ATC汽车专业动力升级

ATC汽车专业动力升级
ATC汽车专业动力升级

匈牙利汽车工业概况

1、匈牙利地处欧盟东部边界,位于欧洲中心,为申根协议国,地理优势和良好的基础设施使其成为中东欧地区的商品集散地。

2、匈牙利汽车工业历史悠久,从1900年至今一直都在为欧洲汽车业的发展作出贡献。自上世纪90年代经济体制改革以来,汽车工业已成为匈牙利支柱产业之一,汽车工业产值占匈工业总产值超过16%,成为匈牙利经济增长的主动力。

3、全球20家最大汽车制造商及零部件生产商中有15家已经落户匈牙利,如奥迪,铃木、BOSCH等等。外资大量涌入给匈牙利汽车工业带来巨大的变化。

4、匈牙利在汽油发动机生产方面处于领先地位,是欧盟第四大发动机出口国,主要出口到意大利、德国、英国等市场。

5、各大公司都加大在匈牙利的产业投资:罗伯特博世在匈牙利建成博世集团全球最大的汽车电子部件生产中心。日本电装(DENSO)投资1亿欧元扩大其柴油发动机用燃油喷射装置,,德国奔驰公司在匈投资设厂,投资总额达到8亿欧元,主要生产下一代A系列和B系列小轿车等。

关于我们

ATC-tuning是专业的汽车ECU改装商,总部位于匈牙利,有着15年的高性能汽车ECU 动力改装的经验。其成员均来自欧洲顶级的工程师,具备目前大多数欧洲车型的ECU调校技术并一直致力于研发和调校新款车型ECU的数据和测试,从而达到具有最前沿、最优越的动力提升技术。

ATC-tuning的汽车电脑升级是经过反复试验后才开始推广的,而且不是单方面提升动力或者降低油耗,而是综合提升汽车的各方面的性能,使各部分性能达到平衡而充分的发挥。

ATC-tuning技术针对其他品牌的升级的主要区别是:ATC-tuning从进入ECU之前的信号开始处理数据,从源头解决问题,因此能处理100%数据,可以达到非常精确、完整的对汽车ECU进行升级。

我们不是为了达到立竿见影的表面效果去大幅度改变车子的设置或是将其提升到极限,因为这样反而会降低车子的性能和减少发动机的使用寿命,使得ECU升级会超出其危险标准。相反,我们的改装属于量身定做式。为了使整车的性能达到最佳状态,我们特定制作了其他公司都忽视的改变周长和改变发动机旋转范围的多种不同改装方式。这样的改装为那些注重汽车性能和质量的客户带来了福音。

ATC-tuning的汽车电脑升级,完全采取量身订做方式,其经销商均拥有设备,可将原车程序读下后传送至匈牙利总部,总部从原厂调出该车的相关信息,并依照顾客所需,进行调整,然后将升级程序传回并安装,故不会影响原车其它功能。即汽车原有的任何电子系统都会保留,包括在原车基础上加装的电子设备如:GPS、DVD等,而且原厂诊断计算机上也不会有无法消除的故障码出现,相对的安全防盗系统也都会保留。

ATC-tuning不仅对民用车提供调校,也提供专业赛车调校。如果您有任何特殊需要,请联系我们,并且说明详细要求,我们会在最短的时间内给予答复。

关于售后

ATC-tuning作为中国汽车ECU升级业领跑品牌,秉承提供权威、专业的技术,让车主与车实现“人车合一”的愿景,一直致力于关注客户的核心需要,在技术服务与客户服务的流程设计上不断创新整合,向车主提供集专业化、个性化、的优势升级服务。我们公司有精湛的技术人员进行操作,以确保每一位客户高品质的期望得到满足。

凡在我们公司改装ECU ,均可以获得两年质保,如果因水泡或者汽车线路问题或人为损坏导致ECU电脑损坏,均不属于保修范围。其间,如果因为回原厂升级电脑而导致电脑控制单元数据恢复原厂设定,我们可以免费为你重新刷一次

如果您对我们的ECU优化升级不完全满意,毫无疑问“我们的工程师将会给您当场恢复到原厂数据。您满意后,我们同时有两年质保给到您,在后期如果您有任何ECU或汽车维修相关的问题都可以电话咨询我们,我们会协助您解决遇到的问题。

(完整版)纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

所以满载时最大爬坡度为tan( m ax α)*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速m ax V 匀速行驶时,电机所需提供的功率(kw )计算式为: max 2 max ).15.21....(36001 V V A C f g m P d n +=η (2-1) 式中: η—整车动力传动系统效率η(包括主减速器和驱动电机及控制器的工作效率),取0.86; m —汽车满载质量,取18000kg ; g —重力加速度,取9.8m/s 2; f —滚动阻力系数,取0.016; d C —空气阻力系数,取0.6; A —电动汽车的迎风面积,取2.550×3.200=8.16m 2(原车宽*车身高); m ax V —最高车速,取70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 kw 1005.8970)15.217016.86.0016.08.918000(86.036001).15 .21....(360012 max 2 max <kw V V A C f g m P D n =???+???=+?=η (3-2) 4.2满足以10km/h 的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:018)14.0(tan ==-α。 车辆在14%坡度上以10km/h 的车速行驶时所需的电机峰值功率计算式为:

汽车动力性能的评价标准

浅谈汽车动力性评价标准 摘要:本文研究了汽车动力性评价的各种方法和评价指标,介绍了动力性评价的主要参数:最高车速、加速时间、最大爬坡度、发动机最大功率、比功率、驱动轮输出功率、驱动力等相关评价参数;介绍了汽车的动力性衰退现象和汽车动力性评价的实验方法。 关键词:汽车动力性评价指标加权系数优化设计 1汽车动力性评价的各种方法及评价指标概述 1.1汽车动力性概述 汽车动力性是汽车最基本的使用性能。汽车无论是用作生产工具还是用作生活用具,其运行效率均取决于是否拉得动、跑得快,即取决于运行速度。在运行条件(地理、道路、气候条件及运输组织条件等)一定时,汽车的平均运行技术速度主要取决于汽车的动力性。显然汽车动力性越好,汽车运行的平均技术速度就越高,汽车运行效率也就越高。因此汽车工程界,用车的、购车的、爱车的都很看重汽车的动力性。汽车具有什么样的动力性算好,如何评定,观点不同,评价的依据也就不同,目前尚无统一公认的评价指标,更无标准。汽车工程界基于具有最高的平均行驶技术速度的观点,以汽车的最高行驶速度、加速时间和最大爬坡度为量标,评定、比较汽车动力性的优劣。对于新车的动力性,人们基本上认同这三个指标。 对于在用汽车动力性的评价量标就各不一样了。在用汽车的动力性在新车定型时便已确立,在使用时,再与其他车型横向比较动力性的高低就毫无意义了。就是在同型汽车间相互比较动力性,除了表明具体汽车间动力性存在差异外,也不能据此揭示该型汽车结构、性能的优劣。由于使用条件的差异,在用汽车间不具有横向比较的条件,缺乏可比性。在用汽车固有动力性在使用过程不是恒定不变的,是随着运行过程中部件、零件的磨损、老化等逐渐衰退变差,直至跑不动,丧失工作能力。这样动力性衰退便是汽车技术状况变差的征兆。汽车

混合动力汽车驱动系统的国内外研究现状

混合动力汽车驱动系统的国内外研究现状 姓名:学号:班级: 1.1混合动力汽车提出背景 1.1.1 21世纪汽车工业面临的挑战[1] 内燃机汽车经过120多年的发展和壮大,为人类文明做出了巨大贡献,创造了难以计算的直接或间接经济利益。但是,随着内燃机汽车保有量的急剧增长,人们越来越认识到传统的内燃机汽车对人类环境带来的危害。传统燃油汽车排放所造成的空气质量日益恶化和石油资源的渐趋匮乏,环境保护的迫切性和石油储量日见短缺的压力,迫使人们重新考虑未来汽车的动力问题。 目前,世界上各种汽车的保有量超过7亿辆,每年新生产的各种汽车约5000万辆,按平均每辆汽车的年消耗10~15桶石油制品计算,汽车的石油消耗量每年达到80~100亿桶,约占世界石油产量的一半以上.石油资源的开采每年达到几十亿吨,经过长时期的现代化大规模地开采,石油资源日渐枯竭,按科学家预测,地球上的石油资源如果按目前的消耗水平,石油资源仅仅可以维持60~100年.21世纪以来,石油价格的上涨已对世界经济的发展形成了巨大的威胁,人类将面临更加严峻的石油资源的危机和挑战。 内燃机汽车上产生动力的同时,会产生燃烧废气,包括二氧化碳二氧化碳 (CO 2)、一氧化碳(CO)、氮氧化合物(NO X )、碳氢化合物(HX)等有害气体,对大气环 境造成污染,对人体造成伤害。内燃机汽车的噪声主要是燃烧噪声、进气和排气过程装配能够气体的空气动力性噪声,这些噪声随汽车的行驶,飘逸在其经过的环境中,在大城市中,汽车所产生的噪声会引起人们的神经系统和心血管系统功能的紊乱。目前只是在每台汽车上装置降低噪声的处理系统,以降低噪声,达到国家规定的标准。噪声降低的处理一般会因消耗一部分发动机的能量而降低内燃机的效率。

汽车转向泵知识

目录 ?转向助力泵的基础知识 ?转向助力的工作原理 ?转向助力泵的保养与故障诊断 一、转向助力泵的基础知识 1.转向助力泵的种类 转向助力泵是液压转向加力装置的供能装置,其作用是将输入的机械能转换为液压能输出。是动力转向系统的最重要部件。 2.转向助力泵的特性 叶片式转向助力泵具有结构紧凑、输油压力脉动小,输油量均匀、运转平稳、性能稳定、使用寿命长等优点。长城哈弗转向助力泵具有良好的转速、流量特性,适用于转速变化而要求泵保持恒定(特定)流量的动力转向系统。该系列泵具有输出流量稳定、转速范围宽、压力脉动小、噪声低、体积小、重量轻、防外漏能力强等特点。 3.转向助力泵的结构

二、转向助力泵的工作原理 1.转向助力泵的工作原理 泵在发动机的带动下工作时,叶片在离心力的作用下紧贴在定子的内表面上,工作容积由小变大,再由大变小,压缩油液,完成一次吸、压油过程。 2.动力转向系统的工作原理 3.流量阀控制阀的工作原理 流量控制阀打开时: 1限压阀螺钉 2垫片 3钢球 4弹簧导向销 5限压阀弹簧 6节流孔在泵的出油口与出油腔之间有一量孔,当油液自出油腔以一定的速度流过量孔时,由于量孔的节流作用,量孔外侧的出油口压力低于量孔内 侧出油腔的压力,油泵流量大,则量孔内外的压力差大,在油泵不工作时,在流量控制阀弹簧的作用下,滑阀处于后极限位置掩盖住泵的出油孔,当油泵工作后出油孔的油压大于控制阀弹簧的张力时,将推动流量-压力控

制阀体向前运动,离开泵出油孔,油泵出油腔的油液经该孔流出油泵。 当发动机转速进一步提高后,油泵内油压也相应提高,油泵流量提高,量孔内外差也提高,使流量-压力控制阀柱塞进一步向前运动,当助力泵流量-压力增大到规定值,使柱塞两端压力差的作用力足以克服控制阀弹 簧的预紧力,则进一步压缩弹簧,将滑阀柱塞向前推到露出溢流孔(进油腔)时,油泵的出油孔与溢流孔相通。于是出油孔中的一部分油液经滑阀柱塞流入进油腔,因而经量孔输出的流量便减少,流量减少到一定值时,量孔内外两侧的压力差不足以平衡弹簧的张力,柱塞便被弹簧推下,重新切断进出油孔的通路,这样转向油泵的流量便被控制在一定的范围内。泵 输出的油量随转子的转速而增大,其输出油量的压力取决于动力转向系 统的负荷,为了限制动力转向系统内的最高工作压力以及油泵的输出油 量,在泵内安装有流量—压力安全控制阀。 流量阀作用:调节叶片泵的输油量。在发动机高速运转时,助力泵的供油量将大大超过动力转向系统的转向需要,过量的循环油液将使油温升高,油泵消耗的功率增大,使转向过于灵敏,方向有发飘的感觉,使转向系统失去操纵性,为此必须设置流量控制阀以限制油泵输出的最高流量。 安全阀作用:调整泵在不同的发动机转速下所输出的压力大小,并限制动力转向系统内油液的最高压力。安全阀体借螺纹固定在流量控制阀柱塞 的前端,安全阀内的球阀门及安全阀弹簧所处的柱塞内腔在出油孔压力升高到规定的最高值时,安全阀内的小钢球将克服安全阀内弹簧的张力压缩弹簧向后运动。(路径:出油孔的部分高压油液便经泵出油口至泵阀螺钉上的小孔至泵控制阀体上的节流孔至顶开安全阀内的钢球至安 全阀内腔流入泵溢流孔( C )),此时泵控制阀底部的压力瞬间降低,致使泵控制阀前后端原先通过节流孔所建立起来的平衡压力被打破,同时滑阀柱塞被瞬间推至阀腔底端,将出油孔与进油腔完全相通,此时泵不向 外输油,油在泵内部循环,这时可听见泵在此位置卸压的正常的嘶嘶声。 流量控制阀关闭时: 1限压阀螺钉 2垫片 3钢球 4弹簧导向销 5限压阀弹簧 6节流孔在滑阀被推下、阀腔压力下降的瞬间,安全阀内的小钢球在弹簧的预紧力下将被重新推至安全阀孔前端,堵住安全阀孔,同时控制阀前后两 端通过节流孔又建立起相等的油压,如此循环,泵内的滑阀在发动机的作 用下不停地往返运动,为转向系统提供不同的压力。 三、转向助力泵的保养与故障诊断

GX110C汽车动力转向器

江门市兴江转向器有限公司 Jiangmen Xingjiang Steering Gear Co., Ltd. GX110C汽车动力转向器 GX110C Automobile Integral Power Steering Gear 用户必读OPERATING INSTRUCTIONS 地址:中国广东省江门市蓬江区发展大道32号 Address: No.32 Fazhan road,Pengjiang District, Jiangmen City, Guangdong Province,China

一、公司简介 江门市兴江转向器有限公司始建于1993年,位于广东省江门市蓬江区发展大道32号,是一家生产汽车整体式动力转向器的专业化企业。中国汽车工业协会会员,中国汽车工业协会转向委员会理事会理事单位。产品开发均采用计算机辅助设计,零件加工采用美国、日本、英国、韩国等及国内的先进设备,建立了完善的计量及技术中心,内部实现计算机联网管理,并且接入了因特网(INTERNET)。质量管理按ISO/TS16949:2002标准建立、完善质量体系。公司生产的GX、ZJ系列产品经国家重型汽车质量监督检测中心检测,全部技术指标符合QC/T530-2000《汽车动力转向器总成技术条件》的要求,其逆向交变载荷、耐压、强制转向等主要性能指标达到国际先进标准的要求,并通过了中汽认证中心的产品认证。公司荣获广东省高新技术企业及省民营科技企业。 目前,公司生产的动力转向器已与载重车行业的东风柳汽、杭汽、一汽红塔、南京春兰、济南重汽、安徽星马,陕西重汽、北方奔驰、宝鸡华山,工程机械行业的徐州、浦沅、泰安、北重及客车行业的厦门金龙、亚星-奔驰、亚星客车、宇通客车、常州客车、丹东黄海、广州骏威等几十个主机厂配套,并分别获得优秀供应商称号。 兴江公司具有完善的质量体系,精良的计量、检测及技术中心,先进的加工设备,高素质的员工队伍,严格的管理制度,现代经营管理理念。我们相信,兴江公司的产品将成为您的首选。 二、产品介绍 本动力转向器,集汽车机械转向器、转向控制阀、转向助力缸为一体,与转向油泵、转向油罐、转向管路配套组成汽车动力转向装置,是汽车上的重要部件(保安件)之一。控制阀为先进的整体转阀式结构,机械部分为循环球齿条齿扇式,本转向器具有设计先进、结构紧凑、体积小、输出

客车动力转向系统的设计布置及常见问题分析模板

客车动力转向系统的设计布置及常见 问题分析

上世纪80年代初期, 国内大部分客车都是在货车底盘上加装车身而来。由于货车底盘的前悬较短而且发动机前置, 造成车内空间利用率不高, 车内噪声较大。随着国民经济的发展, 中国高速公路也在飞速发展, 人们对出行及旅行的舒适性、安全性要求越来越高, 交通密度的增加和车速的提高对客车的转向性能都提出了更高的要求。客车转向系统设计的好坏直接影响着客车的驾驶稳定性、安全性和操纵灵活性。下面简要介绍客车动力转向系统的设计布置及常见问题的分析。 1、客车动力转向系统的设计要点 1.1 客车动力转向的设计要求 (1)转向轮转角和驾驶员转动方向盘的转角应保持一定的比例关系。 (2)动力转向系统失灵时, 仍能用机械系统操纵车轮转向。 (3)减轻驾驶员作用在转向盘上的手力, 同时还应有路感, 并随转向阻力的增加而增大。 (4)方向盘应能平稳回位, 保证汽车的直线行驶能力。 (5)转向系统应能在车辆转弯时灵活平稳地将扭力传到前轮。 (6)不允许路面不平引起的振动造成方向盘回跳或方向失控。

1.2 动力转向器的选择 动力转向系统由于具有转向操纵灵活、轻便, 能吸收路面对前轮产生的冲击, 设计时转向器结构形式的选择也灵活多样等优点, 因此, 已在各国的汽车制造中普遍采用。中国大客车一般采用的是整体式-液压动力转向器, 其工作原理如图1所示。液压式动力转向以液体的压力作动力来完成转向加力。其特点是油液工作压力可达6-10MPa, 甚至更高, 因此结构紧凑, 动力缸尺寸小、重量轻; 因油液具有不可压缩性, 故灵敏度高; 油液的阻尼作用能够用来吸收路面冲击; 动力装置无需润滑。其缺点是结构复杂, 对加工精度和密封要求高等。动力转向器型号的选择须根据前桥负荷、整车的布置等因素来综合考虑。转向器选择的合适与否对整个转向系统起着至关重要的作用。 1.3 转向器及中间过渡臂的布置 转向器及中间过度臂的合理布置对于整车的行驶稳定性有非常重要的作用。每一种转向器对其安装都有要求, 在满足转向器安装要求的情况下, 应根据整车的前转向桥和前悬挂的特点, 保证转向拉杆和前悬挂的运动干涉在允许的范围内。这需要作运动校核图, 以确保不影响整车行驶稳定性的运动干涉。另外, 需根据前轮允许

汽车转向系统常见故障及原因

汽车转向系统常见故障及原因 汽车转向系统常见的故障及原因有: 故障一、转向时有异响 转向时有异响一般是机械部分,例如主销与衬套损伤、立柱止推轴承损坏等造成。检查时可以左、右打方向,观察响声的部位进行拆检。 故障二、转向机漏油 转向机向外漏油不外乎是几个位置:转向机上盖、侧端盖和转向轴拐臂联接处。这三个部位都有密封圈,更换新的油封和密封圈就可解决。如果其它部位漏油就很可能是转向机壳体沙眼或裂痕。细小的裂痕和沙眼可以用乐泰290高渗透性密封胶来堵漏。 故障三、方向回位较困难 一般车辆都有转向自动回位的功能。液压助力的汽车,由于液压阻尼的作用,自动回位的功能有所减弱,但还应保持一定的自动回位的能力。如果回位时,也要象转向时那样施力,就说明回位功能有故障。这种故障一般都发生在转向机械部分。例如转向节主销与衬套缺油而烧损、转向横、直拉杆接头缺油而锈蚀、方向盘与转向机联接的操纵轴万向节缺油或别劲以及转向机的转向轴扇齿与活塞直齿啮合太紧等等,都会造成这种故障。 故障四、助力泵漏油 如果从助力泵后端盖漏油,显然是后端盖密封圈破损,这是比较容易发现的。实际中还有一种难于发现的故障,这就是转向油罐里的油不断减少(总需要补充),而发动机油底内的机油却不断增多或者表面上看起来发动机丝毫不烧机油。放出部分油底机油观察没有什么

异常现象,也嗅不出什么其它的异味,这种情况显然是助力泵驱动轴端的油封漏油所至。助力泵低压油腔的液压油由油封漏至发动机正时齿轮室,流人油底。液压油与机油混合无法分辩。 故障五、转向沉重 一般来讲引起方向重的原因有如下几种: (1)转向机故障 通过检查如果发现是转向机助力油压较低时,说明方向重的原因在转向机。此时应请专业厂家来进行修理。一般来讲转向机故障大部分是由于活塞、缸筒拉伤、或是活塞上密封圈损坏造成活塞两腔相通,使助力压力不能有效地建立。此外,活塞圆周面上的各种密封圈、转向螺杆上的密封圈破损,也会造成高压卸荷,而使助力压力降底。 (2)助力泵故障 通过试验判断助力泵的泵压达不到标准值时,显然方向沉重与此有关。首先应检查流量控制阀与阀座的啮合面、安全阀钢球是否封闭不严。如果是流量阀或安全阀泄漏,可通过研磨的方法修复。其次再检查安全阀的弹簧是否失效。这点可通过在弹簧后面加垫片的方法检查,如果在弹簧后面增加一垫片后,最大泵压有明显增加,说明弹簧失效。 如果这两个部位都无问题,则应拆卸解体助力泵,观察叶片泵的腔壁是否磨损和拉伤。因腔壁拉伤会使高、低压腔相通,从而造成压力建立不起来。一般拉伤的原因都是油脏所至。如果方向突然沉重,则应检查是否是泵轴断裂所致。 (3)缺油,系统有空气。如果助力系统缺油,造成系统内有空气,此时不仅转向沉重,而且在转向时还有噪音。此时按加油与放气的程序进行排气即可。

汽车的动力性与经济性指标

汽车的动力性与经济性 衡量一辆汽车质量的高低,技术性能是重要的依据。其中动力性、经济性是主要指标。动力性指标和经济性指标在汽车的性能介绍表上都有介绍。 汽车的动力性指标 汽车的动力性指标主要由最高车速、加速能力和最大爬坡度来表示,是汽车使用性能中最基本的和最重要的性能。在我国,这些指标是汽车制造厂根据国家规定的试验标准,通过样车测试得出来的。 最高车速:指在无风条件下,在水平、良好的沥青或水泥路面上,汽车所能达到的最大行驶速度。按我国的规定,以1.6公里长的试验路段的最后500米作为最高车速的测试区,共往返四次,取平均值。 加速能力(加速时间):指汽车在行驶中迅速增加行驶速度的能力,通常用加速时间和加速距离来表示。加速能力包括两个方面,即原地起步加速性和超车加速性。现多介绍原地起步加速性的参数。因为起步加速性与超车加速性的性能是同步的,起步加速性性能良好的汽车,超车加速性也一样良好。 原地起步加速性是指汽车由静止状态起步后,以最大加速强度连续换档至最高档,加速到一定距离或车速所需要的时间,它是真实反映汽车动力性能最重要的参数。有两种表示方式:车速0加速到1000米(或400米,或1/4英里)需要的秒数;车速从0 加速到100公里/小时(80公里/小时、100公里/小时)所需要的秒数,时间越短越好。 超车加速性是指汽车以最高档或次高档由该档最低稳定车速或预定车速(如30公里/小时、40公里/小时)全力加速到一定高速度所需要的时间。 这里特别要指出的是,加速性能的测试与驾驶员的驾车换档技术与环境有密切的联系。驾驶员技术水平的不同,行驶路面的不同,甚至气候条件的不同,所反映出来的加速时间也会不同。车厂给出的参数往往是样车所能达到的最佳值,因此作为用户来说,这个参数仅能做为参考。 爬坡能力:指汽车在良好的路面上,以1档行驶所能爬行的最大坡度。对越野汽车来说,爬坡能力是一个相当重要的指标,一般要求能够爬不小于60%或30°的坡路;对载货汽车要求有30%左右的爬坡能力;轿车的车速较高,且经常在状况较好的道路上行驶,所以不强调轿车的爬坡能力,一般爬坡能力在20%左右。 汽车的经济性指标 汽车的经济性指标主要由耗油量来表示,是汽车使用性能中重要的性能。尤其我国要实施燃油税,汽车的耗油量参数就有特别的意义。耗油量参数是指汽车行驶

混合动力汽车动力系统综述

汽车新动力━━━HEV 综述 戴梦萍1 纪永秋2 (1.山东理工大学机械工程学院,255000;2.山东水利技术学院,255000) 摘要:介绍了混合动力电动汽车(HEV )的概念、HEV 动力总成的组成及型式,阐述了其基本工作原理和驱动模式。 关键词:混合动力电动汽车;串联;并联;混联;驱动模式 随着世界经济的持续增长和世界人口的增加、人民生活水平的提高,人均能源消耗将会高速增加,环境污染会变得更加严重。开发新的替代能源、提高热能转换效率和节约能源被认为是解决或缓解环境污染和保障能源供给的有效办法。汽车燃油发动机是消耗矿石能源和制造环境污染的大户,研发替代燃油发动机的新动力势所必然。替代燃油发动机汽车的方案也越来越多,例如氢能源汽车、燃料电池汽车、混合动力汽车等。但目前最有实用性价值并巳有商业化运转的模式,只有混合动力电动汽车。 根据国际机电委员会下属的电力机动车技术委员会的建议,混合动力电动汽车是指由两种和两种以上的储能器、能源或转换器作驱动能源,其中至少有一种能源提供电能的车辆称为混合动力电动汽车。本文介绍的仅是既有内燃机又有电动机驱动的混合动力电动汽车。混合动力电动汽车的关键是混合动力系统,它的性能直接关系到混合动力汽车整车性能。经过十多年的发展,混合动力系统总成已从原来发动机与电机离散结构向发动机、电机和变速器一体化结构发展,即集成化混合动力总成系统。 1 混合动力电动汽车的组成及种类成 1.1 混合动力总成按照驱动系统能量流和功率流的配置结构关系,可分为串联式(Series hybrid system )(两种)、并联式(Parallel hybrid system )和混联式()等三种。(如图1 (a( (a ) 减(变)速器 车轮 车轮 发动机 发电机 蓄电池 电动机 车轮 车轮 发动机 发电机 蓄电池 电动机 减(变)速器 (a) (b)

汽车助力转向文献综述

文献综述 汽车转向是通过驾驶者转动方向盘,经过转向系统提供的操纵力以改变车轮角度来实现。助力转向是一种为了减轻驾驶员的操纵力而设有主力机构的转向装置。为方便驾驶员易于操纵转向系,动力转向已经成为汽车的标准装备。 黄蓉清认为:汽车汽车转向系统大致经历了无助力的纯机械转向(MS)、有液压助力的液压助力转向(HPS)、随车速改变助力大小的电控液压助力转向(ECHPS)、由电动机直接驱动转向油泵的电动液压助力转向(EHPS)、纯粹靠电动机提供助力的电动助力转向(EPS)、可变传动比转向系统(VGRS)等发展历程。专家们预测,未来汽车转向系统的发展趋势是线控转向(SBW),即取消方向盘与转向车轮之间原有的机械连接,而改用控制信号代替的一种电动转向系统。(电动助力转向的原理和发展,华南理工大学汽车工程学院,广东广州510640,黄蓉清,向铁明,许迎东)。电子助力转向系统的发展是朝着EPS的方向发展的,未来汽车配置中将必不可少的拥有电子助力转向系统,对司机的安全驾驶起到协助作用。 李国洪(电动助力系统控制单元的设计,天津理工大学,天津市复杂系统控制理论及应用重点实验室,天津300384)做出论断:在电动助力转向系统中,电子控制单元是整个系统的控制核心,也是驾驶系统的主要工作,电子控制单元设计要实现的主要功能如下: (1)采集方向盘扭矩信号和车速信号,并将其转化为DSP可以接收、处理的信号。 (2)根据控制要求,确定助力特性,将扭矩值换算成为电机提供的目标电流值。 (3)设计合适的驱动电路,将DSP的输出信号提供给直流助力电机。 (4)跟踪目标电流形成闭环控制,保证实际电流和目标电流的误差不超过允许范围. (5)对系统进行监控和保护,保证系统正常工作。 电动助力系统控制单元的设计是重中之重,对于控制单元的设计,我会尽力于老师沟通,毕竟控制单元一步错步步错,对于控制单元我细心加谨慎,来认真完成。 郝金魁认为(电动助力转向系统驱动电路的设计,石家庄铁道学院机械工程分院,2006-09-11,郝金魁,张超风):电动助力转向系统的硬件电路主要包括以下模块: MC9S12DP256 微控制器、电源电路、信号处理电路、直流电机功率驱动模块、故障诊断模块与显示模块、车速传感器、扭矩传感器、发动机点火信号、电流及电流传感器等接人处理电路, 另外还有电磁离合器等。 EPS 系统的硬件逻辑框架如图2 所示。

纯电动汽车动力性计算公式

纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 整车外廓(mm ) 11995×2550×3200(长×宽×高) 电机额定功率 100kw 满载重量 约18000kg 电机峰值功率 250kw 主减速器速比 6.295:1 电机额定电压 540V 最高车(km/h ) 60 电机最高转速 2400rpm 最大爬坡度 14% 电机最大转矩 2400Nm 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

kw 100w 5.8810)15.211016.86.08cos 016.08.9180008sin 8.918000(86.036001).15 .21..cos ...sin ..(36001 20 02 max <k V V A C f g m g m P slope slope D =???+???+???=++=ααη 从以上动力性校核分析可知,所选100kw/540V 交流感应电机的功率符合所设计的动力性参数要求。 5 动力蓄电池组的校核 5.1按功率需求来校核电池的个数 电池数量的选择需满足汽车行驶的功率要求,并且还需保证汽车在电池放电达到一定深度的情况下还能为汽车提供加速或爬坡的功率要求。 磷酸锂铁蓄电池的电压特性可表示为: bat bat bat bat I R U E .0+= (4-1) 式中: bat E —电池的电动势(V ); bat U —电池的工作电压(V ); 0bat R —电池的等效内阻(Ω); bat I —电池的工作电流(A )。 通常,bat E 、0bat R 均是电池工作电流bat I 以及电流电量状态值SOC (State Of Charge )的函数,进行电池计算时,要考虑电池工作最差的工作状态。假设SOC 为其设定的最小允许工作状态值(SOC low ),对应的电池电动势bat E 和电池等效内阻0bat R 来计算电池放电的最大功率,即可得到如下计算表达式: 铅酸电池放电功率: bat bat bat bat bat bat bd I I R E I U P )..(.0-== (4-2) 上式最大值,即铅酸蓄电池在SOC 设定为最小允许工作状态值时所能输出的最大功率为: 2 max 4bat bat bd R E P = (4-3)

汽车动力性设计计算公式

汽车动力性设计计算公式 动力性计算公式 变速器各档的速度特性: 0 377 .0i i n r u gi e k ai ??= ( km/h ) ......(1) 其中:k r 为车轮滚动半径,m; 由经验公式:?? ? ???-+=)1(20254.0λb d r k (m) d----轮辋直径,in b----轮胎断面宽度,in λ---轮胎变形系数 e n 为发动机转速,r/min ;0i 为后桥主减速速比; gi i 为变速箱各档速比,)...2,1(p i i =,p 为档位数,(以下同)。 各档牵引力 汽车的牵引力: 错误!未指定书签。 t k gi a tq a ti r i i u T u F η???= )()( ( N ) (2) 其中:)(a tq u T 为对应不同转速(或车速)下发动机输出使用扭矩,N ?m ;t η为传动效率。 汽车的空气阻力: 15 .212 a d w u A C F ??= ( N ) (3) 其中:d C 为空气阻力系数,A 为汽车迎风面积,m 2。 汽车的滚动阻力: f G F a f ?= ( N ) (4)

其中:a G =mg 为满载或空载汽车总重(N),f 为滚动阻尼系数 汽车的行驶阻力之和r F : w f r F F F += ( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 各档功率计算 汽车的发动机功率: 9549 )()(e a tq a ei n u T u P ?= (kw ) (6) 其中: )(a ei u P 为第)...2,1(p i i =档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: t a w f r u F F P η3600)(+= (kw ) (7) 各档动力因子计算 a w a ti a i G F u F u D -= )()( (8) 各档额定车速按下式计算 .377 .0i i n r u i g c e k i c a = (km/h ) (9) 其中:c e n 为发动机的最高转速; )(a i u D 为第)...2,1(p i i =档对应不同转速(或车速)下的动力因子。 对各档在[0,i c a u .]内寻找a u 使得)(a i u D 达到最大,即为各档的最大动力因子m ax .i D 注:可画出各档动力因子随车速变化的曲线 最高车速计算 当汽车的驱动力与行驶阻力平衡时,车速达到最高。 根据最高档驱动力与行驶阻力平衡方程

QCT299-2000汽车动力转向油泵技术条件汽车动力转向油泵技术条件

范围 本标准规定了汽车动力转向油泵技术条件和试验方法。 本标准适用于汽车用常流式液压动力转向装置中转向油泵(以下简称转向泵),如转向叶片泵、转向齿轮泵、转向转子泵和转向柱塞泵。引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 5179-1985 汽车转向系术语和定义 GB/T 7935-1987 液压元件通用技术条件 GB/T 13384-1992 机电产品包装通用技术条件 QC/T 484-1999 汽车油漆涂层 定义及其符号 本标准采用下列定义。 3.1 空载压力 在出油口压力不超过最大工作压力Pmax的5%或0.5 MPa时的输出压力。 量的符号:P0 单位:MPa 3.2 最低转速 维持转向泵正常稳定工作的最低转速。

量的符号:nmin 单位:r/min 3.3 最高转速 维持转向泵正常稳定工作的最高转速。 量的符号:nmax 单位:r/min 3.4 开启转速 空载压力下,转向泵流量控制阀开启时的工作转速为n1k;0.85Pmax 工作压力下,使转向泵流量控制阀开启时的工作转速为n2k。 量的符号:n1k、n2k 单位:r/min 3.5 开启流量 转向泵在空载开启转速工况下的输出流量为Q1k,在0.85Pmax开启转速工况下的输出流量为Q2k。 量的符号:Q1k、Q2k 单位:L/min 3.6 损坏 转向泵在性能和可靠性试验中,出现漏油、漏气和零件破损的现象。 3.7 其它名词术语定义按GB/T 5179规定。 4 总则 4.1 产品应符合本标准规定,并按照规定程序批准的图样及技术文件制造。

改善汽车空气动力性能的措施浅析(精)

?毛毳学号:110010156改善汽车空气动力学性能的措施浅析 汽车具有良好的空气动力学性能有利于提高汽车的动力性、燃油经济性,有利于改善汽车的操纵性和行驶的稳定性,进而提高汽车的安全性,有利于改善乘座舒适性。随着汽车设计制造技术的进步和对汽车性能的要求越来越高,汽车的空气动力学性能已成为汽车车身设计所必须考虑的重要内容。 车前部的影响 车头造型对空气动力学性能的影响因素很多,车头边角、车头形状、车头高度、发动机罩与前风窗造型、前凸起唇及前保险杠的形状与位置、进气口大小、格栅形状等。 车头边角主要是车头上缘边角和横向两侧边角,对于非流线形车头,存在一定程度的尖锐边角会产生有利于减少气动阻力的车头负压区;车头横向边角倒圆角,也有利于产生减小气动阻力的车头负压区, 圆角与阻力的关系r /b=O.045就可以保持空气流动的连续;整体弧面车头比车头边角倒圆气动阻力小。车头头缘位置较低的下凸型车头气动阻力系数最小;但不是越低越好,因为低到一定程度后,车头阻力系数不再变化,车头头缘的最大离地间隙越小,则引起的气动升力越小,甚至可以产生负升力。增加下缘凸起唇后,气动阻力变小,减小的程度与唇的位置有关。 发动机罩与前风窗的设计可以改变再附着点的位置,从而影响气动特性(如图1)。发动机罩的纵向曲率越小(目前大多数采用的纵向曲率为0.02 /m),气动阻力越小;发动机罩的横向曲率也有利于减 小气动阻力。发动机罩有适当的斜度(与水平面的夹角)对降低气动阻力有利,但如果斜度进一步加大对降阻效果不明显。风窗玻璃纵向曲率越大越好,但不宜过大,否则导致视觉失真、刮雨器的刮扫效果变 差;前风窗玻璃的横向曲率也有利于减小气动阻力;前风窗玻璃的斜度(与垂直面的夹角)小于30。时,降阻效果不明显,但过大的斜度, 使视觉效果和舒适性降低;前风窗斜度等于48。时,发动机罩与前风窗凹处会出现一个明显的压力降,因而造型时应避免这个角度;前风挡玻璃的倾斜角度(与垂直面的夹角)越大,气动升力系数略有增加。发动机罩与前风窗的夹角与结合部位的细部结构对气流也有重要的影响。 汽车前端形状的对汽车的空气动力学性能也有重要的影响。前凸且高 不仅会产生较大的空气阻力而且还将会在车头上部形成较大的局部负升力区。具有较大倾斜角度的车头可以达到减小气动升力乃至产生负升力的效果。

液压动力转向系统常见故障诊断与维修

摘要 液压动力转向系统由转向器、转向动力缸和转向动力阀三部分组成。动力转向系统的故障主要有一般故障、转向噪声和油液渗漏等。一般故障主要包括转向冲击、转向沉重、转向不灵和转向回跳等。这些故障有些可能与动力转向装置、转向操纵机构和转向传动机构均有关。 关键词:转向系故障现象故障分析故障排除

前言 转向系统是整车系统中必不可少的最基本的组成系统,驾驶者通过方向盘来操纵和控制汽车的行进方向,从而实现自己的驾驶意图。汽车转向系统也随着汽车工业的发展历经了长时间的演变。传统的汽车转向系统是机械式的转向系统,汽车的转向由驾驶员控制方向盘,通过转向器等一系列机械转向部件实现车轮的偏转,从而实现转向。随着上世纪五十年代起,液压动力转向系统在汽车上的应用,标志着转向系统革命的开始。汽车转向动力的来源由以前的人力转变为人力加液压助力。这种助力转向系统主要的特点是液压力支持转向运动,减小驾驶者作用在方向盘上的力,改善了汽车转向的轻便性和汽车运行的稳定性 一液压动力转向系统的概述 1.1液压动力转向系统的组成 液压动力转向系统由转向器、转向动力缸和转向动力阀三部分组成。 1.2液压动力转向系统的工作原理 (1)直线行驶时,转向控制阀将转向油泵泵出来的工作液与油罐相通,转向油泵处于卸荷状态,动力转向器不起助力作用。 (2)向右转向时,向右转动转向盘,转向控制阀将转向油泵泵出的工作液与R腔接通,将L腔与油罐接通,在油压作用下,活塞向下移动,通过传动结构使左右轮向右偏转,从而实现右转向。 (3)向左转向时向左转向时,情况与上述相反。 二液压动力转向系统常见的故障现象与分析 2.1 转向冲击或振动 1.故障现象:当前轮达最大转向角时,车辆出现冲击或振动。 2.故障分析: (1)检查齿条导向螺塞的调整是否正确,并视情调整。若经调整无

混合动力装置

HEV(Hybrid-Electric Vehicle)—混合动力装置 定义 HEV(Hybrid-Electric Vehicle)—混合动力装置。混合动力就是指汽车使用汽油驱动和电力驱动两种驱动方式,优点在于车辆启动和停止时,只靠发电机带动,不达到一定速度,发动机就不工作,因此,便能使发动机一直保持在最佳工况状态,动力性好,排放量很低,而且电能的来源都是发动机,只需加油即可。 分类 混合动力汽车的关键是混合动力系统,它的性能直接关系到混合动力汽车整车性能。经过十多年的发展,混合动力系统总成已从原来发动机与电机离散结构向发动机电机和变速箱一体化结构发展,即集成化混合动力总成系统。混合动力总成以动力传输路线分类,可分为串联式、并联式和混联式等三种。 串联式动力:串联式动力由发动机、发电机和电动机三部分动力总成组成,它们之间用串联方式组成SHEV动力单元系统,发动机驱动发电机发电,电能通过控制器输送到电池或电动机,由电动机通过变速机构驱动汽车。小负荷时由电池驱动电动机驱动车轮,大负荷时由发动机带动发电机发电驱动电动机。当车辆处于启动、加速、爬坡工况况时,发动机、电动机组和电池组共同向电动机提供电能;当电动车处于低速、滑行、怠速的工况时,则由电池组驱动电动机,当电池组缺电时则由发动机-发电机组向电池组充电。串联式结构适用于城市内频繁起步和低速运行工况,可以将发动机调整在最佳工况点附近稳定运转,通过调整电池和电动机的输出来达到调整车速的目的。使发动机避免了怠速和低速运转的工况,从而提高了发动机的效率,减少了废气排放。但是它的缺点是能量几经转换,机械效率较低。 并联式动力:并联式装置的发动机和电动机共同驱动汽车,发动机与电动机分属两套系统,可以分别独立地向汽车传动系提供扭矩,在不同的路面上既可以共同驱动又可以单独驱动。当汽车加速爬坡时,电动机和发动机能够同时向传动机构提供动力,一旦汽车车速达到巡航速度,汽车将仅仅依靠发动机维持该速度。电动机既可以作电动机又可以作发电机使用,又称为电动-发电机组。由于没有单独的发电机,发动机可以直接通过传动机构驱动车轮,这种装置更接近传统的汽车驱动系统,机械效率损耗与普通汽车差不多,得到比较广泛的应用。 混联式动力:混联式装置包含了串联式和并联式的特点。动力系统包括发动机、发电机和电动机,根据助力装置不同,它又分为发动机为主和

正确更换动力转向油的方法

⑴.动力转向油的更换 轿车动力转向装置一旦出现故障,需要拆检,并更换动力转向油液,或者是发现油液变质,也需更换油液,油液更换时应选用轿车规定油液,国产的同等型号自动变速器油液。 ①用千斤顶或举升器将轿车前部顶起,并用支架支牢,后轮最好用垫块固定。 ②把回油管从贮油罐管接头上拆下,从贮油罐中放出转向油,并转动方向盘数次使油液排尽。 ③将回油管与贮油罐接头重新接好,添加液压油至贮罐刻线处(或略高于5mm)。 ④利用上述排气方法,对系统中空气进行排除,待排气完成后,补充油液到刻线处。 ⑵方向盘转向力的检查 轿车动力转向装置性能的好坏,也可以通过测量方向盘转动力的大小来加以判定,具体方法是: ①将轿车停在平坦地面上,并使方向盘处于中间位置。 ②启动发动机,并使其怠速运转。

③用弹簧称测定方向盘外缘处从中间位置向左右转动所需的转向力,此力应小于4kg。否则,应对整个转向系统进行检查。 ④在上述条件下,也可以检查动力转向电磁阀的情况,只需将12V直流电源接在电磁阀的接线端子上,使电磁阀打开,再测量动力转向盘的转向力,此力应不小于10kg,说明电磁阀性能良好,否则应检修电磁阀。注意:在作此项检查时,电磁阀通电时间不宜超过30s,若30s内没有检查完,则必须等待一会儿,待电磁阀线圈冷却后再进行检查,否则较长时间的通电,会使电磁阀线圈因过热而烧毁。 ⑶.贮油罐液面高度的检查 轿车动力转向油泵贮油罐油液高度的检查,除观察油罐油面刻度线外,还应对整个系统进行综合考虑。因此,应首先将轿车停在平坦地面上,启动发动机,并使其怠速运转(不应高于1000r/min)。然后转动方向盘,要从左极限位置转到右极限位置,然后再转回,如此反复5-8次,使液压油温度升高到液压管路有烫手的感觉为止(约80℃)。最后将方向盘回到转向的中间位置(即摆正车前轮)。这时应观察贮油罐内油液有无气泡或乳化现象,若油液罐内有气泡或乳化现象,则说明整个动力转向系统中有空气存在,或者可能是油液液面过低。遇此情况,应排除管路内的空气,并添加油液。 ⑷.动力转向泵的排气

汽车五大性能

通常用来评定汽车的性能指标主要有:动力性、燃油经济性、制动性、操控稳定性、平顺性。 动力性 汽车的动力性是用汽车在良好路面上直线行使时所能达到的平均行驶速度来表示。汽车动力性主要用三个方面的指标来评定:最高车速;汽车的加速时间;汽车所能爬上的最大坡度。 最高车速——是指汽车在平坦良好的路面上行驶时所能达到的最高速度。数值越大,动力性就越好。 汽车的加速时间——表示汽车的加速能力也形象的称为反映速度能力,它对汽车的平均行驶车速有很大的影响,特别是轿车,对加速时间更为重要。常用原地起步加速时间以及超车加速时间来表示。

汽车的爬坡能力——用满载时的汽车所能爬上的最大坡度。这主要针对越野车。

这个图上的线条很多,倒U形的是汽车各档位对应的驱动力,斜向上的曲线是汽车的阻力。 当“阻力=驱动力”时,汽车达到平衡状态,这时的车速达到最高。汽车的阻力主要由四部分组成: 滚动阻力---轮胎在路面上滚动时产生的阻力,主要是摩擦力。 空气阻力----空气对汽车造成的正面阻力。 坡度阻力----爬坡哪能不费力? 加速阻力---想跑得更快,就得多流汗。可见汽车也不容易,要克服这么多阻力才能跑起来。 燃油经济性 汽车的燃油经济性常用一定工况下汽车行驶百公里的燃油消耗量或一定燃油量能使汽车行驶的里程来衡量。在我国及欧洲,汽车燃油经济性指标的单位为L/100km,而在美国,则用MPG或mi/gall表示,即每加仑燃油能行驶的公里数。燃油经济性与很多因素有关,如行驶速度,当汽车在接近于低速的中等车速行驶时燃油消耗量最低,高速时随车速增加而迅速增加。另外,汽车的保养与调整也会影响到汽车的油耗量。 燃油经济性的主要指标包括:

汽车液压动力转向系统流量的选择

汽车液压动力转向系统流量的选择 油泵流量是汽车液压动力转向系统的一项重要参数,对转向系统的轻便性、反应速度、回正能力、寿命及功率损耗等功能有较大影响。 本文就油泵流量的计算和选择作一简要介绍: 一.油泵最小流量的计算。 当汽车快速转向时,油泵提供的流量必须能及时填充活塞移动产生的空间,才能产生并保持相应的液压助力,否则,就会出现转向沉重。保证汽车液压动力转向系统正常工作的最小流量可按如下公式计算: Qmin=nAt+ΔQ 其中 Qmin——保证汽车液压动力转向系统正常工作的最小流量n——人操纵汽车方向盘的最大转速 A——活塞缸面积 t——螺距 ΔQ——动力转向器允许的最大内泄漏量 下面以日本某中型客车为例进行简单计算: 该车配套的动力转向器活塞缸径为φ90mm,螺距t=12mm 根据试验,对于不同直径的方向盘,人转动方向盘的最大速度n在90~120圈/分之间。对于该车,可取n=100 动力转向器的内泄漏量不能过大,可取ΔQ=1.4升/分钟 则Qmin=nAt+ΔQ=9(升/分钟) 即:该车动力转向系统正常工作所需最小油泵流量为9升/分钟若油泵流量小于9升/分钟,在快速转向时,就会因流量供应不足而导致反应迟钝、转向沉重。

二.油泵最大流量的选择。 油泵损耗的功率 W*=PQ 其中 W*——油泵损耗功率 P——油泵工作压力 Q——油泵流量 可见: 1.流量越大,则损耗发动机的功率也越大,油耗就越高。 2.流量越大,当系统管路通径和转向器分配阀的过流开隙一定时,系统的液流阻力就越大,产生的热量就越大,导致系统温度过高,加速油封和橡胶软管的老化,缩短系统寿命。同时,还会导致系统失稳,产生震动和噪音,引起顾客不满。 3.流量越大,所需维持正常流动的管路通径和转向器分配阀的过流开隙也就越大,若为适应较大流量而加大转向器分配阀的过流开隙及管路通径,则不仅需要相应增大转向器的体积和重量,不利于整车的空间布置和减重,更影响到转向器的油压灵敏度和转向力特性,致使转向反应迟钝,回正性能降低。 因此,在满足正常使用性能的前提下,油泵流量应尽可能的小。但由于油泵本身流量有一定的制造散差,并考虑到因长期使用导致的性能降低,一般设计动力转向器及动力转向系统时,选择油泵的最大流量可比最小流量大3~4升/分钟。如上例,转向系统的流量范围可按9~13升/分钟设计。

相关文档
最新文档