搅拌机传动装置设计说明书E6.

搅拌机传动装置设计说明书E6.
搅拌机传动装置设计说明书E6.

机械设计(论文)说明书

题目:二级直齿圆柱齿轮减速器系别: XXX系

专业:

学生姓名:

学号:

指导教师:

职称:

目录

第一部分课程设计任务书-------------------------------3 第二部分传动装置总体设计方案-------------------------3 第三部分电动机的选择--------------------------------4 第四部分计算传动装置的运动和动力参数-----------------7 第五部分齿轮的设计----------------------------------8 第六部分传动轴承和传动轴及联轴器的设计---------------17 第七部分键连接的选择及校核计算-----------------------20 第八部分减速器及其附件的设计-------------------------22 第九部分润滑与密封----------------------------------24 设计小结--------------------------------------------25 参考文献--------------------------------------------25

第一部分课程设计任务书

一、设计课题:

设计两级展开式圆柱直齿轮减速器,卷筒效率为0.9(包括其支承轴承效率的损失),使用期限8年(300天/年),2班制工作,运输容许速度误差为5%,车间有三相交流,电压380/220V。

二. 设计要求:

1.减速器装配图一张。

2.绘制轴、齿轮等零件图各一张。

3.设计说明书一份。

三. 设计步骤:

1. 传动装置总体设计方案

2. 电动机的选择

3. 确定传动装置的总传动比和分配传动比

4. 计算传动装置的运动和动力参数

5. 齿轮的设计

6. 滚动轴承和传动轴的设计

7. 键联接设计

8. 箱体结构设计

9. 润滑密封设计

第二部分传动装置总体设计方案

1.组成:传动装置由电机、减速器、工作机组成。

2.特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。

3.确定传动方案:考虑到总传动比不大,确定其传动方案如下:

图一: 传动装置总体设计图

初步确定传动系统总体方案如:传动装置总体设计图所示。选择二级圆柱直齿轮减速器(展开式)。

计算传动装置的总效率ηa:

ηa=η13η22η32η4=0.993×0.972×0.992×0.9=0.81

η1为轴承的效率,η2为齿轮啮合传动的效率,η3为联轴器的效率,η4为工作机的效率(包括工作机和对应轴承的效率)。

第三部分电动机的选择

1 电动机的选择

执行机构转速n:

n=90r/min

工作机的功率p w:

p w= 5.5 KW

电动机所需工作功率为:

p d= p w

ηa

=

5.5

0.81= 6.79 KW

执行机构的曲柄转速为:

n = 90 r/min

经查表按推荐的传动比合理范围,二级圆柱直齿轮减速器传动比i a=8~40,电动机转速的可选范围为n d = i a×n = (8×40)×90 = 720~3600r/min。综合考虑电动机和传动装置的尺寸、重量、价格和减速器的传动比,选定型号为Y132M-4的三相异步电动机,额定功率为7.5KW,满载转速n m=1440r/min,同步转速1500r/min。

2 确定传动装置的总传动比和分配传动比

(1)总传动比:

由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为:

i a=n m/n=1440/90=16

(2)分配传动装置传动比:

取两级圆柱齿轮减速器高速级的传动比为:

i12 = 1.3ia = 1.3×16 = 4.56 则低速级的传动比为:

i23 =

ia

i12=

16

4.56= 3.51

第四部分计算传动装置的运动和动力参数

(1)各轴转速:

n I = n m = 1440 = 1440 r/min

n II = n I/i12 = 1440/4.56 = 315.8 r/min

n III = n II/i23 = 315.8/3.51 = 90 r/min

n IV = n III = 90 r/min

(2)各轴输入功率:

P I = P d×η3 = 6.79×0.99 = 6.72 KW

P II = P I×η1?η2 = 6.72×0.99×0.97 = 6.45 KW

P III = P II×η1?η2 = 6.45×0.99×0.97 = 6.19 KW

P IV = P III×η1?η3 = 6.19×0.99×0.99 = 6.45 KW 则各轴的输出功率:

P I' = P I×0.99 = 6.65 KW

P II' = P II×0.99 = 6.39 KW

P III' = P III×0.99 = 6.13 KW

P IV' = P IV×0.99 = 6.39 KW

(3)各轴输入转矩:

T I = T d×η3 电动机轴的输出转矩:

T d = 9550×

p d

n m = 9550×

6.79

1440= 45 Nm

所以:

T I = T d×η3 = 45×0.99 = 44.5 Nm

T II = T I×i12×η1?η2 = 44.5×4.56×0.99×0.97 = 194.9 Nm

T III = T II×i23×η1?η2 = 194.9×3.51×0.99×0.97 = 656.9 Nm

T IV = T III×η1?η3 = 656.9×0.99×0.99 = 643.8 Nm

输出转矩为:

T I' = T I×0.99 = 44.1 Nm

T II' = T II×0.99 = 193 Nm

T III' = T III×0.99 = 650.3 Nm

T IV' = T IV×0.99 = 637.4 Nm

第五部分齿轮的设计

(一)高速级齿轮传动的设计计算

1 齿轮材料、热处理及精度:

考虑此减速器的功率及现场安装的限制,故选用二级展开式圆柱直齿轮减速器。

材料:高速级小齿轮选用45号钢调质,齿面硬度为小齿轮:250HBS。高速级大齿轮选用45号钢正火,齿面硬度为大齿轮:200HBS。取小齿齿数:Z1 = 24,则:

Z2 = i12×Z1 = 4.56×24 = 109.44取:Z2 = 109

2 初步设计齿轮传动的主要尺寸,按齿面接触强度设计:

d1t≥32K

t T1

ψdεα

×

u±1

?

?

?

?

?

Z H Z E

[σH]

2

确定各参数的值:

1) 试选K t = 1.2

2) T1 = 44.5 Nm

3) 选取齿宽系数ψd = 1

4) 由表8-5查得材料的弹性影响系数Z E = 189.8MPa

5) 由图8-15查得节点区域系数Z H = 2.5

6) 查得小齿轮的接触疲劳强度极限:σHlim1 = 610 MPa,大齿轮的接触疲劳强度极限:σHlim2 = 560 MPa。

7) 计算应力循环次数:

小齿轮应力循环次数:N1 = 60nkt h = 60×1440×1×8×300×2×8 = 3.32×109大齿轮应力循环次数:N2 = 60nkt h = N1/u = 3.32×109/4.56 = 7.28×108

8) 由图8-19查得接触疲劳寿命系数:K HN1 = 0.86,K HN2 = 0.89

9) 计算接触疲劳许用应力,取失效概率为1%,安全系数S=1,得:

[σH]1 = K HN1σHlim1

S= 0.86×610 = 524.6 MPa

[σH]2 = K HN2σHlim2

S= 0.89×560 = 498.4 MPa

许用接触应力:

[σH] = ([σH]1+[σH]2)/2 = (524.6+498.4)/2 = 511.5 MPa 3 设计计算:

小齿轮的分度圆直径:d1t:

d1t≥32K

t T1

ψd

×

u±1

?

?

?

?

?

Z H Z E

[σH]

2

= 32×1.2×44.5×1000

4.56+1

4.56×?

?

?

?

?

2.5×189.8

511.5

2

= 48.2 mm

4 修正计算结果: 1) 确定模数:

m n =

d1t

Z1=

48.2

24= 2.01 mm

取为标准值:2 mm。

2) 中心距:

a = ?

?

?

?

Z1+Z2m n

2=

()

24+109×2

2= 133 mm

3) 计算齿轮参数:

d1 = Z1m n = 24×2 = 48 mm

d2 = Z2m n = 109×2 = 218 mm

b = φd×d1 = 48 mm

b圆整为整数为:b = 48 mm。

4) 计算圆周速度v:

v =

πd1n1

60×1000

=

3.14×48×1440

60×1000

= 3.62 m/s

由表8-8选取齿轮精度等级为8级。

5 校核齿根弯曲疲劳强度:

(1) 确定公式内各计算数值:

1) 由表8-3查得齿间载荷分配系数:K Hα = 1.1,K Fα = 1.1;齿轮宽高比为:

b

h=

b

[(2h

*

a+c

*)m

n]

=

48

[(2×1+0.25)×2]

= 10.67

求得:K Hβ = 1.09+0.26φd2+0.33×10-3b = 1.09+0.26×0.82+0.33×10-3×48 = 1.37 ,由图8-12查得:K Fβ = 1.34

2) K = K A K V K FαK Fβ = 1×1.1×1.1×1.34 = 1.62

3) 由图8-17、8-18查得齿形系数和应力修正系数:

齿形系数:Y Fa1 = 2.63 Y Fa2 = 2.17

应力校正系数:Y Sa1 = 1.59 Y Sa2 = 1.83

4) 由图8-22c按齿面硬度查得大小齿轮的弯曲疲劳强度极限为:

σFlim1 = 245 MPa σFlim2 = 220 MPa

5) 同例8-2:

小齿轮应力循环次数:N1 = 3.32×109

大齿轮应力循环次数:N2 = 7.28×108

6) 由图8-20查得弯曲疲劳寿命系数为:

K FN1 = 0.82 K FN2 = 0.85

7) 计算弯曲疲劳许用应力,取S=1.3,由式8-15得:

[σF]1 = K FN1σFlim1

S=

0.82×245

1.3= 154.5

[σF]2 = K FN2σFlim2

S=

0.85×220

1.3= 143.8

Y Fa1Y Sa1

[σF]1=

2.63×1.59

154.5= 0.02707

Y Fa2Y Sa2

[σF]2=

2.17×1.83

143.8= 0.02762

大齿轮数值大选用。

(2) 按式8-23校核齿根弯曲疲劳强度:

m n≥32KT

1

ψd Z

2

1

×

Y Fa Y Sa

[σF]

=

32×1.62×44.5×1000×0.02762

1×24

2= 1.91 mm 1.91≤2所以强度足够。

(3) 各齿轮参数如下:

大小齿轮分度圆直径:

d1 = 48 mm

d2 = 218 mm

b = ψd×d1 = 48 mm

b圆整为整数为:b = 48 mm

圆整的大小齿轮宽度为:b1 = 53 mm b2 = 48 mm

中心距:a = 133 mm,模数:m = 2 mm

(二)低速级齿轮传动的设计计算

1 齿轮材料、热处理及精度:

考虑此减速器的功率及现场安装的限制,故选用二级展开式圆柱直齿轮减速器。

材料:高速级小齿轮选用45号钢调质,齿面硬度为小齿轮:250HBS。高速级大齿轮选用45号钢正火,齿面硬度为大齿轮:200HBS。取小齿齿数:Z3 = 25,则:

Z4 = i23×Z3 = 3.51×25 = 87.75取:Z4 = 87

2 初步设计齿轮传动的主要尺寸,按齿面接触强度设计:

d1t≥32K

t T2

ψd

×

u±1

?

?

?

?

?

Z H Z E

[σH]

2

确定各参数的值:

1) 试选K t = 1.2

2) T2 = 194.9 Nm

3) 选取齿宽系数ψd = 1

4) 由表8-5查得材料的弹性影响系数Z E = 189.8MPa

5) 由图8-15查得节点区域系数Z H = 2.5

6) 查得小齿轮的接触疲劳强度极限:σHlim1 = 610 MPa,大齿轮的接触疲劳强度极限:σHlim2 = 560 MPa。

7) 计算应力循环次数:

小齿轮应力循环次数:N3 = 60nkt h = 60×315.8×1×8×300×2×8 = 7.28×108大齿轮应力循环次数:N4 = 60nkt h = N1/u = 7.28×108/3.51 = 2.07×108

8) 由图8-19查得接触疲劳寿命系数:K HN1 = 0.89,K HN3 = 0.91

9) 计算接触疲劳许用应力,取失效概率为1%,安全系数S=1,得:

[σH]3 = K HN3σHlim3

S= 0.89×610 = 542.9 MPa

[σH]4 = K HN4σHlim4

S= 0.91×560 = 509.6 MPa

许用接触应力:

[σH] = ([σH]3+[σH]4)/2 = (542.9+509.6)/2 = 526.25 MPa 3 设计计算:

小齿轮的分度圆直径:d1t:

d1t≥32K

t T2

ψd

×

u±1

?

?

?

?

?

Z H Z E

[σH]

2

= 32×1.2×194.9×1000

3.51+1

3.51×?

?

?

?

?

2.5×189.8

526.25

2

= 78.8 mm

4 修正计算结果: 1) 确定模数:

m n =

d1t

Z3=

78.8

25= 3.15 mm

取为标准值:3 mm。

2) 中心距:

a = ?

?

?

?

Z3+Z4m n

2=

()

25+87×3

2= 168 mm

3) 计算齿轮参数:

d3 = Z3m n = 25×3 = 75 mm

d4 = Z4m n = 87×3 = 261 mm

b = φd×d3 = 75 mm b圆整为整数为:b = 75 mm。

4) 计算圆周速度v:

v =

πd3n2

60×1000

=

3.14×75×315.8

60×1000

= 1.24 m/s

由表8-8选取齿轮精度等级为8级。

5 校核齿根弯曲疲劳强度:

(1) 确定公式内各计算数值:

1) 由表8-3查得齿间载荷分配系数:K Hα = 1.1,K Fα = 1.1;齿轮宽高比为:

b

h=

b

[(2h

*

a+c

*)m

n]

=

75

[(2×1+0.25)×3]

= 11.11

求得:K Hβ = 1.09+0.26φd4+0.33×10-3b = 1.09+0.26×0.82+0.33×10-3×75 = 1.37 ,由图8-12查得:K Fβ = 1.34

2) K = K A K V K FαK Fβ = 1×1.1×1.1×1.34 = 1.62

3) 由图8-17、8-18查得齿形系数和应力修正系数:

齿形系数:Y Fa3 = 2.61 Y Fa4 = 2.23

应力校正系数:Y Sa3 = 1.6 Y Sa4 = 1.79

4) 由图8-22c按齿面硬度查得大小齿轮的弯曲疲劳强度极限为:

σFlim3 = 245 MPa σFlim4 = 220 MPa

5) 同例8-2:

小齿轮应力循环次数:N3 = 7.28×108

大齿轮应力循环次数:N4 = 2.07×108

6) 由图8-20查得弯曲疲劳寿命系数为:

K FN3 = 0.85 K FN4 = 0.87

7) 计算弯曲疲劳许用应力,取S=1.3,由式8-15得:

[σF]3 = K FN3σFlim3

S=

0.85×245

1.3= 160.2

[σF]4 = K FN4σFlim4

S=

0.87×220

1.3= 147.2

Y Fa4Y Sa4

[σF]4=

2.61×1.6

160.2= 0.02607

Y Fa4Y Sa4

[σF]4=

2.23×1.79

147.2= 0.02712

大齿轮数值大选用。

(2) 按式8-23校核齿根弯曲疲劳强度:

m n≥32KT

2

ψd Z

2

3

×

Y Fa Y Sa

[σF]

=

32×1.62×194.9×1000×0.02712

1×25

2= 3.0 mm 3.0≤3所以强度足够。

(3) 各齿轮参数如下:

大小齿轮分度圆直径:

d3 = 75 mm

d4 = 261 mm

b = ψd×d3 = 75 mm

b圆整为整数为:b = 75 mm

圆整的大小齿轮宽度为:b3 = 80 mm b4 = 75 mm

搅拌器毕业设计--(很实用)

搅拌器毕业设计 第一章绪论 搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下:(结构图) 第一节搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的

分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等); ⑥强化传热。 搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。 第二节搅拌物料的种类及特性 搅拌物料的种类主要是指流体。在流体力学中,把流体分为牛顿型和非牛顿型。非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。在搅拌设备中由于搅拌器的作用,而使流体运动。 第三节搅拌装置的安装形式 搅拌设备可以从不同的角度进行分类,如按工艺用途分、搅拌器结构形式分或按搅拌装置的安装形式分等。一下仅就搅拌装置的各种安装形式进行分类说明。 一、立式容器中心搅拌 将搅拌装置安装在历史设备筒体的中心线上,驱动方式一般为皮带传动和齿轮传动,用普通电机直接联接。一般认为功率3.7kW一下为小型,5.5~22kW为中型。本次设计中所采用的电机功率为18.5kW,故为中型电机。

330 混凝土搅拌机结构设计

混凝土搅拌机结构设计 摘要: 随着我国经济建设和科学技术的迅速发展, 基础性建设规模的不断扩大和生产自动化更 多的用于生产,建筑机械在经济建设中起着越来越重要的作用。混凝土搅拌设备是建筑机械 中的一个重要代表,它是混凝土生产的一个关键设备。由于混凝土搅拌设备的工作对象是砂 石和水泥等混合料,并且用量大,工作环境恶劣。因此混凝土搅拌设备在向高技术、高效能、 自动化、智能化的方向发展有很大的必要性。 本次设计主要包含搅拌桶的设计、料斗的设计等。依据国家的相关标准,在零部件、材 料、结构工艺等方面设计出结构合理的、满足要求生产需要的混凝土搅拌设备。重点研究搅 拌桶和料斗的设计、制造。对的涉及的零部件进行设计、校核,对各部件提出细化的参数内 容,待各零件的尺寸正式确定后,进行总体布置,满足各种要求。 重点研究搅拌桶的设计、制造。对的涉及的零部件进行设计、校核,对各部件提出细化 的参数内容,待各零件的尺寸正式确定后,进行总体布置,满足各种要求。 关键词:料仓、混凝土搅拌机、螺旋输送机。

Concrete mixer structure design ABSTRACT: Along with our country economic development , the science and technology develop rapid, the foundational construction scale unceasing expansion and the production automation more useful in the production, constructs the machinery to play the more and more vital role in the economic development.The concrete agitation equipment is an important representative who constructs in the machinery, it is a concrete production essential equipment.Because the concrete agitation equipment work object is blends and so on sand and crushed stone and cement, and the amount used is big, the working conditions are bad. Therefore the concrete agitation equipment in to high-tech, the high efficiency, automated, the intellectualized direction develops has the very big necessity. Despite the continuous development of material handling technology, but as the cart is still indispensable transportation tool still in use. This design consists mainly of design, hopper mixing barrel of design, etc. On the basis of the national standards, in parts, materials and structure technology designed structure reasonable and meet the requirements of production need concrete mixing equipment. Key research mixing barrel and hopper of design, manufacturing. The parts were involved in the design, checking, put forward the thinning of parts for various parts, parameters of content, size officially decided after general layout, meet various demands. Key research mixing barrel of design, manufacturing. The parts were involved in the design, checking, put forward the thinning of parts for various parts, parameters of content, size officially decided after general layout, meet various demands. KEYWORDS: Bunker; concrete mixer,;spiral conveyer。

设计带式输送机传动装置机械设计说明书

设计带式输送机传动装置 机械设计说明书 Revised by BLUE on the afternoon of December 12,2020.

机械设计基础课程设计 计算说明书 设计题目带式运输机上的单级圆柱齿轮减速器 系机电工程系专业数控技术 班级 设计者 指导教师 2011年 07 月 12 日

目录 一、设计任务书 0 二、带式运输送机传动装置设计 (1) 三、普通V带传动的设计 (5) 四、直齿圆柱齿轮传动设计 (6) 五、低速轴系的结构设计和校核 (9) 六、高速轴结构设计 (16) 七、低速轴轴承的选择计算 (18) 八、低速轴键的设计 (19) 九、联轴器的设计 (20) 十、润滑和密封 (20) 十一﹑设计小结 (21) 参考资料 (22)

一.设计任务书 一.设计题目 设计带式输送机传动装置。 二.工作条件及设计要求 1.设计用于带式运输机的传动装置。 2.该机室内工作,连续单向运转,载荷较平稳,空载启动。运输带速允许误差为 5%。 3.在中小型机械厂小批量生产,两班制工作。要求试用期为十年,大修期为3年。 三.原始数据 第三组选用原始数据:运输带工作拉力F=1250N 运输带工作速度V=s 卷筒直径D=240mm 四.设计任务 1.完成传动装置的结构设计。 2.完成减速器装备草图一张(A1)。 3.完成设计说明书一份。 二.带式运输送机传动装置设计 电动机的选择 1.电动机类型的选择:按已知的工作要求和条件,选用Y型全封闭笼型三相异步电动机 2.电动机功率的选择: P=Fv/1000=1250*1000= E

传动装置机械设计

1.设计任务书 一、设计题目:链板式运输机传动装置 1—电动机;2、4—联轴器;3—圆锥-圆柱斜齿轮减速器; 5—开式齿轮传动;6—输送链的小链轮 二、原始数据及工作要求 组 别 链条有效拉 力 F(N) 链条速 度 V(m/s) 链节 距 P(mm) 小链轮齿 数 Z 1 i 开 寿命 (年) 110000173~610 210000193~610 312000213~610 411000213~610 511000193~610 612000213~610 每日两班制工作,传动不逆转,有中等冲击,链速允许误差为±5%。 三、设计工作量设计说明书1份;减速器装配图,零号图1张;零件工作图 2张(箱体或箱盖,1号图;中间轴或大齿轮,1号或2号图)。 四、参考文献 1.《机械设计》教材 2.《机械设计课程设计指导书》

3.《机械设计课程设计图册》 4.《机械零件手册》 5.其他相关书籍四、进度安排

学生姓名: 学号: 专业:机械设计制造及其自动化 班级: 指导教师: 2009年12月14日 2.传动装置的总体方案设计 .传动方案分析 (1).圆锥斜齿轮传动 圆锥斜齿轮加工较困难,特别是大直径、大模数的圆锥齿轮,只有在需要改变轴的布置方向时采用,并尽量放在高速级和限制传动比,以减小圆锥齿轮的直径和摸数。所以将圆锥齿轮传动放在第一级用于改变轴的布置方向 (2).圆柱斜齿轮传动 由于圆柱斜齿轮传动的平稳性较直齿圆柱齿轮传动好,常用传动平稳的场合。 因此将圆柱斜齿轮传动布置在第二级。 (3). 开式齿轮传动

由于润滑条件和工作环境恶劣,磨损快,寿命短,故应将其布置在低速级。 (4).链式传动 链式传动运转不均匀,有冲击,不适于高速传动,应布置在低速级。所以链式传动 布置在最后。 因此,圆锥斜齿轮传动—圆柱斜齿轮传动—开式齿轮传动—链式传动,这样的传动 方案是比较合理的。 .电动机选择 链轮所需功率 kw 85.31000 35 .0110001000=?== Fv P W 取η1=(联轴器), η2=(圆锥齿轮) , η3=(圆柱斜齿轮), η4=(开式齿轮), η5=(链轮); η=η2×η3× η4×η5= 电动机功率 P d =P w / η= kw 链轮节圆直径 255.6mm )21/180sin(1 .38)/180(sin === z P D 链轮转速 26.25r/min 6 .25535 .0100060100060n =???=?= ππD v 由于二级圆锥—圆柱齿轮传动比i 1’=8~40, 开式齿轮传动比i 2’=3~6 则电动机总传动比为 ia ’=i 1’×i 2’=24~240 故电动机转速可选范围是n d ’=ia ’×n=(120~360)×=~6288r / min 在此范围内电动机有Y132S-4和Y132M2-6,且Y132M2-6的传动比小些 故选电动机型号为Y132S-4 .总传动比确定及各级传动比分配 由电动机型号查表得n m =1440 r / min ;故ia=n m / n=1440 / =55 取开式齿轮传动比i 3=;圆锥斜齿轮传动比i 1=;故圆柱斜齿轮传动比i 2=4

卷扬机传动装置设计说明书

XX大学 机械设计说明书题目:卷扬机传动装置设计 系别: 班级: 组别: 组员: 指导教师:

目录 1.背景6 1.1机械传动6 1.1.1带传动6 1.1.2齿轮传动6 1.1.3链传动7 1.1.4蜗轮蜗杆传动7 1.1.5螺旋传动7 1.2电力传动8 1.3液压传动8 1.4减速器发展状况8 2.设计任务书9 2.1设计题目9 2.2设计任务10 2.3具体任务10 2.4数据表10 3.方案拟定与论证比较10 3.1方案拟定10 3.2方案论证与定性比较12 4.详细设计与计算13 4.1原动机选择13 4.2计算总传动比并分配各级传动比14 4.3计算各轴的运动学及动力学参数14

4.4 V带设计15 4.5齿轮设计17 4.5.1高速级斜齿圆柱齿轮的设计17 4.5.2低速级直齿圆柱齿轮的设计20 4.6轴的强度与结构设计22 4.6.1齿轮高速轴的设计22 4.6.2齿轮中间轴的设计27 4.6.3齿轮低速轴的设计29 4.6.4轴承的寿命校核31 4.6.5轴的弯扭结合强度校核36 4.7整体结构设计36 4.7.1确定箱体的尺寸与形状36 4.7.2选择材料与毛坯制造方法36 4.7.3箱体的润滑与密封设计36 4.7.4减速器附件结构设计36

卷扬机传动装置的设计 1.背景 一般工程技术中使用的动力传递方式有机械传动、电气传动、液体传动、气压传动以及由它们组合而成的复合传动。 1.1机械传动 机械传动按传力方式分,可分为摩擦传动和啮合传动,摩擦传动又分为摩擦轮传动和带传动等,啮合传动可分为齿轮传动、蜗轮蜗杆传动、链传动等等;按传动比又可分为定传动比和变传动比传动。 1.1.1带传动 皮带传动是由主动轮、从动轮和紧张在两轮上的皮带所组成。由于张紧,在皮带和皮带轮的接触面间产生了压紧力,当主动轮旋转时,借摩擦力带动从动轮旋转,这样就把主动轴的动力传给从动轴。 皮带传动的特点: 1)可用于两轴中心距离较大的传动。 2)皮带具有弹性、可缓冲和冲击与振动,使传动平稳、噪声小 3)当过载时,皮带在轮上打滑,可防止其它零件损坏。 4)结构简单、维护方便。 5)由于皮带在工作中有滑动,故不能保持精确的传动比。 1.1.2齿轮传动 齿轮传动是由分别安装在主动轴及从动轴上的两个齿轮相互啮合而成。齿轮传动是应用最多的一种传动形式。 它有如下特点: 1)能保证传动比稳定不变。 2)能传递很大的动力。 3) 结构紧凑、效率高。 4)制造和安装的精度要求较高。 5)当两轴间距较大时,采用齿轮传动就比较笨重

第五节车轮传动装置设计

第五节 车轮传动装置设计 车轮传动装置位于传动系的末端,其基本功用是接受从差速器传来的转矩并将其传给车 轮。对于非断开式驱动桥,车轮传动装置的主要零件为半轴;对于断开式驱动桥和转向驱动 桥(图5—27),车轮传动装置为万向传动装置。万向传动装置的设计见第四章,以下仅讲 述半轴的设计。 一、结构形式分析 半轴根据其车轮端的支承方式不同,可分为半浮式、3/4浮式和全浮式三种形式。 半浮式半轴(图5—28a)的结构特点是半轴外端支承轴承位于半轴套管外端的内孔, 车轮装在半轴上。半浮式半轴除传递转矩外,其外端还承受由路面对车轮的反力所引起的全 部力和力矩。半浮式半轴结构简单,所受载荷较大,只用于轿车和轻型货车及轻型客车上。 3/4浮式半轴(图5—28b)的结构特点是半轴外端仅有一个轴承并装在驱动桥壳半轴套 管的端部,直接支承着车轮轮毂,而半轴则以其端部凸缘与轮毂用螺钉联接。该形式半轴受 载情况与半浮式相似,只是载荷有所减轻,一般仅用在轿车和轻型货车上。 二、半轴计算 1.全浮式半轴 全浮式半轴的计算载荷可按车轮附着力矩?M 计算 (5-43) 式中,2G 为驱动桥的最大静载荷;r r 为车轮滚动半径;2 m '为负荷转移系数;?为附着系数,计算时?取0.8。 半轴的扭转切应力为 316d M πτ? = (5-44) 式中,τ为半轴扭转切应力;d 为半轴直径。 半轴的扭转角为 πθ?p GI l M 180 = (5-45) 式中,θ为扭转角;l 为半轴长度;G 为材料剪切弹性模量;p I 为半轴断面极惯性矩, 32 4d I p π=。 半轴的扭转切应力宜为500~700MPa ,转角宜为每米长度6°~15°。 2。.半浮式半轴 半浮式半轴设计应考虑如下三种载荷工况: (1)纵向力2x F 最大,侧向力2y F 为0:此时垂向力2z F 222G m =,纵向力最大值 ??22 22G m F F z x '==/2,计算时2m '可取1.2,?取0.8。 半轴弯曲应力σ和扭转切应力τ为

小型搅拌器三维造型设计及关键零部件工艺设计

小型搅拌器三维设计及关键零部件工艺分析 摘要 搅拌设备使用历史悠久,应用范围广。在化学工业、石油工业、建筑行业等等传统工业中均有广泛的使用。搅拌操作看来似乎简单,但实际上,它所涉及的内容却极为广泛。本文介绍了小型搅拌器设计的基本思路和基本理论,分析了搅拌器的基本结构及其相关内容及搅拌器的运动和其动力装置。通过对搅拌器的基本设备的描述和对其基本工作原理、作用和功能等相关文献的参考,从而对小型搅拌器的设计加以综述。用pro/e 设计软件对搅拌器的零部件和整体进行三维设计。并对关键的零部件进行了工艺分析。 关键词:传动装置,联轴器,支承装置,电动机,减速器

The 3D Design of Small Blender and the Process analysis for the Key components Author:Du Bing Tutor:Yang Hansong Abstract The equipment of pulsator have a long history and are used in most areas. meawhile pulsator are used in tradition industry such as chemistry industry,petroleum industry,architecture industry and so on. The operation of mix round looks as if simpleness,but actually,the ingredient it involved are plaguy complexity. Tht text introduces the basic consider way and the basic theoretics of small pulsator design,and analyzed the basic configuration of pulsator and interfix content and analyzed the athletics and motivity equipment of describe the basic fixture of pulsator and consult its basic employment principle,function and operation,thereby summarize the design of small https://www.360docs.net/doc/d97215438.html,ing Pro/e software to draw a stirrer on the components and the overall three-dimensional image.And the analysis of key parts of the process. Key word: Gearing,Join shaft ware,Bearing device,Electromotor,Reducer 目录

搅拌机传动装置设计说明书

搅拌机传动装置设计说明书 学院: 专业: 班级: 学号: :

第一章、设计题目,任务及具体作业 一、设计题目 二、设计任务 三、具体作业 第二章、确定传动方案 第三章、选择电动机 一、选择电动机类型和结构形式 二、选择电动机的容量 三、确定电动机的转速 四、传动装置的总传动比 五、传动装置的运动和动力参数 六、各轴的转速、功率和转矩 第四章、齿轮的设计及参数计算 一、选定齿轮类型、精度等级、材料及齿数 二、高速级直齿圆柱齿轮设计计算 三、低速级直齿圆柱齿轮设计计算 四、各齿轮主要的相关参数 第五章、联轴器的选择 第六章、轴系零件的设计计算 一、高速轴 二、中速轴

三、低速轴 第七章、减速器的润滑、密封的选择 第八章、箱体及附件的结构设计及选择 一、箱体的结构 二、箱体上附件的设计 第九章、心得体会 第十章、参考文献 第一章设计题目、任务及具体作业一、设计题目 用于搅拌机的传动装置,传动装置简图(如图1-1所示)。

工作环境灰尘较大。 2.原始数据:工作机输入功率7kw,工作机主轴转速90r/min 3.使用期限:工作期限为八年。 4.生产批量及加工条件:小批量生产。 二、设计任务 1.选择电动机型号; 2.设计减速器; 3.选择联轴器。 三、具体作业 1.减速器装配图一; 2.零件工作图二(大齿轮,输出轴); 3.设计说明书一份. 第二章确定传动方案 由已知条件可知双螺旋搅拌机主轴转速为90r/min。查机械设计手册中推荐的Y系列三相异步电动机的技术数据可知,常用的有四种转速,即3000、1500、

1000、750r/min。由经济上考虑可选择常用同步转速为3000、1500、1000r/min 。因此减速器的传动比大致在11—33之间,而当传动比i>8时,宜采用二级以上的传动形式,因此结合传动比选用二级展开式圆柱齿轮减速器,减速器与电动机采用联轴器,因有轻微震动,所以用弹性联轴器与电机相连。 1---电动机2—联轴器3—减速器4—联轴器5---工作机主轴二级展开式圆柱齿轮减速器为二级减速器中应用最为广泛的一种,但齿轮相对于轴承的位置不对称,要求轴具有较大的刚度。输入输出轴上的齿轮常布置在远离轴输入、输出端的一边,样轴在转矩作用下产生的扭转变形和轴在弯矩作用下产生的弯曲变形可部分地互相抵消,以减缓沿齿宽载荷分布不均匀的现象。高速齿常用斜齿,低速轮可用斜齿或直齿,常用于载荷分布均匀的场合。

手动变速器毕业设计说明书

1选题背景 (3) 1.1问题的提出 (3) 1.2文献综述(即研究现状) (4) 1.3设计的技术要求及指标 (5) 2机构选型 (6) 2.1设计方案的提出 (6) 2.2设计方案的确定 (8) 3尺度综合 (10) 3.1机构关键尺寸计算 (10) 4受力分析 (17) 4.1机构动态静力描述 (17) 5机构建模 (18) 5.1机构运动简图及尺寸标注 (18) 5.2机构关键构件建模过程 (19) 5.3机构总体装配过程 (25) 6机构仿真 (28) 6.1机构仿真配置 (28) 6.2机构仿真过程描述 (28) 6.3仿真参数测量及分析 (30) 6.4仿真中存在的不足 (33) 7设计总结 (34) 8收获及体会 (34) 9致谢 (35)

本设计的任务是设计一台用于轿车上的五档手动变速器。合理的设计和布置变速器能使发动机功率得到最合理的利用,从而提高汽车动力性和经济性。 设计部分叙述了变速器的功用与设计要求,对该变速器进行了方案论证,选用了三轴式变速器。说明了变速器主要参数的确定,齿轮几何参数的计算、列表,齿轮的强度计算。 该变速器具有两个突出的优点:一是其直接档的传动效率高,磨损及噪声也最小;二是在齿轮中心距较小的情况下仍然可以获得较大的一档传动比。 关键词:变速器齿轮轴

1选题背景 1.1 问题的提出 从现在市场上不同车型所配置的变速器来看,主要分为:手动变速器(MT)、自动变速器(AT)、手动/自动变速器(AMT)、无级变速器(CVT)。 手动变速器(Manual Transmission)采用齿轮组,每档的齿轮组的齿数是固定的,所以各档的变速比是个定值(也就是所谓的“级” )。比如,一档变速比是3.85,二档是2.55,再到五档的0.75,这些数字再乘上主减速比就是总的传动比,总共只有5个值(即有5级),所以说它是有级变速器。 曾有人断言,繁琐的驾驶操作等缺点,阻碍了汽车高速发展的步伐,手动变速器会在不久“下课”,从事物发展的角度来说,这话确实有道理。但是从目前市场的需求和适用角度来看,笔者认为手动变速器不会过早的离开。 首先,从商用车的特性上来说,手动变速器的功用是其他变速器所不能替代的。以卡车为例,卡车用来运输,通常要装载数吨的货品,面对如此高的“压力”,除了发动机需要强劲的动力之外,还需要变速器的全力协助。我们都知道一档有“劲”,这样在起步的时候有足够的牵引力量将车带动。特别是面对爬坡路段,它的特点显露的非常明显。而对于其他新型的变速器,虽然具有操作简便等特性,但这些特点尚不具备。 其次,对于老司机和大部分男士司机来说,他们的最爱还是手动变速器。从我国的具体情况来看,手动变速器几乎贯穿了整个中国的汽车发展历史,资历郊深的司机都是“手动”驾车的,他们对手动变速器的认识程度是非常深刻的,如果让他们改变常规的做法,这是不现实的。虽然自动变速器以及无级变速器已非常的普遍,但是大多数年轻的司机还是崇尚手动,尤其是喜欢超车时手动变速带来的那种快感,所以一些中高档的汽车(尤其是轿车)也不敢轻易放弃手动变速器。另外,现在在我国的汽车驾驶学校中,教练车都是手动变速器的,除了经济适用之外,关键是能够让学员打好扎实的基本功以及锻炼驾驶协调性。 第三,随着生活水平的不断提高现在轿车已经进入了家庭,对于普通工薪阶级的老百姓来说,经济型轿车最为合适,手动变速器以其自身的性价比配套于经济型轿车厂家,而且经济适用型轿车的销量一直在车市名列前茅。例如,夏利、奇瑞、吉利等国内厂家的经济型轿车都是手动变速的车,它们的各款车型基本上都是5档手动变速。

搅拌机中文说明书

安装手册 台式搅拌机 Model:Y66 操作之前,请仔细阅读本说明 技术参数:额定电压AC220V-240V~50/60Hz(500W)

安全使用需知 使用电器前,请严格遵守以下基本的安全预防措施: 1.使用前请通读使用说明书。 2.为防止触电危险,请把电器部件远离水和其他液体。 3.当儿童靠近或使用电器时,请密切陪同监督。 4.在组装、拆卸或清洁电器前,请先从插座拔出电源。 5.避免接触运动物体. 6.本产品具有极性插头,为避免触电危险,插头只能从一端插入具有极性 的插座,如果插头跟插座不能完全吻合,试用插头的另一端,如果仍然不行,请与专业的电工联系,不要擅自对插头做任何改动。 7.如电线或插头有损坏,电器设备发生故障或以任何方式掉落,遭受请不 要使用,将该电器送到最近的授权服务商进行检查,维修或电器调整。 8.请在制造商的推荐下使用相关配件,包括杯盖,否则可能导致人身伤害 的危险。 9.不要在户外使用本品。 10.不要将电线悬挂于桌子或柜子边缘。 11.使用搅拌器时,严禁将双手及餐具放入杯搅拌或研麿中,以防对他人造 成严重伤害或损坏搅拌器,可以使用刮刀,但前提是搅拌器必须停止运行。 12.刀锋尖利,小心使用。 13.为减少伤亡危险,在没有盖杯盖的情况下,千万不能将刀片组件置于搅 拌器底座。 14.使用前,请确认杯盖是安全到位盖上的。 15.搅拌热液体时,将两片罐盖中的中间那片拿开。 16.在搅拌器杯没有装任何食物或水的情况下,不要启用电器。

17.请不要把产品将设备用于除说明书上标明外的其他用途。 妥善保管此说明书 首次使用前: 首次使用前,应彻底清洁搅拌机的各部件。 从位于搅拌器底座的绕线器上取出所需长度的电线,并将其连接交流电源。玻璃搅拌杯的组装: 1.将橡皮密封圈(4)置于刀片装置(5)的内侧。 2.将刀片装置,密封圈和固定环放入杯座内,注意密封圈应放在玻璃杯与 刀片中间,而不是放在刀与杯座中间,否则不能过到密封效果。 3.将玻璃杯置于底座装置之上,并调整杯座装置。顺时针调整杯座装置可 玻璃杯固定。 4.将相关部件组装于杯内之后,按压,将杯盖(2)固定于杯子之上 5.将中盖插入杯盖中,逆时针调整中盖可将其固定。 6.将刀片装置和密封环置于底座之中。 7.研磨杯杯盖第一次使用时,盖子有点紧。开盖方式:左手握透明杯盖, 右手握杯座,左手逆时针方向旋转。 插入不锈钢壶 1.确认已切断搅拌器的电源(调到“O”标志处)。 2.将整个搅拌杯(9)放置于马达(7)上,用力按压直到完全安全地固定。使用方法: 1.将您想要的搅拌的食物放入不锈钢壶中。 2.将不锈钢壶的盖口安全盖紧。将量杯放入盖口的小洞中并顺时针盖好。 3.启动马达机组: 速度作用 1(慢速) 用于搅拌液体等

搅拌器设计说明书

摘要 瓦斯是煤矿生产中的很难管理控制的一种危险隐患,同时也是一种能源及化工资源。为了做好瓦斯抽放,搞好瓦斯的防治工作,提高瓦斯的资源利用率。所以,必须再瓦斯抽放过程中确保无瓦斯泄漏,务必把抽放钻孔封堵完备。这就需要使用封填材料,而此材料是一种混合浆液,需要用搅拌设备将其搅拌均匀。而搅拌设备使用历史悠久,应用范围广。在化学工业、石油工业、建筑行业等等传统工业中均有广泛的使用。搅拌操作看来似乎间单,单实际上,它所涉及的因素却极为复杂。本文介绍了小型搅拌器设计的基本思路和基本理论,分析了搅拌器的基本结构及其相关内容,阐述了搅拌器的运动及其动力装置。通过对搅拌器的基本设备的描述和对其基本工作原理、作用和功能等相关文献的参与,从而对小型搅拌器的设计加以综述。 关键词:传动装置搅拌桨叶支撑装置风动马达轴封

Abstract Gas drill holes sealing system mixing part of the design and analysis The gas is difficult to manage in the coal mine production control of a dangerous hidden, And also a kind of energy and chemical resources. In order to carry gas drainage , improve the prevention and control of the gas , improve the utilization of gas resources. And also a kind of energy and chemical resources. In order to carry gas drainage , improve the prevention and control of the gas , improve the utilization of gas resources. The operation of mix round looks as if simpleness, but actually, the ingredient it involved are plaguy of small pulsator design, and analyzed the basic configuration of pulsator and interfix content and analyzed the athletics and motivity equipment of pulsator. Overpass describe the basic fixture of pulastor and consult its basic employment principle. Function and operation, thereby summarize the design of small pulsator. Key word: gearing mixing blades bearing device pneumatic motor shaft seal

搅拌桨叶的选型和设计计算

第二节搅拌桨叶的设计和选型一、搅拌机结构与组成 组成:搅拌器电动机 减速器容器 排料管挡板 适用物料:低粘度物料 二、混合机理 利用低粘度物料流动性好的特性实现混合 1、对流混合 在搅拌容器中,通过搅拌器的旋转把机械能传给液体物料造成液体的流动,属强制对流。包括两种形式: (1)主体对流:搅拌器带动物料大范围的循环流动 (2)涡流对流:旋涡的对流运动 液体层界面强烈剪切旋涡扩散 主体对流宏观混合 涡流对流 2、分子扩散混合 液体分子间的运动微观混合 作用:形成液体分子间的均匀分布 对流混合可提高分子扩散混合 3、剪切混合 剪切混合:搅拌桨直接与物料作用,把物料撕成越来越薄的薄层,达到混合的目的。 高粘度过物料混合过程,主要是剪切作用。 电 动 机 减速器 搅 拌 器 容 器 排料管

三、混合效果的度量 1、调匀度I 设A 、B 两种液体,各取体积vA 及vB 置于一容器中, A B A B a b 则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后,在容器各处取样分析实际体积浓度CA ,比较CA0 、CA , 若各处 CA0=CA 则表明搅拌均匀 若各处 CA0=CA 则表明搅拌尚不均匀,偏离越大,均匀程度越差。 引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为: (当样品中CA CA0时) 或 (当样品中CA CA0时) 显然 I ≤1 若取m 个样品,则该样品的平均调匀度为 当混合均匀时 2、混合尺度 设有A 、B 两种液体混合后达到微粒均布状态。 B A A A V V V C +=00A A C C I =0 11A A C C I --=m I I I I m +??++=- 211 =- I

设计带式输送机传动装置-机械设计说明书

机械设计基础课程设计 计算说明书 设计题目带式运输机上的单级圆柱齿轮减速器系机械系专业材料成型及控制工程班级 15-1 设计者孙新凯 指导教师 2017年 06 月 12 日

目录 一、设计任务书 0 二、带式运输送机传动装置设计 (1) 三、普通V带传动的设计 (4) 四、斜齿圆柱齿轮传动设计 (6) 五、滚动轴承和传动轴的设计 (10) 六、轴键的设计 (18) 七、联轴器的设计 (18) 八、润滑和密封 (19) 九、设计小结 (20) 十、参考资料 (20) 一.设计任务书 一.设计题目 设计带式输送机传动装置。 二.工作条件及设计要求

1.工作条件:两班制,连续单项运转,载荷较平稳室内工作,有粉 尘,环境最高温度35℃; 2.使用折旧期:8年; 3.检查间隔期:四年一次大修,两年一次中修,半年一次小修; 4.动力来源:电力,三相交流,电压380/220V 5. 运输带速允许误差为 5%。 6.制造条件及批量生产:一般机械厂制造,小批量生产。 三.原始数据 第二组选用原始数据:运输带工作拉力F=2200N 运输带工作速度V=s 卷筒直径D=240mm 四.设计任务 1.完成传动装置的结构设计。 2.完成减速器装备草图一张(A1)。 3.完成设计说明书一份。 二.带式运输送机传动装置设计 电动机的选择 1.电动机类型的选择:按已知的工作要求和条件,选用Y型全封闭笼

型三相异步电动机 2.电动机功率的选择: E P =Fv/1000=2200*1000= 3.确定电动机的转速:卷筒工作的转速 W n =60*1000/(π*D)=60*1000**240)=min 4.初步估算传动比:由《机械设计基础》表14-2,单级圆柱齿轮减速器传动比=6~20 电动机转速的可选范围; d n =i ∑· v w n =(6~20)=~ r/min 因为根据带式运输机的工作要求可知,电动机选1000r/min 或1500r/min 的比较合适。 5.分析传动比,并确定传动方案 (1)机器一般是由原动机,传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力,变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作的性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要结构简单,制造方便,成本低廉,传动效率高和使用维护方便。 本设计中原动机为电动机、工作机为皮带输送机。传动方案采用两级传动,第一级传动为带传动,第二级传动为单级圆柱齿轮减速器 选用V 带传动是V 带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可以缓和和冲击振动。 齿轮传动的传动效率高,使用的功率和速度范围广、使用寿命较

搅拌机设计流程

摘要 搅拌机是搅拌设备的心脏。在搅拌机设计及使用过程中,合理的选取搅拌机的结构,运动和工作参数,直接关系到混凝土等材料的搅拌质量和搅拌效率。论文对搅拌臂的排列、搅拌叶片的安装角、拌筒长宽比、搅拌机转速和搅拌时间等主要参数的选取进行分析与试验研究。通过归纳,给出了双卧轴搅拌机的主要参数,包括搅拌臂排列、叶片安装角、拌筒长宽比、搅拌线速度等;给出了评价搅拌机参数合理与否的准则;给出了搅拌臂排列的基本原则。论文通过试验研究,建议用叶片推动的物料量与该搅拌机的公称容量的比值rl,来综合评定搅拌臂的个数,叶片面积和其他参数匹配的合理性,并作为设计时的参考;双卧轴搅拌机的叶片的安装角范围为3l一45,对国内广泛使用的宽短型双卧轴搅拌机叶片安装角度推荐为45;对目前国内外普遍使用的双卧轴搅拌机,它的长宽比的选择范围为0.7—1.3,推荐使用值为小于1;搅拌机的转速主要受搅拌过程中混合料不发生离析现象所限制,对目前常用的双卧轴搅拌机,推荐的叶片线速度为1.4m /s-1.7m/s/;合理的搅拌时间是保证搅拌质量符合要求条件下的最短搅拌时间,它受充盈率等多种因素影响,合理的搅拌时间应通过试拌来确定。 [关键词]:搅拌机、主要参数、合理性、实验研究

第1章前言 1.1国内外研究现状及发展趋势 19世纪40年代,在德、美、俄等国家出现了以蒸气机为动力源的白落式搅拌机,其搅拌腔由多面体状的木制筒构成,一直到19世纪80年代,才开始用铁或钢件代替木板,但形状仍然为多面体。1888年法国申请登记了第一个用于修筑战前公路的混凝土搅拌机专利。20世纪初,圆柱形的拌筒自落式搅拌机才开始普及,其工作原理如图1.2所示。形状的改进避免了混凝土在拌筒内壁上的凝固沉积,提高了搅拌质量和效率。1903年德国在斯太尔伯格建造了世界上第一座水泥混凝土的预拌工厂。1908年,在美国出现了第一台内燃机驱动的搅拌机,随后电动机则成为主要动力源。从1913年,美国开始大量生产预拌混凝土,到1 950年,亚洲大陆的日本开始用搅拌机生产预拌混凝土。在这期间,仍然以各种有叶片或无叶片的自落式搅拌机的发明与应用为主?。自落式搅拌机依靠被拌筒提升到一定高度的物料的自落完成搅拌。工作时,随着拌筒的转动,物料被搅拌筒内壁固定的叶片提升到一定高度后,依靠自重下落。由于各物料颗粒下落的高度、时问、速度、落点和滚动距离不同,从而物料各颗粒相互穿插、渗透、扩散,最后达到均匀混合。自落式搅拌机结构简单,可靠性高,维护简单,功率消耗小,拌筒和叶片磨损轻,但搅拌强度不高,生产效率低,搅拌质量不易保证。此种搅拌机适于拌制普通塑性混凝土,广泛应用于中小型建筑工地。按拌筒形状和卸料方式的不同,有鼓筒式搅拌机、双锥反转出料搅拌机、双锥倾翻出料搅拌机和对开式搅拌机等,其中鼓简式搅拌机技术性能落后,已于1987年被我国建设部列为淘汰产品。随着多种商品混凝土的广泛使用以及建筑规模的大型化、复杂化和高层化对混凝土质量、产量不断提出的更高要求,有力地促进了混凝土搅拌设备在使用性能和技术水平方面的提高与发展。各国研究人员开始从混凝土搅拌机的结构形式、传动方式、搅拌腔衬板材料以及搅拌生产工艺等方面进行改进和探索。20世纪40年代后期,德国ELBA公司最先发明了强制式搅拌机,和自落式搅拌机的工作原理不同,强制式搅拌机利用旋转的叶片强迫物料按预定轨迹产生剪切、挤压、翻滚和抛出等强制搅拌作用,使物料在剧烈的相对运动中得到匀质搅拌。强制式

搅拌器毕业设计说明书

第一章绪论 搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下:(结构图) 第一节搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。 搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。 第二节搅拌物料的种类及特性 搅拌物料的种类主要是指流体。在流体力学中,把流体分为牛顿型和非牛顿型。非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。在搅拌设备中由于搅拌器的作用,而使流体运动。 第三节搅拌装置的安装形式 搅拌设备可以从不同的角度进行分类,如按工艺用途分、搅拌器结构形式分或按搅拌装置的安装形式分等。一下仅就搅拌装置的各种安装形式进行分类说明。 一、立式容器中心搅拌 将搅拌装置安装在历史设备筒体的中心线上,驱动方式一般为皮带传动和齿轮传动,用普通电机直接联接。一般认为功率3.7kW一下为小型,5.5~22kW为中型。本次设计中所采用的电机功率为18.5kW,故为中型电机。 二、偏心式搅拌 搅拌装置在立式容器上偏心安装,能防止液体在搅拌器附近产生“圆柱状回转区”,可以产生与加挡板时相近似的搅拌效果。搅拌中心偏离容器中心,会使液流在各店所处压力不同,因而使液层间相对运动加强,增加了液层间的湍动,使搅拌效果得到明显的提高。但偏心搅拌容易引起振动,一般用于小型设备上比较适合。 三、倾斜式搅拌 为了防止涡流的产生,对简单的圆筒形或方形敞开的立式设备,可将搅拌器用甲板或卡盘直接安装在设备筒体的上缘,搅拌轴封斜插入筒体内。 此种搅拌设备的搅拌器小型、轻便、结构简单,操作容易,应用范围广。一般采用的功率为0.1~22kW,使用一层或两层桨叶,转速为36~300r/min,常用于药品等稀释、溶解、分散、调和及pH值的调整等。 四、底搅拌 搅拌装置在设备的底部,称为底搅拌设备。底搅拌设备的优点是:搅拌轴短、细,无中间轴承;可用机械密封;易维护、检修、寿命长。底搅拌比上搅拌的轴短而细,轴的稳定性好,既节省原料又节省加工费,

相关文档
最新文档