4885 ?42±0.8, 4635 ?31±0.8 8685 58±4.8, 8335 62±5.3, 4885 ?50±3.1, 4635 ?44±4.5 8512 ?17±2.3, 5988 ?37±3.3, 5952 ?26±3.3, 5920 ?20±4.1, 5312 ?3.6±3.9, 4804 ?12±4.7 8685 ?69±4.4, 8335 77±5.1, 4885 ?31±4.4, 4635 ?57±3.1 8685 ?7±2.9, 8335 ?2±4.0, 4885 ?8.2±2.3, 4635 ?5±2.4
358.149-1.675
17 47 50.144 17 47 45.300 17 47 45.411
?31 23 03.86 ?31 23 36.21 ?31 23 38.40
358.156+0.028
17 41 02.909 17 41 02.668
?30 29 22.11 ?30 29 36.53
358.917+0.072
17 42 43.99
?29 49 16.03
358.930-1.197
17 47 46.474
?30 28 17.39
359.2-0.8 ( Mouse) ?568 29
17 47 15.78
?29 58 01.0
c 0000 RAS, MNRAS 000, 1–24 0.4 10
359.388+0.460
17 42 21.47
?29 12 59.73
36
4.2
0.9
8512 85±2.7, 5988 54±4, 5920 42±4.0, 5660 36.6±5.6, 5312 24±4.1, 4804 ?1.5±4.5

尊重的素材

尊重的素材(为人处世) 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺术,也是仁爱的情操。—刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚 尊重别人,才能让人尊敬。———笛卡尔 谁自尊,谁就会得到尊重。———巴尔扎克 人应尊敬他自己,并应自视能配得上最高尚的东西。———黑格尔 对人不尊敬,首先就是对自己的不尊敬。———惠特曼

每当人们不尊重我们时,我们总被深深激怒。然而在内心深处,没有一个人十分尊重自己。———马克·吐温 忍辱偷生的人,绝不会受人尊重。———高乃依 敬人者,人恒敬之。———《孟子》 人必自敬,然后人敬之;人必自侮,然后人侮之。———扬雄 不知自爱反是自害。———郑善夫 仁者必敬人。———《荀子》 君子贵人而贱己,先人而后己。———《礼记》 尊严是人类灵魂中不可糟蹋的东西。———古斯曼 对一个人的尊重要达到他所希望的程度,那是困难的。———沃夫格纳 经典素材 1元和200元 (尊重劳动成果) 香港大富豪李嘉诚在下车时不慎将一元钱掉入车下,随即屈身去拾,旁边一服务生看到了,上前帮他拾起了一元钱。李嘉诚收起一元钱后,给了服务生200元酬金。 这里面其实包含了钱以外的价值观念。李嘉诚虽然巨富,但生活俭朴,从不挥霍浪费。他深知亿万资产,都是一元一元挣来的。钱币在他眼中已抽象为一种劳动,而劳动已成为他最重要的生存方式,他的所有财富,都是靠每天20小时以上的劳动堆积起来的。200元酬金,实际上是对劳动的尊重和报答,是不能用金钱衡量的。 富兰克林借书解怨 (尊重别人赢得朋友)

Source Insight用法精细

Source Insight实质上是一个支持多种开发语言(java,c ,c 等等) 的编辑器,只不过由于其查找、定位、彩色显示等功能的强大,常被我 们当成源代码阅读工具使用。 作为一个开放源代码的操作系统,Linux附带的源代码库使得广大爱好者有了一个广泛学习、深入钻研的机会,特别是Linux内核的组织极为复杂,同时,又不能像windows平台的程序一样,可以使用集成开发环境通过察看变量和函数,甚至设置断点、单步运行、调试等手段来弄清楚整个程序的组织结构,使得Linux内核源代码的阅读变得尤为困难。 当然Linux下的vim和emacs编辑程序并不是没有提供变量、函数搜索,彩色显示程序语句等功能。它们的功能是非常强大的。比如,vim和emacs就各自内嵌了一个标记程序,分别叫做ctag和etag,通过配置这两个程序,也可以实现功能强大的函数变量搜索功能,但是由于其配置复杂,linux附带的有关资料也不是很详细,而且,即使建立好标记库,要实现代码彩色显示功能,仍然需要进一步的配置(在另一片文章,我将会讲述如何配置这些功能),同时,对于大多数爱好者来说,可能还不能熟练使用vim和emacs那些功能比较强大的命令和快捷键。 为了方便的学习Linux源程序,我们不妨回到我们熟悉的window环境下,也算是“师以长夷以制夷”吧。但是在Window平台上,使用一些常见的集成开发环境,效果也不是很理想,比如难以将所有的文件加进去,查找速度缓慢,对于非Windows平台的函数不能彩色显示。于是笔者通过在互联网上搜索,终于找到了一个强大的源代码编辑器,它的卓越性能使得学习Linux内核源代码的难度大大降低,这便是Source Insight3.0,它是一个Windows平台下的共享软件,可以从https://www.360docs.net/doc/dc5687224.html,/上边下载30天试用版本。由于Source Insight是一个Windows平台的应用软件,所以首先要通过相应手段把Linux系统上的程序源代码弄到Windows平台下,这一点可以通过在linux平台上将 /usr/src目录下的文件拷贝到Windows平台的分区上,或者从网上光盘直接拷贝文件到Windows平台的分区来实现。 下面主要讲解如何使用Source Insight,考虑到阅读源程序的爱好者都有相当的软件使用水平,本文对于一些琐碎、人所共知的细节略过不提,仅介绍一些主要内容,以便大家能够很快熟练使用本软件,减少摸索的过程。 安装Source Insight并启动程序,可以进入图1界面。在工具条上有几个值得注意的地方,如图所示,图中内凹左边的是工程按钮,用于显示工程窗口的情况;右边的那个按钮按下去将会显示一个窗口,里边提供光标所在的函数体内对其他函数的调用图,通过点击该窗体里那些函数就可以进入该函数所在的地方。

汉堡港码头分货种介绍

汉堡港 汉堡港 地理位置 汉堡港位于欧洲中部,优越的地理条件为汉堡港和其区域伙伴港口提供了强大的竞争优势。 汉堡港通过基尔运河能快速便捷地进入整个波罗的海地区,通过高效的水陆运输与德国内地、中欧、东欧紧密地联系在一起。 相比于任何其它欧洲的主要港口,汉堡港与位于德国、斯堪的纳维亚、波罗的海地区、东欧、俄国、澳大利亚、瑞士的主要市场更加接近。这种地理优势意味着更短的运输时间、更环保的物流运输链和更低的运输成本。 汉堡港不仅仅是一个重要的中心港口和运输中心,接近三分之一从这里进出的货物是由汉堡市区产生的,后者是德国最大的贸易和工业城市。与北部地区其他港口相比,这是非常高的本地商品比重。 这同时也显示了位于离70海里中心地区的汉堡港极具吸引力的运输优势。超巨型集装箱船可以进入汉堡港,提供24小时服务。通过海路运输的货物可以快速、环保地从港口腹地贸易区出入,不必动用成本耗费大的陆地运输。 码头:

汉堡——欧洲中心 汉堡港一直是欧洲以及全球外贸运输链条的中心,汉堡是德国和正在兴起的北欧市场的重要门户。众多国际工业、贸易、物流、航运公司都把汉堡当做他们进出口贸易的通道。 国际航运公司如地中海(MSC)、马士基、东方海外( OOCL)、达飞轮船(CMA CGM)、赫伯罗特(Hapag-Lloyd)、汉堡航运(Hamburg Süd)、日本邮船(NYK Line)、商船三井( MOL) 、中远集装箱运输(COSCO)、中海集团、Grimaldi、阳明(Yang Ming) 等都在汉堡开展业务,许多公司还把他们在德国或欧洲的总部办公室设在汉堡。 汉堡物流位置 物流基地汉堡/顶级物流 汉堡是欧洲发展最快、最高效的物流基地。 在汉堡,约5700家物流公司提供了一整套的增值服务——从运输、储藏、加工、质量控制、包装、试运行、配送、货运管理到运输保险、海关放行、结账开发票。他们在世界范围内组织成了一个完整的供应链。 各种工业、贸易公司从这种综合的服务组合中收获到了很多好处。像Airbus , Still, H&M, Olympus 和Beiersdorf多年来一直将汉堡当做增值服务链的中心,此有助于汉堡吸引新的业务。为了持续满足需求,到2015年,汉堡将为感兴趣的投资者提供大约320公顷的物流基地。 汉堡——欧洲最大的铁路港口 自1999年起,汉堡港每年的铁路运输量增长了大约80%,达到了四千万吨。集装箱运输量增长了170%,达到180万个标准箱。现在每天都有超过220辆货运火车进出汉堡港。在德国甚至 欧洲,没有其它任何一个港口可以提供如此密集的铁路货物运输网络。汉堡港期望,到了2015年,每天可以处理450到500辆货运火车。这种大幅度的增长可以通过集装箱运输来保证:在 不久的将来,汉堡港预计可以通过铁路运输处理450万个标准箱。

法国葡萄酒主要葡萄品种介绍

法国葡萄酒主要葡萄品种介绍 贝露娃(中国称呼为黑比诺)- Pinot Noir 贝露娃是名贵红酒用葡萄的皇后。其酒体温柔清雅,其特点是年轻时清雅芳香,成熟时温柔雅致,果味充盈而复合,并带有较明显的草莓和樱桃的香气。贝露娃可以酿出全世界最令人兴奋的红酒,但美玉有瑕,贝露娃是公认难以栽植的葡萄品种,其果粒虽成熟较早,但脆弱、皮薄、易腐烂。 嘉本纳沙威浓(民国时期开始,中国人也称为赤霞珠)- Cabernet Sauvignon 嘉本纳沙威浓是高贵的红酒葡萄品种之王,在全世界广为种植。其颗粒小、皮厚、晚熟,酿成的酒色泽深浓。葡萄酒浅嫩时单宁酸味激烈,有藏酿之质。其特点是最能表现黑加仑子味,蜜瓜味、甘草味,酒体结构丰厚结实,酒力强劲。

上图为嘉本纳沙威浓(也称为赤霞珠Cabernet Sauvignon) 穗乐仙- Shiraz( Syrah ) 穗乐仙是古典红酒用葡萄中的王子。属中浓度酒体,在嘉本纳沙威浓与贝露娃之间,具藏酿价值。完全成熟时,如上等贝露娃一样质地柔滑而浓郁。穗乐仙是一种晚熟品种,色泽较深,在温暖的土质如花岗岩土壤中生长最佳。但如种植过密,它所特有的桑椹果香和黑胡椒味就会变淡。 上图为穗乐仙,也称为设拉子-Shiraz(Syrah) 梅乐- Merlot 梅乐也是最受欢迎的红葡萄品种。梅乐之所以受欢迎是因为它早熟、鲜嫩且多产,可以用来大量酿制美味而柔滑的葡萄酒。也可以广泛用作与其它葡萄品种混合成成熟平衡的红酒。梅乐在较凉的地方长势良好。

上图为梅乐(Merlot) 佳美- Gamay 佳美原产自法国布根地,现在主要产于宝祖利村。所产葡萄酒颜色呈淡紫红色,单宁含量非常低,口感清淡,富含新鲜果香。用佳美酿制的葡萄酒简单易饮,通常不适宜久存,属于酒龄年轻时饮用的葡萄酒。但若生长在火成页岩、石灰含量少的土质上,佳美也能生产出丰厚浓郁耐久存的红酒,如几个宝祖利村的特级产区Moulin-a-Vent、St. Amour等等。除宝祖利村之外,以卢雅雨河谷种植最多。至于加州产的Gamay Beaujolais是贝露娃(Pinot Noir)的一种,并非真正的佳美种。 添帕尼优- Tempranillo 添帕尼优原产于西班牙北部,字源学上意指“早熟”之意。贫瘠坡地的石灰黏土是其最佳的种植条件,不同于其它西班牙品种,适合较凉爽温和的气候。添帕尼优是里奥哈最重要的品种,主要种植于上里奥哈Rioja Alta和Rioja Alavesa,另外在西班牙北部也普遍种植,但在他国并不著名。添帕尼优的品质不差,酸度不足是其常有的缺点,酿酒有时与其它葡

USB INF文件详解(USB)

INF文件详解 INF文件格式要求 一个INF文件是以段组织的简单的文本文件。一些段油系统定义(System-Defined)的名称,而另一些段由INF文件的编写者命名。每个段包含特定的条目和命名,这些命名用于引用INF文件其它地方定义的附加段。 INF文件的语法规则: 1、要求的内容:在特定的INF文件中所要求的必选段和可选段、条目及命令依赖于所要安装的设备组件。端点顺序可以是任意的,大多数的INF文件安装惯用的次序来安排各个段。 2、段名:INF文件的每个段从一个括在方括号[]中的段名开始。段名可以由系统定义或INF编写者定义 在Windows 2000中,段名的最大长度为255个字符。在Windows 98中,段名不应该超过28个字符。如果INF设计要在两个平台上运行,必须遵守最小的限制。段名、条目和命令不分大小写。在一个INF文件中如果有两个以上的段有相同的名字,系统将把其条目和命令合并成一个段。每个段以另一个新段的开始或文件的结束为结束。 3、使用串标记:在INF文件中的许多值,包括INF编写者定义的段名都可以标示成%strkey%形式的标记。每个这样的strkey必须在INF文件的Strings 段中定义为一系列显示可见字符组成的值。 4、行格式、续行及注释:段中的每个条目或命令以回车或换行符结束。在条目或命令中,“\”可以没用做一个显示的续行符;分好“;”标示后面的内容是注释;可以用都好“,”分隔条目和命令中提供的多个值。 INF文件举例 下面是一个完整的.inf文件,它是Windows 2000 DDK提供的USB批量阐述驱动程序范例中所附的.inf文件。 ; Installation inf for the Intel 82930 USB Bulk IO Test Board ; ; (c) Copyright 1999 Microsoft ; [Version] Signature="$CHICAGO$" Class=USB ClassGUID={36FC9E60-C465-11CF-8056-444553540000} provider=%MSFT% DriverVer=08/05/1999 [SourceDisksNames] 1="BulkUsb Installation Disk",,, [SourceDisksFiles] BULKUSB.sys = 1 BULKUSB.inf = 1

北外老师介绍的英语阅读佳篇To Ask or Not to Ask

To Ask or Not to Ask, That Is the Question! 1“Those who can, do. Those who can’t, teach.” This joke is frequently directed against members of the teaching profession. It’s not a very kind comment–but jokes are seldom friendly! It’s probably not intended (usually) to be interpreted literally, however; the speaker is, very likely, making a rather tongue-in-cheek1 comment about the profession, in much the same way that cutting comments are often made about bank managers, lawyers, car salesmen and the like! 2At least, such unkind comments are fairly commonplace in many countries of the English-speaking world; we teachers are fair game2 in the eyes of the general public. We’re fair game too, very often, in the eyes of our students when we teach in schools, colleges or universities in The United Kingdom, The United States, and other countries where English is the first language of the majority of the population. Students and school children frequently behave very disrespectfully towards their teachers in secondary schools; sometimes this disrespect escalates into verbal abuse or even, in extreme cases, physical violence. Some parents even behave in the same way, and support the non-cooperative, sometimes even offensive, behaviour of their offspring towards teachers. 3This type of disrespectful behaviour towards teachers–and, indeed, towards other members of society such as police officers, shopkeepers and the elderly–is a relatively recent phenomenon. Certainly, respect for “figures of authority”as well as for fellow citizens, used to be the norm rather than the exception just a few years ago in my own country, but in recent years it seems that selfish behaviour and arrogant disregard for the rights and the well-being of others is of little or no concern to a sizable number of people who live in the English-speaking world. Fortunately it’s not a case of disrespect and disregard being now the norm, but it does appear nowadays to be less of an exception. 4What about in countries such as this one, where English is not the first language? Have patterns of behaviour changed over the past few years in these countries? Have traditional values been adapted to meet the conditions and challenges of the late twentieth and the just-beginning twenty-first centuries? Have some of these traditional values been eroded3, even? Are they perhaps seen now as irrelevant? 5Here in China, for example, to the outside observer it probably appears that the fundamentals of Chinese behaviour have not changed significantly over the past two or three decades, despite the changes that are clearly visible in the outward appearance of towns and cities in China as a result of massive building and infrastructure projects. Certainly the outside observer who is not Chinese would not be able to detect subtleties of change in, for example, traditional courtesies and forms of respect exhibited between people in their day-to-day exchanges: few foreigners would understand the full significance of such courtesies in the first place, so subtle changes would not even be noticed, let alone understood. But Chinese people themselves would, presumably, be acutely aware of any such changes. Certainly the older generation–the grandfathers and grandmothers–would both notice and understand if the underlying and essential nature and character of today’s youngsters were radically changed. 1tongue-in-cheek: intended to be humorous and not meant seriously 2 fair game: if someone or something is fair game, it is acceptable, reasonable, or right to criticize them 3 erode: to gradually reduce the strength or importance of something, or to be gradually reduced in this way

葡萄品种介绍

葡萄品种介绍 葡萄品种Chardonnay霞多丽Sauvignon Blanc 长相思 葡 萄 园 中 葡萄特征果粒大,呈黄色,边缘带棕色斑点 萌芽早,早熟,有高糖潜力(高酒精度),容 易种植,适应能力强,产量高 中等大小果粒,果串紧凑(不通风,容易霜霉菌), 高酸度,萌芽晚,早熟,特别茂盛。 容易感染白粉霉,霜冻,晚季时酸度下降孢菌,白粉霉,黑霉 气候适合多种气候,在温暖环境中会成熟过快适应凉爽气候 土壤适合多种土壤,最适合石灰质土壤(碱性土 壤),石灰石,白垩土,砂石。 不适合潮湿或肥沃的土壤 白垩土,沙烁,粘土,燧石(火石),泥灰土 酒 厂 中 苹果酸乳酸 发酵 被广泛应用,添加黄油质感,奶油未:保持清爽的酸度和辛辣的香味(植物香气) 发酵:口感柔和(西班牙,智利)调配调配:添加塞美容,柔和口感和增添香味(波尔 多产区,有很强的陈年能力)橡木熟成与橡木接触,加深颜色,带有烤面包木材味添加烤面包的风味,使香气变得柔和。 塞美容Semillon+长相思 惰性容器熟 成 保留矿物质和水果特征保持新鲜的香气 窖藏能力大部分出厂后饮用,顶级酒可窖藏10+年大部分年轻时饮用苏玳出产的可窖藏数几十年。 主要著名产区法国勃艮第(夏布利Chablis,默尔索 Meursault,布衣富塞Pouill-Fuisse),香槟产区 Champagne 法国卢瓦尔河(桑塞尔Sancerre,布衣富美 Pouillu-Fume)清爽,无橡木风格。 法国波尔多(苏玳Sauternes)贵腐甜酒。经常与 塞美容调配,橡木风格 美国加州California:浓郁,橡木风格 澳大利亚Australia:热带水果,橡木风格 新西兰(马尔伯勒Mrlborough)清爽,无橡木风 格。 智利Chile,阿根廷Argentina,新西兰New Zealand,南非South Africa,俄勒冈州Oregon 智力:非常辛辣的香气 加州:有时候标为:Fume Blanc 南非South Africa,澳大利亚Australia 外观 Appearance 中等稻草黄/绿色 中等到深金/黄色(用过橡木桶) 浅等稻草黄/绿色

source insight解析命令行

安装完SI后,会在安装一个如下的文件 我的文档\Source Insight\c.tom c.tom的功能与C语言中的#define类似。打开这个文件,会看到有很多空格分割的字符串,SI在我们阅读代码时,自自动将空格前的字符串替换为空格后的字符串(仅仅是影响阅读,不影响编译喔)。 举两个例子。 #define AP_DECLARE(type) type AP_DECLARE(int) ap_calc_scoreboard_size(void) { .... } source insight 把AP_DECLARE当作了函数,当想查ap_calc_scoreboard_size的时候总是很麻烦,不能直接跳转. 我的文档\Source Insight\c.tom 加入 AP_DECLARE(type) type 如下的代码如何让SI 识别出f是一个函数? #define EXPORT_CALL(return,functionname) return functionname EXPORT_CALL (int, f1()) 我的文档\Source Insight\c.tom 加入 EXPORT_CALL(return,functionname) return functionname 同时,在#define中,标准只定义了#和##两种操作。#用来把参数转换成字符串,##则用来连接前后两个参数,把它们变成一个字符串。(c.tom的功能与支持##,不支持#好像) 这个技巧我在阅读zebra的命令行代码时也用到了。 比如下吗一段代码:(DEFUN是一个宏定义,这个文件中有很多这样的DEFUN。不修改c.tom 之前看到的是这样的)

source命令与“.”点命令

source命令与“.”点命令 source 命令是bash shell 的内置命令,从C Shell 而来。 source 命令的另一种写法是点符号,用法和source 相同,从Bourne Shell而来。 source 命令可以强行让一个脚本去立即影响当前的环境。 source 命令会强制执行脚本中的全部命令,而忽略文件的权限。 source 命令通常用于重新执行刚修改的初始化文件,如.bash_profile 和.profile 等等。source 命令可以影响执行脚本的父shell的环境,而export 则只能影响其子shell的环境。 使用方法举例: $source ~/.bashrc 或者: $. ~/.bashrc 执行后~/.bashrc 中的内容立即生效。 一个典型的用处是,在使用Android 的mm 等相关命令时,需要先执行以下命令:$cd $source ./build/envsetup.sh 或者$. ./build/envsetup.sh source命令(从C Shell 而来)是bash shell的内置命令。点命令,就是个点符号,(从Bourne Shell而来)是source的另一名称。同样的,当前脚本中设置的变量也将作为脚本的环境,source(或点)命令通常用于重新执行刚修改的初始化文件,如.bash_profile 和.profile 等等。例如,如果在登录后对.bash_profile 中的EDITER 和TERM 变量做了修改,则能用source 命令重新执行.bash_profile 中的命令而不用注销并重新登录。 source命令的作用就是用来执行一个脚本,那么: source a.sh 同直接执行./a.sh 有什么不同呢,比如你在一个脚本里export $KKK=111 ,如果你用./a.sh执行该脚本,执行完毕后,你运行echo $KKK ,发现没有值,如果你用source 来执行,然后再echo ,就会发现KKK=111。因为调用./a.sh来执行shell是在一个子shell里运行的,所以执行后,结果并没有反应到父shell里,不过source不同,他就是在本shell 中执行的,所以能看到结果。 “.”点命令是shell的一个内部命令,它从指定的shell 文件中读入所有命令语句并在

PECVD简介

PECVD工序段学习汇报

目录 1.PECVD设备概况 2.工作流程介绍 3.工艺步骤介绍 4.工艺配方的学习 5.常见的异常及原因

1. CentrothermPECVD 设备概况 Centrotherm 设备的基本功能单元包括:硅片装载区域、热风排风柜、炉体、气体系统、真空系统;同时,在装载区域配备了垂直层流系统,用于净化空气,设备的简要示意图如下图所示: 俯视图 平视图 2.工作流程介绍 操作控制单元 硅片装载区 炉体 特气柜

在CVD 工艺中用一部推车来手动将工艺舟移入设备中进行加 工,以及在加工结束后将工艺舟移除设备,推车锁定在设备中用作加工后冷却工艺舟的存放处。 (1)当一个工艺结束,那个炉管的软着陆系统(SiC 桨)会进入石英管中,把装有镀过膜硅片的石墨舟取出;(2)提升系统会将石墨舟从SiC 上取下,放入存储位置,进行冷却,同时滑轨会把一个新 工艺舟用作来在热化学工艺过程中作为硅片的机械承载器,为石墨舟。

装满的石墨舟由硅片装载系统送入石墨舟装载位置;(3)提升系统会将新装满的石墨舟送到SiC桨上;(4)软着陆系统会把石墨舟送入石英管,然后桨退出,关闭炉门,工艺开始允许;(5)之后,提升系统把刚刚在存储位置冷却的石墨舟送到滑轨上,由滑轨送到外界的自动硅片装载系统中。 全自动硅片装载系统,通过石墨舟传输系统可以把石墨舟送到自动化系统中,包括以下组件:石墨舟提升、石墨舟存储、石墨舟传输系统。 3.工艺步骤介绍 1. 工艺开始(processing started ) 2. 充氮(fill tube with N2) 3. 桨在高位进舟loading boat (paddle in upper position) 4. 桨降至低位paddle moves downwards 5. 桨在低位移出管外move out (paddle in lower position ) 6. 管内抽真空并作压力测试(evacuate tube and pressure test)

尊重议论文

谈如何尊重人尊重他人,我们赢得友谊;尊重他人,我们收获真诚;尊重他人,我们自己也 获得尊重;相互尊重,我们的社会才会更加和谐. ——题记 尊重是对他人的肯定,是对对方的友好与宽容。它是友谊的润滑剂,它是和谐的调节器, 它是我们须臾不可脱离的清新空气。“主席敬酒,岂敢岂敢?”“尊老敬贤,应该应该!”共和 国领袖对自己老师虚怀若谷,这是尊重;面对许光平女士,共和国总理大方的叫了一 声“婶婶”,这种和蔼可亲也是尊重。 尊重不仅会让人心情愉悦呼吸平顺,还可以改变陌生或尖锐的关系,廉颇和蔺相如便是 如此。将相和故事千古流芳:廉颇对蔺相如不满,处处使难,但蔺相如心怀大局,对廉颇相 当的尊重,最后也赢得了廉颇的真诚心,两人结为好友,共辅赵王,令强秦拿赵国一点办法 也没有。蔺相如与廉颇的互相尊重,令得将相和的故事千百年令无数后人膜拜。 现在,给大家举几个例子。在美国,一个颇有名望的富商在散步 时,遇到一个瘦弱的摆地摊卖旧书的年轻人,他缩着身子在寒风中啃着发霉的面包。富 商怜悯地将8美元塞到年轻人手中,头也不回地走了。没走多远,富商忽又返回,从地摊上 捡了两本旧书,并说:“对不起,我忘了取书。其实,您和我一样也是商人!”两年后,富商 应邀参加一个慈善募捐会时,一位年轻书商紧握着他的手,感激地说:“我一直以为我这一生 只有摆摊乞讨的命运,直到你亲口对我说,我和你一样都是商人,这才使我树立了自尊和自 信,从而创造了今天的业绩??”不难想像,没有那一 句尊重鼓励的话,这位富商当初即使给年轻人再多钱,年轻人也断不会出现人生的巨变, 这就是尊重的力量啊 可见尊重的量是多吗大。大家是不是觉得一个故事不精彩,不够明确尊重的力量,那再 来看下一个故事吧! 一家国际知名的大企业,在中国进行招聘,招聘的职位是该公司在中国的首席代表。经 过了异常激烈的竞争后,有五名年轻人,从几千名应聘者中脱颖而出。最后的胜出者,将是 这五个人中的一位。最后的考试是一场面试,考官们都 作文话题素材之为人处世篇:尊重 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺 术,也是仁爱的情操。———刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚

阅读理解题型介绍

一、解题步骤 第一步,快速浏览题目。划出标志词或关键词,对5个题目有大概印象以便阅读时有侧重点。一般来说,对于本身已经明确其考查内容的题目,标志词和关键词是比较容易找到的,只看一下题干即可,而对于那些并没有出现标志词和关键词的题目,如:The author suggests that,可以在解答试题时浏览选项作出解答。 第二步,通读文章 首先阅读第一段,因为第一段通常会告诉我们作者将要讨论的话题。然后阅读下面各段的第一句话,以对每个段落的内容有大概的了解,然后再阅读最后一段,以帮助我们对文章内容进行概括,或了解作者的评价、态度等。在阅读的过程中不用过于注重词句的把握,遇到不认识的单词不必作太久的停留,以免影响阅读速度。 第三步,解答试题 根据试题中的标志词和关键词,找到试题在文章中对应的句子,并对其进行仔细阅读,然后对比四个选项,选出正确答案。但要注意解题时要看作者在文中用了什么样的口气。若用褒义词,显然是赞成;若用贬义词,显然是反对;若客观陈述,则是中性的立场。更为明显的一个解题办法,就是寻找文中的转折词,一般转折此后面的文段表明了作者的观点。

三、题型分类 在大学英语四级考试中,阅读理解的试题类型可以分为以下五大类:主旨题、细节题、语义题、推理题和观点态度题。 1.细节题:四级考试阅读理解中出现频率最高的就是客观事实细节类试题。事实或细节是文章中用来论证或说明主题的依据。这类问题不掺杂主观内容,而是针对文章的某个具体细节,如:时间、地点、人物、原因、结果、条件、现象等的提问。细节题主要对文中具体事实和细节进行提问。有时候,这类题目会进一步演化为是非判断题(true or false),考查我们的辨别和排除能力。。这类题的提问方式一般为:When (Where, Who, Why, What, Ho w)…? All of the following are mentioned in the passage except… The author says…because… Which of the following may be the best reason for… 【解题技巧】 在做细节题时,首先应当仔细阅读题目,弄清题目的具体要求。通常细节题的答案在文章中都会找到,但是,往往照抄原文的句子并不一定是正确选项,正确答案应该是与原文意思和所问问题相符的才对(即答案的表述和原文会有所差别,常常不是文章中的原话,而是词语或句子的同义表达)。关键词的确定也有技巧。如果题目或选项中有专有名词(人名、

source Insight工程的说明

Source Insight工程的说明 说明:source insight 是我们在工作中最常用到的软件,它对我们查找函数,变量,修改代码起到了不可估量的作用。熟练运用source insight可以提高工作效率,了解整个工程的架构是很有帮助的。 一source Insight工程的建立步骤 1、打开source insight 如下图所示:

2、工程目录的旁边建立一个文件夹,名字为code_s(文件夹名字自己可以为任意,最好能够区 分工程)。 3、在source insight里面,状态栏上,根据如下顺序,建立工程project- new project,点击后如 下图所示:

在上图中,new project name : 创建你要建立的source insight 工程的名字。例如我们创建为M53_code. Where do you want to stor the project data files? 是我们要将创建的工程文件放入的路径是什么?我们选择刚才我们创建的code_s文件夹的路径。最后如图所示。 4、按OK后,进入如下图所示的界面。 在这个界面里,所有的选项我们都默认,但是选择工程路径是我们需要建立的工程路径。例如我们现在要建立的工程路径是F:\M53\code那么,我们就要选择我们的工程路径。如图下图所示

5、按OK,进入下一个窗口。如图所示。 我们选择,后,如下图所示, 我们在前面全部选择,然后按OK。进行搜索源工程文件,搜索完成后,如图所示。 工程不同,文件的数量不同。这里有7472个文件。我们按确定后,按close,关闭上述窗口。工程建立成功。 二source insight 工程与源工程同步 在上述,工程建立之后,由于我们需要在source insight修改的时候,修改源工程,那么我们需

奈达翻译理论初探

第27卷第3期唐山师范学院学报2005年5月Vol. 27 No.3 Journal of Tangshan Teachers College May 2005 奈达翻译理论初探 尹训凤1,王丽君2 (1.泰山学院外语系,山东泰安 271000;2.唐山师范学院教务处,河北唐山 063000) 摘要:奈达的翻译理论对于翻译实践有很强的指导作用:从语法分析角度来讲,相同的语法结构可能具有完全不同的含义;词与词之间的关系可以通过逆转换将表层形式转化为相应的核心句结构;翻译含义是翻译成败的关键所在。 关键词:奈达;分析;转换;重组;核心句 中图分类号:H315.9 文献标识码:A 文章编号:1009-9115(2005)03-0034-03 尤金?奈达是美国当代著名翻译理论家,也是西方语言学派翻译理论的主要代表,被誉为西方“现代翻译理论之父”。他与塔伯合著的《翻译理论与实践》对翻译界影响颇深。此书说明了中国与西方译界人士思维方式的巨大差别:前者是静的,崇尚“信、达、雅”,讲究“神似”,追求“化境”;后者是动的,将语言学、符号学、交际理论运用到翻译研究当中,提倡“动态对等”,注重读者反应。中国译论多概括,可操作性不强;西方译论较具体,往往从点出发。他在该书中提到了动态对等,详细地描述了翻译过程的三个阶段:分析、转换和重组,对于翻译实践的作用是不言而喻的。笔者拟结合具体实例,从以下角度来分析其理论独到之处。 一 一般来说,结构相同的词组、句子,其语法意义是相同或相近的。然而奈达提出,同样的语法结构在许多情况下可以有不同的含义。“名词+of+名词”这一语法结构可以对此作最好的阐释。如下例: (1)the plays of Shakespeare/ the city of New York/ the members of the team/ the man of ability/ the lover of music/ the order of obedience/ the arrival of the delegation 在以上各个词组中,假设字母A和B分别代表一个名词或代词,它们之间存在着不同的关系。在the plays of Shakespeare 中,Shakespeare是施事,plays是受事,用公式表示就是“B writes A”;在the city of New York中,city和New York是同位关系,用公式表示就是“A is B”;the members of the team中,members和team是所属关系,即“A is in the B”;在the man of ability中,“B is A’s characteristic”;在the lover of music中,lover表示的是活动,即动作,music是它的受事,因此可以理解为(he/she)loves the music, 用公式表示就是“X does A to B”(X施A于B)或“B is the goal of A”(B为A的受事);在the order of obedience中,obedience表示的是活动,order是它的受事,因此用公式表示就是“X does B to A”(X施B于A)或“A is the goal of B”(A为B的受事);在the arrival of the delegation中,arrival表示动作,而delegation是动作的发出者,所以是“B does A”。 因此它们的结构关系如下所示: the plays of Shakespeare——Shakespeare wrote the plays. the city of New York——The city is New York. the members of the team——The members are in the team. the man of ability——The man is able. the lover of music——(He/She) loves the music. the order of obedience——(People) obey the order. the arrival of the delegation——The delegation arrives. ────────── 收稿日期:2004-06-10 作者简介:尹训凤(1976-),女,山东泰安人,泰山学院外语系教师,现为天津外国语学院研究生部2003级研究生,研究方向为翻译理论与实践。 - 34 -

尊重他人的写作素材

尊重他人的写作素材 导读:——学生最需要礼貌 著名数学家陈景润回厦门大学参加 60 周年校庆,向欢迎的人们说的第一句话是:“我非常高兴回到母校,我常常怀念老师。”被人誉为“懂得人的价值”的著名经济学家、厦门大学老校长王亚南,曾经给予陈景润无微不至的关心和帮助。陈景润重返母校,首先拜访这位老校长。校庆的第三天,陈景润又出现在向“哥德巴赫猜想”进军的启蒙老师李文清教授家中,陈景润非常尊重和感激他。他还把最新发表的数学论文敬送李教授审阅,并在论文扉页上工工整整写了以下的字:“非常感谢老师的长期指导和培养——您的学生陈景润。”陈景润还拜访了方德植教授,方教授望着成就斐然而有礼貌的学生,心里暖暖的。 ——最需要尊重的人是老师 周恩来少年时在沈阳东关模范学校读书期间 , 受到进步教师高盘之的较大影响。他常用的笔名“翔宇”就是高先生为他取的。周恩来参加革命后不忘师恩 , 曾在延安答外国记者问时说:“少年时代我在沈阳读书 , 得山东高盘之先生教诲与鼓励 , 对我是个很大的 促进。” 停奏抗议的反思 ——没有礼仪就没有尊重 孔祥东是著名的钢琴演奏家。 1998 年 6 月 6 日晚,他在汕头

举办个人钢琴独奏音乐会。演出之前,节目主持人再三强调,场内观众不要随意走动,关掉 BP 机、手提电话。然而,演出的过程中,这种令人遗憾的场面却屡屡发生:场内观众随意走动, BP 机、手提电话响声不绝,致使孔祥东情绪大受干扰。这种情况,在演奏舒曼作品时更甚。孔祥东只好停止演奏,静等剧场安静。然而,观众还误以为孔祥东是在渴望掌声,便报以雷鸣般的掌声。这件事,令孔祥东啼笑皆非。演出结束后,孔祥东说:有个 BP 机至少响了 8 次,观众在第一排来回走动,所以他只得以停奏抗议。 “礼遇”的动力 ——尊重可以让人奋发 日本的东芝公司是一家著名的大型企业,创业已经有 90 多年的历史,拥有员工 8 万多人。不过,东芝公司也曾一度陷入困境,土光敏夫就是在这个时候出任董事长的。他决心振兴企业,而秘密武器之一就是“礼遇”部属。身为偌大一个公司的董事长,他毫无架子,经常不带秘书,一个人步行到工厂车间与工人聊天,听取他们的意见。更妙的是,他常常提着酒瓶去慰劳职工,与他们共饮。对此,员工们开始都感到很吃惊,不知所措。渐渐地,员工们都愿意和他亲近,他赢得了公司上下的好评。他们认为,土光董事长和蔼可亲,有人情味,我们更应该努力,竭力效忠。因此,土光上任不久,公司的效益就大力提高,两年内就把亏损严重、日暮途穷的公司重新支撑起来,使东芝成为日本最优秀的公司之一。可见,礼,不仅是调节领导层之间关

相关文档
最新文档