迅维BGA曲线

迅维BGA曲线
迅维BGA曲线

下面使用简化的曲线表:

PTN:1

适用物料无铅曲线(一般物料如INTEL南北桥)阶段 1 2 3 4 5

上加热温区165 185 215 235 245

下加热温区165 195 225 245 260

时间40 40 40 45 45

预热温区建议值 100(夏季) 150(冬季)室温对曲线有极大影响,需灵活调节PTN:2

适用物料无铅曲线(无铅775接口 CPU座)

阶段 1 2 3 4 5

上加热温区165 195 215 245 260

下加热温区165 195 235 245 270

时间40 40 40 50 50

预热温区建议值 100(夏季) 150(冬季)室温对曲线有极大影响,需灵活调节PTN:3

适用物料有铅曲线(有铅775接口 CPU座 478CPU座)阶段 1 2 3 4 5

上加热温区100 165 215 235 245

下加热温区100 195 225 235 260

时间40 40 50 50 50

预热温区建议值 100(夏季) 150(冬季)室温对曲线有极大影响,需灵活调节PTN:4

适用物料无铅曲线(笔记本AMD、ATI等芯片,较薄的芯片)

无铅曲线(台机主板 NV 如NF4 等芯片)阶段 1 2 3 4 5

上加热温区70 110 165 205 225

下加热温区110 165 215 260 270

时间40 70 70 50 50

预热温区建议值 100(夏季) 150(冬季)室温对曲线有极大影响,需灵活调节ATI\NV桥芯片,PCB一般较薄,加热时,采取上温度温度低,下温区温度高的方法。上部温区不要超过260度,否则易鼓包(但部分芯片后鼓包后仍可正常使用)。

PTN:5

适用物料无铅曲线(笔记本NV等显卡曲线)

阶段 1 2 3 4 5

上加热温区165 195 215 235 245

下加热温区165 195 215 260 270

时间40 70 70 50 50

预热温区建议值 100(夏季) 150(冬季)室温对曲线有极大影响,需灵活调节

PTN:6

适用物料无铅曲线(无铅AMD接口 CPU座)

阶段 1 2 3 4 5 6

上加热温

165 195 215 245 260 290 区

下加热温

165 195 235 245 270 300 区

时间40 40 40 50 50 30

预热温区建议值 100(夏季) 150(冬季)室温对曲线有极大影响,需灵活调节

PTN:7

适用物料三星PM45桥取芯片曲线

阶段 1 2 3 4 5

上加热温区

165 185 215 235 245

下加热温区

165 195 225 245 260 时间40 40 40 45 45 预热温区200

PTN:8

适用物料三星PM45桥焊接曲线

阶段 1 2 3 4 5

上加热温区

70 160 180 200 220

下加热温区

70 160 190 220 145 时间40 40 40 45 45 预热温区200

最新小型台式回流焊炉温度曲线设置指导

小型台式回流焊炉温度曲线设置指导

小型台式回流焊炉温度曲线设置指导 文章来源:北京青云创新发布时间:2011-07-23 文字大小:大中小 红外回流焊接是SMT生产中十分重要的工艺过程,它是一种自动群焊过程,PCB上所有的焊点在短短几分钟之内一次完成,其焊接质量的好坏直接影响到产品的质量和可靠性,对于大多数电子产品,焊接质量基本上决定了产品质量。 为了保证焊接质量,关键就是设置好回流炉的温度曲线,面对一台新的小型台式回流炉,如何尽快设置合理的温度曲线呢?这就需要首先对回流焊接原理有充分的了解,其次对所使用的锡膏中金属成分与熔点、活性温度等特性有全面的了解,对回流炉的结构,包括可控加热段数、每段加热时间、可控最高温度、热风循环路径、加热器的大小及控温精度等有一个全面的认识,以及对焊接对象——表面贴装组件(SMA)尺寸、PCB层数、元件大小及元件分布有所了解。 本文将从分析回流焊接的工艺原理入手,结合典型的焊接温度曲线,详细地介绍如何正确设置小型台式回流炉的温度曲线。 一.回流焊接原理: 焊接学中,根据焊料的熔点,钎焊分为软钎焊和硬钎焊,熔点高于450℃的焊接为硬钎焊,熔点低于450℃的焊接为软钎焊。钎焊是采用比焊件(被焊接金属,或称母材)熔点低的金属材料作为钎料,将焊件和钎料加热到高于钎料熔点,低于焊件熔化温度,利用液态钎料润湿焊件,填充接头间隙并与焊件表面相互扩散实现焊接的方法。目前我们采用的回流焊都属于软钎焊。 在回流焊工艺中,一个完整焊点形成的过程如下: 1.表面清洁 随着温度上升,焊锡膏中溶剂逐渐挥发完全,助焊剂开始呈现活化作用,清理焊接界面,清除PCB焊盘和元件焊接端子上的氧化膜和污物。

如何正确设定回流炉温度曲线

如何正确设定回流炉温度曲线 前言 红外回流焊是SMT大生产中重要的工艺环节,它是一种自动群焊过程,成千上万个焊点在短短几分钟内一次完成,其焊接质量的优劣直接影响到产品的质量和可靠性,对于数字化的电子产品,产品的质量几乎就是焊接的质量。做好回流焊,人们都知道关键是设定回流炉的炉温曲线,有关回流炉的炉温曲线,许多专业文章中均有报导,但面对一台新的红外回流炉,如何尽快设定回流炉温度曲线呢?这就需要我们首先对所使用的锡膏中金属成分与熔点、活性温度等特性有一个全面了解,对回流炉的结构,包括加热温区的数量、热风系统、加热器的尺寸及其控温精度、加热区的有效长度、冷却区特点、传送系统等应有一个全面认识,以及对焊接对象--表面贴装组件(SMA)尺寸、组件大小及其分布做到心中有数,不难看出,回流焊是SMT工艺中复杂而又关键的一环,它涉及到材料、设备、热传导、焊接等方面的知识。 本文将从分析典型的焊接温度曲线入手,较为详细地介绍如何正确设定回流炉温度曲线,并实际介绍BGA以及双面回流焊的温度曲线的设定。 理想的温度曲线 图1 理想的温度曲线 图1是中温锡膏(Sn63/Sn62)理想的红外回流温度曲线,它反映了SMA通过回流炉时,PCB上某一点的温度随时间变化的曲线,它能直观反映出该点在整个焊接过程中的温度变化,为获得最佳焊接效果提供了科学的依据,从事SMT焊接的工程技术人员,应对理想的温度曲线有一个基本的认识,该曲线由四个区间组成,即预热区、保温区/活性区、回流区、冷却区,前三个阶段为加热区,最后一阶段为冷却区,大部分焊锡膏都能用这四个温区成功实现回流焊。故红外回流炉均设有4-5个温度,以适应焊接的需要。 为了加深对理想的温度曲线的认识,现将各区的温度、停留时间以及焊锡膏在各区的变化情况,介绍如下: (1)预热区 预热区通常指由室温升至150℃左右的区域。在这个区域,SMA平稳升温,在预热区,焊膏中的部分溶剂能够及时挥发,元器件特别是IC器件缓缓升温,以适应以后的高温。但SMA表面由于元器件大小不一,其温度有不均匀现象,在预热区升温的速率通常控制在1.5℃-3℃/sec。若升温太快,由于热应力的作用,导致陶瓷电容的细微裂纹、PCB变形、IC芯片损坏,同时锡膏中溶剂挥发太快,导致飞珠的发生。炉子的预热区一般占加热信道长度的1/4-1/3,其停留时间计算如下:设环境温度为25℃,若升温速率按3℃/sec计算则(150-25)/3即为42sec,若升温速率按1.5℃/sec计算则(150-25)/ 1.5即为85sec。通常根据组件大小差异程度调整时间以调控升温速率在2℃/sec以下为最佳。 (2)保温区/活性区 保温区又称活性区,在保温区温度通常维持在150℃±10℃的区域,此时锡膏处于熔化前夕,焊膏中的挥发物进一步被去除,活化剂开始激活,并有效地去除焊接表面的氧化物,SMA表面温度受热风对流的影响,不同大小、不同质地的元器件温度能保持均匀,板面温度差△T接近最小值,曲线形态接近水平状,它也是评估回流炉工艺性的一个窗口,选择能维持平坦活性温度曲线的炉子将提高SMA的焊接效果,特别是防止立碑缺陷的产生。通常保温区在炉子的二、三区之间,维持时间约60-120s,若时间过长也会导致锡膏氧化问题,以致焊接后飞珠增多。 (3)回流区 回流区的温度最高,SMA进入该区后迅速升温,并超出锡膏熔点约30℃-40℃,即板面温度瞬时达到215℃-225℃(此温度又称之为峰值温度),时间约为5-10sec,在回流区焊膏很快熔化,并迅速润湿焊盘,随着温度的进一步提高,焊料表面张力降低,焊料爬至组件引脚的一定高度,形成一个"弯月面"。从微观

回流炉温度曲线设定

怎样设定锡膏回流温度曲线 “正确的温度曲线将保证高品质的焊接锡点。” 约翰.希罗与约翰.马尔波尤夫(美) 在使用表面贴装元件的印刷电路板(PCB)装配中,要得到优质的焊点,一条优化的回流温度曲线是最重要的因素之一。温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表PCB上一个特定点上的温度形成一条曲线. 几个参数影响曲线的形状,其中最关键的是传送带速度和每个区的温度设定.带速决定机板暴露在每个区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该区的温度设定.每个区所花的持续时间总和决定总共的处理时间。 每个区的温度设定影响PCB的温度上升速度,高温在PCB与区的温度之间产生一个较大的温差.增加区的设定温度允许机板更快地达到给定温度。因此,必须作出一个图形来决定PCB的温度曲线。接下来是这个步骤的轮廓,用以产生和优化图形. 在开始作曲线步骤之前,需要下列设备和辅助工具:温度曲线仪、热电偶、将热电偶附着于PCB的工具和锡膏参数表.可从大多数主要的电子工具供应商买到温度曲线附件工具箱,这工具箱使得作曲线方便,因为它包含全部所需的附件(除了曲线仪本身)。 现在许多回流焊机器包括了一个板上测温仪,甚至一些较小的、便宜的台面式炉子。测温仪一般分为两类:实时测温仪,即时传送温度/时间数据和作出图形;而另一种测温仪采样储存数据,然后上载到计算机。 热电偶必须长度足够,并可经受典型的炉膛温度。一般较小直径的热电偶,热质量小响应快,得到的结果精确。 有几种方法将热电偶附着于PCB,较好的方法是使用高温焊锡如银/锡合金,焊点尽量最小。 另一种可接受的方法,快速、容易和对大多数应用足够准确,少量的热化合物(也叫热导膏或热油脂)斑点覆盖住热电偶,再用高温胶带(如Kapton)粘住。 还有一种方法来附着热电偶,就是用高温胶,如氰基丙烯酸盐粘合剂,此方法通常没有其它方法可靠. 附着的位置也要选择,通常最好是将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间. ?(图一、将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间) 锡膏特性参数表也是必要的,其包含的信息对温度曲线是至关重要的,如:所希望的温度曲线持续时间、锡膏活性温度、合金熔点和所希望的回流最高温度. 开始之前,必须理想的温度曲线有个基本的认识.理论上理想的曲线由四个部分或区间组成,前面三个区加热、最后一个区冷却。炉的温区越多,越能使温度曲线的轮廓达到更准确和接近设定。大多数锡膏都能用四个基本温区成功回流。

钢网制作及温度曲线设定

钢网制作及温度曲线 一、钢网制作 1、钢网厚度 我司MPC6535钢网制作厚度为0.12mm,其厚度是由器件的种类器件大小及管脚间距决定,一般以器件间距为基本依据。 钢网厚度以满足最小间距QFP、BGA为前提,兼顾最小CHIP元件 DFP引脚间距≤0.5mm钢网厚度选择0.13mm或0.12mm,引脚间距>0.5mm钢网厚度选择0.15mm或0.2mm;BGA球间距>1. 0mm,钢板选择0.15mm,0.5mm≤BGA球间距≤1. 0mm,钢网选择0.13mm,在效果不好的时候才选择0.12 2、钢网开口 钢网开口的大小形状一般有器件的封装,焊盘间距大小决定 1、一般钢网的开口大小及形状与焊盘一致,按1:1开口; 2、以印刷面为上面,网孔下开口应比上开口宽0.01mm或0.02mm,即倒锥形; 3、开口区域必须居中; 4、独立开口的尺寸不能太大,不能大于2mm,焊盘尺寸大于2mm的中间应加0.4mm的桥; 5、钢网下方应当刻有型号(MODEL),产品所有者,时间,钢网制作公司,钢网厚度等信息; 6、钢网开口的孔壁,要求光滑,进行抛光处理(特别是引脚间距小于0.5mm的QFP及CSP)。 3、钢网的特殊开口 1、对于引脚间距为0.5mm的QFP和CSP,宽度方向开孔比例为1:0.85,长度方向开孔比例为1:1.1,对于所有引脚间距为0.4mm的QFP和CSP,宽度方向开孔比例为1:0.8,长度方向开孔比例为1:1.1,且外切倒圆角,倒角半径r=0.12mm; 2、对于球间距为1.0mm以上的BGA,钢网开孔比例为1:1;对于球间距小于0.5mm的BGA,钢网开孔比例为1:0.95; 3、对于引脚间距为0.65mm的SOP元件,宽度方向应缩小10% 4、对于一般PLCC,宽度方向开口1:1,长度方向开口比例1:1.1 5、一般的SOT封装,大焊盘端开口比例为1:1.1,小焊盘宽度方向开口比例1:1长度方向开口比例1:1.1 6、CHIP式封装开口 V形开口 A、0402封装,开成内切圆或内切椭圆,保持内距0.4-0.5mm

如何设定回流焊温度曲线

如何设定回流焊温度曲线 如何设定回流焊温度曲线 首先我们要了解回流焊的几个关键的地方及温度的分区情况及回流焊的种类. 影响炉温的关键地方是: 1:各温区的温度设定数值 2:各加热马达的温差 3:链条及网带的速度 4:锡膏的成份 5:PCB板的厚度及元件的大小和密度 6:加热区的数量及回流焊的长度 7:加热区的有效长度及泠却的特点等 回流焊的分区情况: 1:预热区(又名:升温区) 2:恒温区(保温区/活性区) 3:回流区 4 :泠却区 那么,如何正确的设定回流焊的温度曲线 下面我们以有铅锡膏来做一个简单的分析(Sn/pb) 一:预热区 预热区通常指由室温升至150度左右的区域,在这个区域,SMA平稳升温,在预热区锡膏的部分溶剂能够及时的发挥。元件特别是集成电路缓慢升温。以适应以后的高温,但是由于SMA表面元件大小不一。其温度有不均匀的现象。在些温区升温的速度应控制在1-3度/S 如果升温太快的话,由于热应力的影响会导致陶瓷电容破裂/PCB变形/IC芯片损坏同时锡膏中的溶剂挥发太快,导致锡珠的产生,回流焊的预热区一般占加热信道长度的1/4—1/3 时间一般为60—120S 二:恒温区 所谓恒温意思就是要相对保持平衡。在恒温区温度通常控制在150-170度的区域,此时锡膏处于融化前夕,锡膏中的挥发进一步被去除,活化剂开始激活,并有效的去除表面的氧化物,SMA表面温度受到热风对流的影响。不同大小/不同元件的温度能够保持平衡。板面的温差也接近最小数值,曲线状态接近水平,它也是评估回流焊工艺的一个窗口。选择能够维持平坦活性温度曲线的炉子将提高SMA的焊接效果。特别是防止立碑缺陷的产生。通常恒温区的在炉子的加热信道占60—120/S的时间,若时间太长也会导致锡膏氧化问题。导致锡珠增多,恒温渠温度过低时此时容易引起锡膏中溶剂得不到充分的挥发,当到回流区时锡膏中的溶剂受到高温容易引起激烈的挥发,其结果会导致飞珠的形成。恒温区的梯度过大。这意味

温度曲线量测操作说明

温度曲线量测操作说明 Prepared on 22 November 2020

1.目的 1.1为能正确的测量温度曲线而订定。2.步骤

2.1选择正在在线生产的PCB。 2.2 调整轨道宽度。 2.2.1 站在固定边(操作面板侧)使用摇杆顺时钟转动,调整轨道宽度大小。 2.2.2 轨道宽度要大于PCB宽度5mm即可。 2.3 设定各区温度。 2.3.1 将总电源打开,按下启动开关。 2.3.2 打开加热器开关。 2.3.3 将加热器温度调整至产品所需要的温度。 2.3.4 调整方式则按操作面板的上、下键即可。 2.4 设定输送带速度。 2.4.1 可调整VR 0-100速度调整钮。 2.4.2 速度变化是以每分钟几公分来表达。 2.5 选择测温点。 2.5.1 选择测温点是以进板方向为依据。 2.5.2 如果PCB上有BGA、QFP、PLCC等较大颗组件的话,应优先测量,由于 BGA组件对热敏感度较高,且其管脚又是球型,不易直接量测,但 从报废的PCB上做破坏性实验,得知它的上表面温度比下 表面温度约高8℃,所以如果有BGA组件就一定要量测。 2.5.3 一般而言,PCB过炉时,由于受热方式的缘故,PCB四周的温度比中央的高

,其本身的温度又比IC的温度高,所以就目前测温方式而言,我们 一般应该选取PCB边缘的IC、PCB中央的IC以及线检反 应最多问题的零件来进行测量。 2.5.4 测温线热电偶的两极因材质不同,其外层是玻璃纤维包覆,内层是铝、铬合 金,所以不能用普通的焊接方式形成测温头,必须要以点焊的方式来使其焊接。 2.5.5 使用高温胶带将测温线前端与组件脚接触固定,测温线不可过度 弯曲,否则所量测到的温度曲线会上下飘游,得到的温度 数值也会不准确。 2.6 开始测温。 2.6.1 将测温线按照顺序与测温器连接,然后放入绝缘外盒内。 2.6.2 将PCB放进回焊炉轨道上,按下测温器上的启动开关,开始测温。 2.6.3 自回焊炉末端取出测温器,按下Stop键,测温完毕。 2.7 分析温度曲线。 2.7.1 将测温器与RS232通讯阜连接,进入测温器服务,点选加载数 据,加载完毕后,请按「结束」。 2.7.2 选择「数据分析」,「最高温度及时间分析」! 2.7.3 选择「升温率分析」,温度曲线上会出现2个光标,可以将光标 拖曳,得到所需要的数据。 2.7.4 温度曲线设定的标准:

温度曲线设定

如何正确设定回流炉温度曲线 正确设定回流炉温度曲线是获得优良焊接质关键 前言 红外回流焊是SMT大生产中重要的工艺环节,它是一种自动群焊过程,成千上万个焊点在短短几分钟内一次完成,其焊接质量的优劣直接影响到产品的质量和可靠性,对于数字化的电子产品,产品的质量几乎就是焊接的质量。做好回流焊,人们都知道关键是设定回流炉的炉温曲线,有关回流炉的炉温曲线,许多专业文章中均有报导,但面对一台新的红外回流炉,如何尽快设定回流炉温度曲线呢?这就需要我们首先对所使用的锡膏中金属成分与熔点、活性温度等特性有一个全面了解,对回流炉的结构,包括加热温区的数量、热风系统、加热器的尺寸及其控温精度、加热区的有效长度、冷却区特点、传送系统等应有一个全面认识,以及对焊接对象--表面贴装组件(SMA)尺寸、组件大小及其分布做到心中有数,不难看出,回流焊是SMT工艺中复杂而又关键的一环,它涉及到材料、设备、热传导、焊接等方面的知识。 本文将从分析典型的焊接温度曲线入手,较为详细地介绍如何正确设定回流炉温度曲线,并实际介绍BGA以及双面回流焊的温度曲线的设定。 理想的温度曲线 图1是中温锡膏(Sn63/Sn62)理想的红外回流温度曲线,它反映了SMA通过回流炉时,PCB上某一点的温度随时间变化的曲线,它能直观反映出该点在整个焊接过程中的温度变化,为获得最佳焊接效果提供了科学的依据,从事SMT焊接的工程技术人员,应对理想的温度曲线有一个基本的认识,该曲线由四个区间组成,即预热区、保温区/活性区、回流区、冷却区,前三个阶段为加热区,最后一阶段为冷却区,大部分焊锡膏都能用这四个温区成功实现回流焊。故红外回流炉均设有4-5个温度,以适应焊接的需要。 图1 理想的温度曲线

温度曲线的设定及其依据

回流返修焊接中温度曲线的设定依据 温度曲线是保证焊接质量的关键,实时温度曲线和焊膏温度曲线的升温斜率和峰值温度应基本一致。160℃前的升温速度控制在1—2℃/s。如果升温斜率速度太快,一方面使元器件及PCB受热太快,易损坏元器件和造成PCB变形。另一方面,焊膏中的熔剂挥发速度太快,容易溅出金属成份,产生锡珠。峰值温度一般设定在比焊膏金属熔点高30-40℃左右(例如63Sn/37Pb焊膏的熔点为183℃,峰值温度应设置在215℃左右),回流时间为30~60s。峰值温度低或回流时间短,会使焊接不充分,严重时会造成锡球不熔。峰值温度过高或回流时间过长,容易造成金属粉末氧化,影响焊接质量,甚至会损坏元器件和印刷电路板。 ●预热阶段:在这一段时间内使PCB均匀受热升温,并刺激助焊剂活跃。一般升温的速度不要过快,防止线路板受热过快而产生较大的变形。尽量将升温速度控制在3℃/秒以下,较理想的升温速度为2℃/秒。时间控制在60 ~ 90 秒之间。 ●浸润阶段:这一阶段助焊剂开始挥发。温度在150℃~ 180℃之间应保持60 ~ 120 秒,以便助焊剂能够充分发挥其作用。升温的速度一般在0.3 ~ 0.5℃/秒。 ●回流阶段:这一阶段的温度已经超过焊膏的熔点温度,焊膏熔化成液体,元器件引脚上锡。该阶段中温度在183℃以上的时间应控制在60 ~ 90 秒之间。 如果时间太少或过长都会造成焊接的质量问题。其中温度在220 +/- 10 ℃范围内的时间控制相当关键,一般控制在10~ 20 秒为最佳。 ●冷却阶段:这一阶段焊膏开始凝固,元器件被固定在线路板上。同样的是降温的速度也不能够过快,一般控制在4℃/秒以下,较理想的降温速度为3℃/秒。由于过快的降温速度会造成线路板产生冷变形,它会引起BGA焊接的质量问题,特别是BGA外圈引脚的虚焊。设 设置回流返修焊接温度曲线的依据: 1.根据使用焊膏的温度曲线进行设置。不同金属含量的锡球有不同的温度曲线,应按照焊膏供应商提供的温度曲线进行具体产品的回流焊温度曲线设置。 2.根据PCB板的材料、厚度、层数多少、尺寸大小等进行设置。 3.根据PCB板表面搭载元器件的密度、元器件的大小以及有无BGA、CSP等特殊元器件进行设置。 4.此外,根据设备的具体情况,例如加热区的长度、加热源的材料、回流焊炉的构造和热传导方式等因素进行设置。热风加热器和红外加热器有很大区别,红外加热器主要是辐射传导,其优点是热效率高,温度陡度大,易控制温度曲线;双面焊时,PCB上、下温度易控制;其缺点是温度不均匀。 5.根据温度传感器的实际位置确定各温区所设置的温度,若温度传感器位置在发热体内部,设置温度比实际温度高30℃左右。 6.根据排风量的大小进行设置。一般返修焊接系统对排风量都有具体要求,但实际排风量因各种原因有时会有所变化,确定一个产品的温度曲线时,因考虑排风量,并定时测量。

2021年如何设定回流焊温度曲线

随着电子产业的飞速发展,高集成度、高可靠性已经成为行业的新潮流。在这种趋势的推动下,SMT (表面贴装技术)在中国也得到了进一步的推广和发展。很多公司在生产和研发中已经大量的应用了S MT工艺和表面贴装元器件(SMC /SMD)。因此,焊接过程也就无法避免的大量的使用回流焊机(refl ow soldering)。我就针对回流焊温度曲线的整定谈谈我在工作中的一些经验和看法。 欧阳光明(2021.03.07) 回流焊作为表面贴装工艺生产的一个主要设备,它的正确使用无疑是进一步确保焊接质量和产品质量。在回流焊的使用中,

最难以把握的就是回流焊的温度曲线的整定。怎样才能更合理的整定回流焊的温度曲线呢? 要解决这个问题,我们首先要了解回流焊的工作原理。从温度曲线(见图1-1)分析回流焊的原理:当PCB进入升温区(干燥区)时,焊膏中的溶剂、气体蒸发掉,同时,焊膏中的助焊剂润湿焊盘、元器件端头和引脚,焊膏软化、塌落、覆盖了焊盘、元器件端头和引脚与氧气隔离→PCB进入保温区时,PCB和元器件得到充分的预热,以防PCB突然进入焊接高温区而损坏P CB和元器件→当PCB进入焊接区时,温度迅速上升使焊膏达到熔化状态,液态焊锡对PCB的焊盘、元器件端头和引脚润湿、扩散、漫流或回流混合形成焊锡接点→PCB进入冷却区,使焊点凝固。此时完成了回流焊。 这款机子下部的两个加热器是用来做底部预热的,当PCB 板从机子的左侧进入,依次通过上方第一块加热器、下方第一块加热器、上方第二块加热器、上方第三块加热器、下方第二块加热器、上方第四块加热器。每块加热器的传感器分布如图。PCB 板进入炉子的过程是一个吸热的过程,它会从室温慢慢的接近它所处环境的温度。那么,当环境的温度发生变化时,PCB板的温度也将随着环境的温度变化而变化,形成一条温度曲线。因此,我们怎样利用回流焊的不同的加热器使PCB上的温度变化符合标准要求的温度曲线,这就是回流焊温度曲线的整定。

气温变化趋势曲线

一、课程设计目的: 1.训练学生灵活应用所学数值分析知识,独立完成问题分析,结合数值分析理论知识,编写程序求解指定问题。 2.初步掌握解决实际问题过程中的对问题的分析、系统设计、程序编码、测试等基本方法和技能; 3.提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 4.训练用数值分析的思想方法和编程应用技能模拟解决实际问题,巩固、深化学生的理论知识,提高学生对数值分析的认知水平和编程水平,并在此过程中培养他们严谨的科学态度和良好的工作作风 二、课程设计任务与要求: 课程设计题目:气温变化趋势曲线 【问题描述】 上网下载自己家乡所在城市某一天天气预报中的气温数据(24小时,每小时一个数据),然后采用最小二乘拟合的思想和算法求解上述气温变化的趋势曲线。(需要认真观察数据,提出数据变化曲线的函数形式,建议从最低气温时间开始。) 【实现要求】 1、在处理每个题目时,要求分别从数据处理阶段和程序设计阶段两个主要阶段实现课程设计,详细的通过文字以及插图等形式,按需求分析、数据处理、算法设计、代码、计算结果和程序执行的截图等若干步骤完成题目,最终写出完整的分析报告。前期准备工作完备与否直接影响到后序上机调试工作的效率。在程序设计阶段应尽量利用已有的标准函数,加大代码的重用率。 2、设计的题目要求达到一定工作量,并具有一定的深度和难度。 3、程序设计语言推荐使用C/C++,程序书写规范,源程序需加必要的注释; 4、每位同学需提交可独立运行的程序; 5、每位同学需独立提交设计报告书(每人一份),要求编排格式统一、规范、内容充实; 6、课程设计实践作为培养学生动手能力的一种手段,单独考核。 三、课程设计说明书 【需求分析】 从网上下载自己所在家乡的某一日(河北省邯郸市5月2日)的气温数据(原则上应为24个小时,24个数据),然后根据这一组数据,提出合适的数学模型(函数形式),用最小二乘拟合的思想和算法求解该曲线。 【数据下载】 我采用的数据是河北省邯郸市,在5月2日的气温数据:

波峰焊温度曲线图及温度控制标准

波峰焊温度曲线图及温度控制标准介绍 发表于 2017-12-20 16:08:55 工艺/制造 波峰焊是指将熔化的软钎焊料(铅锡合金),经电动泵或电磁泵喷流成设计要求的焊料 波峰,亦可通过向焊料池注入氮气来形成,使预先装有元器件的印制板通过焊料波峰,实现元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。 波峰焊是让插件板的焊接面直接与高温液态锡接触达到焊接目的,其高温液态锡保持一 个斜面,并由特殊装置使液态锡形成一道道类似波浪的现象,所以叫“波峰焊”,其主要材料是焊锡条。 波峰焊焊接方法 波峰焊方法或工艺的采用取决于产品的复杂程度以及产量,如果要做复杂的产品以及产 量很高,可以考虑用氮气工艺比如CoN ▼ 2 ▼ ToUr波峰来减少锡渣并提高焊点的浸润性。 如果使用一台中型的机器,其工艺可以分为氮气工艺和空气工艺。用户仍然可以在空气环境 下处理复杂的板子,在这种情况下,可根据客户的要求使用腐蚀性助焊剂,在焊接后再进行清洗,或者使用低固态助焊剂。 波峰焊温度曲线图介绍 在预热区内,电路板上喷涂的助焊剂中的溶剂被挥发,可以减少焊接时产生气体。同时, 松香和活化剂开始分解活化,去除焊接面上的氧化层和其他污染物,并且防止金属表面在高

温下再次氧化。印制电路板和元器件被充分预热,可以有效地避免焊接时急剧升温产生的热 应力损坏。电路板的预热温度及时间,要根据印制板的大小、厚度、元器件的尺寸和数量, 以及贴装元器件的多少而确定。在PCB表面测量的预热温度应该在90~130 C间,多层板 或贴片套件中元器件较多时,预热温度取上限。预热时间由传送带的速度来控制。如果预热温度偏低或预热时间过短,助焊剂中的溶剂挥发不充分,焊接时就会产生气体引起气孔、锡珠等焊接缺陷;如预热温度偏高或预热时间过长,焊剂被提前分解,使焊剂失去活性,同样会引起毛刺、桥接等焊接缺陷。为恰当控制预热温度和时间,达到佳的预热温度,也可以从 波峰焊前涂覆在PCB底面的助焊剂是否有粘性来进行判断。 O m ?α M4BH?*7*B?n Iae ∣l? m W IM ItB IM m :W )4?I(C) 波峰焊温度曲线 合格温度曲线必须满足: 1 :预热区PCB板底温度范围为:90-120oC. 2:焊接時锡点温度范围为:245 ±10 C

炉温工艺曲线的设置方法

炉温工艺曲线的设置方法 Prepared on 22 November 2020

如何设定出合格的炉温工艺曲线什么是回流焊: 回流焊是英文Reflow是通过重新熔化预先分配到印制板焊盘上的膏装软钎焊料,实现表面组装元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。回流焊是将元器件焊接到PCB板材上,回流焊是专门针对SMD表面贴装器件的。 回流焊是靠热气流对焊点的作用,胶状的焊剂在一定的高温气流下进行物理反应达到SMD的焊接;之所以叫"回流焊"是因为气体在焊机内循环来回流动产生高温达到焊接目的。 (回流焊温度曲线图) “产品质量是生产出来的,不是检验出来,只有在生产过程中的每个环节,严格按照生产工艺和作业指导书要求进行,才能保证产品的质量。 电子厂SmT贴片焊接车间在SmT生产流程中,回流炉参数设置的好坏是影响焊接质量的关键,通过温度曲线,可以为回流炉参数的设置提供准确的理论依据,在大多数情况下,温度的分布受组装电路板的特性、焊膏特性和所用回流炉能力的影响。 如何正确的设定回流焊温度曲线: 首先我们要了解回流焊的几个关键的地方及温度的分区情况及回流焊的种类. 影响炉温的关键地方是: 1:各温区的温度设定数值 2:各加热马达的温差 3:链条及网带的速度 4:锡膏的成份

5:PCB板的厚度及元件的大小和密度 6:加热区的数量及回流焊的长度 7:加热区的有效长度及泠却的特点等 回流焊的分区情况: 1:预热区(又名:升温区) 2:恒温区(保温区/活性区) 3:回流区 4 :泠却区 回流焊焊接影响工艺的因素: 1.通常PLCC、QFP与一个分立片状元件相比热容量要大,焊接大面积元件就比小元件更困难些。 2.在回流焊炉中传送带在周而复使传送产品进行回流焊的同时,也成为一个散热系统,此外在加热部分的边缘与中心散热条件不同,边缘一般温度偏低,炉内除各温区温度要求不同外,同一载面的温度也差异。 3.产品装载量不同的影响。回流焊的温度曲线的调整要考虑在空载,负载及不同负载因子情况下能得到良好的重复性。负载因子定义为: LF=L/(L+S);其中L=组装基板的长度,S=组装基板的间隔。回流焊工艺要得到重复性好的结果,负载因子愈大愈困难。通常回流焊炉的最大负载因子的范围为~。这要根据产品情况(元件焊接密度、不同基板)和再流炉的不同型号来决定。要得到良好的焊接效果和重复性,实践经验很重要的。 一、初步炉温设定:

温度曲线的设定

温度曲线的设定 温度曲线是由回流焊炉的多个参数共同作用的结果,其中起决定性作用的两个参数是传送带速度和温区的温度设定。传送带速度决定了印刷线路板暴露在每个温区的持续时间,增加持续时间可以使印刷线路板上元器件的温度更加接近该温区的设定温度。每个温区所用的持续时间的总和又决定了整个回流过程的处理时间。每个温区的温度设定影响印刷线路板通该温区时温度的高低。印刷线路板在整个回流焊接过程中的升温速度则是传送带速和各温区的温度设定两个参数共同作用的结果。因此只有合理的设定炉温参数才能得到理想的炉温曲线。 现以最为常用的RSS曲线为例介绍一下炉温曲线的设定方法。 链速的设定:设定温度曲线时第一个要考虑参数是传输带的速度设定,该设定将决定印刷线路板通过加热通道所花的时间。传送带速度的设定可以通过计算的方法获得。这里要引入一个指标,负载因子。负载因子:F=L/(L+s) L=基板的长,S=基板与基板间的间隔。负载因子的大小决定了生产过程中炉内的印刷线路板对炉内温度的影响程度。负载因子的数值越大炉内的温度越不稳定,一般取值在0.5~0.9之间。在权衡了效率和炉温的稳定程度后建议取值为0.7-0.8。在知道生产的板长和生产节拍后就可以计算出传送带的传送速度(最慢值)。传送速度(最慢值)=印刷线路板长/0.8/生产节拍。传送速度(最快值)由锡膏的特性决定,绝大多数锡膏要求从升温开始到炉内峰值温度的时间应不少于180秒。这样就可以得出传送速度(最大值)=炉内加热区的长度/180S。在得出两个极限速度后就可以根据实际生产产品的难易程度选取适当的传送速度一般可取中间值。

温区温度的设定:一个完整的RSS炉温曲线包括四个温区。分别为: 预热区:其目的是将印刷线路板的温度从室温提升到锡膏内助焊剂发挥作用所需的活性温度135℃,温区的加热速率应控制在每秒1~3℃,温度升得太快会引起某些缺陷,如陶瓷电容的细微裂纹。 保温区:其目的是将印刷线路板维持在某个特定温度范围并持续一段时间,使印刷线路板上各个区域的元器件温度相同,减少他们的相对温差,并使锡膏内部的助焊剂充分的发挥作用,去除元器件电极和焊盘表面的氧化物,从而提高焊接质量。一般普遍的活性温度范围是135-170℃(以SN63PB37为例),活性时间设定在60-90秒。如果活性温度设定过高会使助焊剂过早的失去除污的功能,温度太低助焊剂则发挥不了除污的作用。活性时间设定的过长会使锡膏内助焊剂的过度挥发,致使在焊接时缺少助焊剂的参与使焊点易氧化,润湿能力差,时间太短则参与焊接的助焊剂过多,可能会出现锡球,锡珠等焊接不良。从而影响焊接质量。 回流区:其目的是使印刷线路板的温度提升到锡膏的熔点温度以上并维持一定的焊接时间,使其形成合金,完成元器件电极与焊盘的焊接。该区的温度设定在183℃以上,时间为30-90秒。(以SN63PB37为例)峰值不宜超过230℃,200℃以上的时间为20-30秒。如果温度低于183℃将无法形成合金实现不了焊接,若高于230℃会对元器件带来损害,同时也会加剧印刷线路板的变形。如果时间不足会使合金层较薄,焊点的强度不够,时间较长则合金层较厚使焊点较脆。 冷却区:其目的是使印刷线路板降温,通常设定为每秒3-4℃。如速率过高会使焊点出现龟裂现象,过慢则会加剧焊点氧化。理想的冷却曲线应该是

怎样设定锡膏回流温度曲线_百度文库

怎样设定锡膏回流温度曲线 『更新时间:2004-8-14 13:47:42 』『点击数: 4205 收藏』『作者:佚名 | 来源:网络』 "正确的温度曲线将保证高品质的焊接锡点。" 在使用表面贴装元件的印刷电路板(PCB装配中,要得到优质的焊点,一条优化的回流温度曲线是最重要的因素之一。温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表PCB上一个特定点上的温度形成一条曲线。 几个参数影响曲线的形状,其中最关键的是传送带速度和每个区的温度设定。带速决定机板暴露在每个区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该区的温度设定。每个区所花的持续时间总和决定总共的处理时间。 每个区的温度设定影响PCB的温度上升速度,高温在PCB与区的温度之间产生一个较大的温差。增加区的设定温度允许机板更快地达到给定温度。因此,必须作出一个图形来决定PCB的温度曲线。接下来是这个步骤的轮廓,用以产生和优化图形。 在开始作曲线步骤之前,需要下列设备和辅助工具:温度曲线仪、热电偶、将热电偶附着于PCB的工具和锡膏参数表。可从大多数主要的电子工具供应商买到温度曲线附件工具箱,这工具箱使得作曲线方便,因为它包含全部所需的附件(除了曲线仪本身。 现在许多回流焊机器包括了一个板上测温仪,甚至一些较小的、便宜的台面式炉子。测温仪一般分为两类:实时测温仪,即时传送温度/时间数据和作出图形;而另一种测温仪采样储存数据,然后上载到计算机。 热电偶必须长度足够,并可经受典型的炉膛温度。一般较小直径的热电偶,热质量小响应快,得到的结果精确。 有几种方法将热电偶附着于PCB,较好的方法是使用高温焊锡如银/锡合金,焊点尽量最小。 另一种可接受的方法,快速、容易和对大多数应用足够准确,少量的热化合物(也叫热导膏或热油脂斑点覆盖住热电偶,再用高温胶带(如Kapton粘住。 还有一种方法来附着热电偶,就是用高温胶,如氰基丙烯酸盐粘合剂,此方法通常没有其它方法可靠。附着的位置也要选择,通常最好是将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间。 (图一、将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间锡膏特性参数表也是必要的,其包含的信息对温度曲线是至关重要的,如:所希望的温度曲线持续时间、锡膏活性温度、合金熔点和所希望的回流最高温度。 开始之前,必须理想的温度曲线有个基本的认识。理论上理想的曲线由四个部分或区间组成,前面三个区加热、最后一个区冷却。炉的温区越多,越能使温度曲线的轮廓达到更准确和接近设定。大多数锡膏都能用四个基本温区成功回流。

回流焊温度曲线的设定依据

回流焊温度曲线的设定依据 回流焊温度曲线的设定依据温度曲线是保证焊接质量的关键,实时温度曲线和焊膏温度曲线的升温斜率和峰值温度应基本一致。160℃前的升温速度控制在1—2℃/s。如果升温斜率速度太快,一方面使元器件及PCB受热太决,易损坏元器件和造成PCB变形。另一方面,焊膏中的熔剂挥发速度太快,容易溅出金属成份,产生锡珠。峰值温度一般设定在比焊膏金属熔点高30-40℃左右(例如63Sn/37Pb焊膏的熔点为183℃,峰值温度应设置在215℃左右),回流时间为30~60s。峰值温度低或回流时间短,会使焊接不充分,严重时会造成焊膏不熔。峰值温度过高或回流时间过长,容易造成金属粉末氧化,影响焊接质量;甚至会损坏元器件和印制板。 设置回流焊温度曲线的依据: 1.根据使用焊膏的温度曲线进行设置。不同金属含量的焊膏有不同的温度曲线,应按照焊膏供应商提供的温度曲线进行具体产品的回流焊温度曲线设置。 2.根据PCB板的材料、厚度、是否多层板、尺寸大小进行设置。 3.根据表面组装板搭载元器件的密度、元器件的大小以及有无BGA、CSP等特殊元器件进行设置。 4.此外,根据设备的具体隋况,例如加热区的长度、加热源的材料、回流焊炉的构造和热传导方式等因素进行设置。 热风(回流)炉和红外(回流)炉有很大区别,红外炉主要是辐射传导,其优点是热效率高,温度陡度大,易控制温度曲线;双面焊时,PCB上、下温度易控制;其缺点是温度不均匀。在同一块PCB上由于器件线的要求。 5.根据温度传感器的实际位置确定各温区的设置温度,若温度传感器位置在发热体内部,设置温度比实际温度高30℃左右。 6.根据排风量的大小进行设置。一般回流焊炉对排风量都有具体要求,但实际排风量因各种原因有时会有所变化,确定一个产品的温度曲线时,因考虑排风量,并定时测量。

如何正确设定回焊炉温度曲线

线,它反映了 时间变化的曲线,它能直观反映出该点在整个焊接过程中的温度变化,为获得最佳焊接效果提供了科学的依据,从事SMT 的认识,该曲线由四个区间组成,即预热区、保温区 区、回流区、冷却区,前三个阶段为加热区,最后一阶段为冷却区,大部分焊锡膏都能用这四个温区成功实现回流焊。故红外回流炉均设有 停留时间以及焊锡膏在各区的变化情况,介绍如下:

( 胶带固定,但效果没有直接焊接的效果好。 偶。电偶数量越多,其对了解 面。 看一看有几个温区,有几块发热体,是否独立控温。热电偶 放置在何处。热风的形成与特点,是否构成温区内循环,风 速是否可调节。每个加热区的长度以及加热温区的总长度。 目前使用的红外回流炉,一般有四个温区,每个加热区有上 下独立发热体。热风循环系统各不相同,但基本上能保持各 温区独立循环。通常第一温区为预热区,第二、三温区为保 温区,第四温区为回流区,冷却温区为炉外强制冷风,近几图3 BGA温度测试点的选择

类炉子其温区相应增多,以至出现八温区以上的回流炉。随着温区的增多,其温度曲线的轮廓与炉子的温度设置将更加接近,这将会方便于炉温的调节。但随着炉子温区增多,在生产能力增加的同时其能耗增大、费用增多。 5、炉子的带速: 设定温度曲线的第一个考虑的参数是传输带的速度设定,故应首先测量炉子的加热区总长度,再根据所加工的SMA 尺寸大小、元器件多少以及元器件大小或热容量的大小决定SMA 在加热区所运行的时间。正如前节所说,理想炉温曲线所需的焊接时间约为3-5分钟,因此不难看出有了加热区的长度,以及所需时间,就可以方便地计算出回流炉运行速度。 各区温度设定: 接下来必须设定各个区的温度,通常回流炉仪表显示的温度仅代表各加热器内热电偶所处位置的温度,并不等于SMA 经过该温区时其板面上的温度。如果热电偶越靠近加热源,显示温度会明显高于相应的区间温度,热电偶越靠近PCB 的运行信道,显示温度将越能反应区间温度,因此可打开回流炉上盖了解热电偶所设定的位置。当然也可以用一块试验板进行模拟测验,找出PCB 上温度与表温设定的关系,通过几次反复试验,最终可以找出规律。当速度与温度确定后,再适当调节其它参数如冷却风扇速度,强制空气或N2流量,并可以正式使用所加工的SMA 进行测试,并根据实测的结果与理论温度曲线相比较或与锡膏供应商提供的曲线相比较。并结合环境温度、回流峰值温度、焊接效果、以及生产能力适当的协调。最后将炉子的参数记录或储存以备后用。虽然这个过程开始较慢和费力,但最终可以以此为依据取得熟练设定炉温曲线的能力。 两种典型的温度曲线设定 1、BGA 焊接温度的设定 BGA 是近几年使用较多的封装器件,由于它的引脚均处于封装体的下方,因为焊点间距较大(1.27mm )焊接后不易出现桥连缺陷,但也带来一些新问题,即焊点易出现空洞或气泡,而在QFP 或PLCC 器件的焊接中,这类缺陷相对的要少得多。就其原因来说这与BGA 焊点在其下方阴影效应大有关。故会出现实际焊接温度比其它元器件焊接温度要低的现状,此时锡膏中溶剂得不到有效的挥发,包裹在焊料中。图3为实际测量到的BGA 器件焊接温度。 图中,第一根温度曲线为BGA 外侧,第二根温度曲线为BGA 焊盘上,它是通过在PCB 上开一小槽,并将热电偶伸入其中,两温度上升为同步上升,但第二根温度曲线显示出的温度要低8℃左右,这是BGA 体积较大,其热容量也较大的缘故,故反映出组件体内的温度要低,这就告诉我们,尽管热电偶放在BGA 体的外侧仍不能如实地反映出BGA 焊点处的温度。因此实际工作中应尽可能地将热电偶伸入到BGA 体下方,并调节BGA 的焊接温度使它与其它组件温度相兼容。 2、双面板焊接温度的设定 早期对双面板回流焊接时,通常要求设计人员将器件放在PCB 的一侧,而将阻容组件放在另一侧,其目的是防止第二面焊接时组件在二次高温时会脱落。但随着布线密度的增大或SMA 功能的增多,PCB 双面布有器件的产品越来越多,这就要求我们在调节炉温曲线时,不仅在焊接面设定热电偶而且在反面也应设定热电偶,并做到在焊接面的温度曲线符合要求的同时,SMA 反面的温度最高值不应超过锡膏熔化温度(179℃),见图4 从图中看出当焊接面的温度达到215℃时反面最高温度 仅为165℃,未达到焊膏熔化温度。此时SMA 反面即使有 大的元器件,也不会出现脱落现象。 常见有缺陷的温度曲线 下列温度曲线是设定时常见的缺陷: 1、活性区温度梯度过大 立碑是片式组件常见的焊接缺陷,引起的原因是由于组 件焊盘上的锡膏熔化时润湿力不平衡,导致组件两端的力距 不平衡故易引起组件立碑。引起立碑的原因有多方面,其中两焊盘上的温度不一致是其原因之一。图5所示的温度曲线表明活性区温度梯度过大,这意味着PCB 板面温度差过大,特别是靠近大器件四周的阻容组件两端温度受热不平衡,锡膏熔化时间有一个延迟故易引起立碑缺陷。解决的方法是调整活性区的温度。 图4 双面板焊接温度曲线

BGA返修温度曲线设置

BGA返修温度曲线 BGA器件的维修(Rework)过程中,其中一个重要的环节就是温度曲线(Themal Profiling)的设定。与正常生产的再流焊(Reflow)温度曲线相比,维修过程对温度控制的要求要更高。在常规的再流焊炉腔内,温度流失几乎没有。而对于维修而言,一般情况都是将PCB暴露在空气中对单个器件实施加热处理,在这种情况下,温度的流失相当严重,对此,决不能单靠升温来达到温度的补偿。这是因为一方面对于器件而言,过高的温度显然会损坏器件本身,而另一方面,升温必然造成BGA的受热不均匀引起弯曲变形等负面影响。因此,设定合适的温度曲线是BGA维修的关键。另外,由于PCB的材质、厚度及散热情况都不同,对应BGA 的温度敏感程度也有所不同。 为了达到更好的维修效果,那么就需要针对不同的PCB板设定其对应最合适的返修温度曲线。 图一BGA返修台返修时的温度曲线图像(无铅返修) (红色线条为测温线实时监测生成的温度曲线)

图二BGA返修台温度设置(无铅返修,仅供参考) BGA返修时的温度曲线图可以拆分为预热、升温、恒温、熔焊、回焊、降温六个部分。但是一般情况下我们使用前五段就够了,焊接与拆焊可以使用同一条温度曲线,但是我们把温度曲线可以拆分成6段来看。如图。

BGA调节温度的时候要把测温线插入BGA内部,这样才可以检测锡球的实际温度。 1.预热:前期的预热和升温段的主要作用在于去除PCB板上的湿气,防止起泡,对整块PCB起到预热作用,防止热损坏。一般温度要求是:在预热阶段,温度可以设置在60℃-100℃之间,一般设置70-80℃,45s左右可以起到预热的作用。同时该温度段可以根据实际情况适度延长预热时间,如长期裸露在空气中的PCB板或BGA则需要延长时间。 2.升温:在第二段恒温时间运行结束要让BGA的温度保持在(无铅:150~190℃,有铅:150-183℃)之间,如果偏高,就说明我们设定的升温段温度偏高,可以将该段的温度设置低一些或者缩短时间。如果偏低,可以将预热段和升温段的温度加高些或时间加长些。 (无铅150-190℃,时间60-90s;有铅150-183℃,时间是60-120s) 3.恒温:该温度段我们一般设置温度要比升温段的温度稍微低一些,目的在于均衡锡球内部的温度,让BGA整体的温度平均,让那些温度稍微低的缓慢升高。且该段能活化助焊剂,去除待焊金属表面的氧化物和表面膜以及焊剂本身的挥发物,增强润湿效果,减少温差的作用。一般恒温段的实际测试锡球的温度要求控制在(无铅:170~185℃,有铅145~160℃)之间,时间可以是30-50s。

相关文档
最新文档