钢件淬火温度与颜色对照示意图

钢件淬火温度与颜色对照示意图

高速钢热处理问答

高速钢热处理问答 纵观现在世界上所有的钢种,无论其化学成分、组织、性能之间的复杂关系,还是冶炼、浇注、锻造、轧制、拉丝、塑性成形、焊接和热处理等整个制造过程的难度,高速钢无疑是最难搞的钢种之一。高速钢自问世至今已有100多年历史,一直以制造金属切削刀具著称。有人说“高速钢奥妙无穷”,也有人说“高速钢变化莫测”。长期以来,人们对高速钢进行了大量的基础研究和改革创新,丰富了热处理宝库。笔者1968年大学毕业后,从事高速钢热处理整整50个春秋,积累了不少经验,也记录了一些失败的教训,总结出高速钢热处理值得关注的23个问题,和同行们商讨,不妥之处请批评指正。 碳是高速钢中最重要的元素,作用机制是碳化物的形成及转变——溶解、析出、聚集。含量必须适当,不可过多,也不能太少。当含量较低时,不能形成足够数量的复合碳化物,因而在淬火加热时溶入固溶体的碳化物减少,会降低钢的硬度、红硬性及耐磨性;若含碳量高,淬火加热时,碳和合金元素的浓度增高,使钢的硬度、红硬性提高,但也带来一些不利影响:在碳化物不均匀度增大、塑性降低脆性增加、工艺性能变坏(锻造、轧制易开裂)、降低钢的熔点,所以容易产生过热过烧。含碳量增高,会使淬火后残留奥氏体(rR)增多,增加回火难度。以前的M35钢因含碳量偏低(0.80%~0.90%),淬回火后根本达不到67HRC以上的高硬度;501钢(M2A1)因含碳量偏高,问题不少,现在两钢都回归到正常的含碳量了。GB/T9943新标准和原标准相比,最大的亮点莫过于碳的变化。 高速钢中究竟含多少碳好?应遵循定比碳法则确定。钢厂生产的高速钢成分虽都符合国家标准,但不一定适合你。工具厂应根据自家的产品,选择有竞争力适中的含碳量钢种。 平衡碳是给出钢中所有的碳化物形成元素,按定比碳关系达到平衡时的碳含量,通常按下式进行近似地计算。 Cs=0.33W+0.063Mo+0.06Cr+0.2V 式中,Cs是理论上计算的“平衡碳”,“平衡碳差值”表示计算出来的Cs与实际含碳量的差值,即ΔC= Cs-C实 C实/Cs的比值即为碳饱和度,常用“A”来表示。 例如:M2钢的实际化学成分为(质量分数:%):0.85C、5.97W、4.95Mo、3.97 Cr、1.82V。平衡碳、平衡碳差值、碳饱和度计算式分别为: 平衡碳(Cs)=0.033×5.97+0.063×4.95+0.06×3.97+0.2×1.82=1.103 平衡碳差值(ΔC)=1.103-0.85=0.253 碳饱和度(A)=0.85/1.103=0.771 笔者统计分析了M2钢267个炉号340t含碳量,并热处理试验A值对钢性能的影响,结论是:A值在0.76~0.83时,综合性能佳。 在正常的淬火温度范围内,每提高11~13℃,晶粒度就升高1级,如果按9.5~10.5级晶粒度组织生产,对于M2钢淬火温度(t)与A值有一定的对应关系,笔者的经验是:

钢的锻造温度范围

钢的锻造温度范围 锻造热力规范是指锻造时所选用的一些热力学参数,包括锻造温度、变形程度、应变速率、应力状态(锻造方法)、加热加冷却速度等。这些参数直接影响着金属材料的可锻性及锻件的组织和性能,合理选择上述几个热力学参数,是制订锻造工艺的重要环节。确定锻造热力学参数的主要依据是钢或合金的状态图、塑性图、变形抗力图及再结晶图等。用这些资料所确定的热力学参数还需要通过各种试验或生产实践来进行验证和修改。 在确定锻造热力学参数时,并不是在任何情况下,都需要上述的所有资料。当对锻件的组织和性能没有严格要求时,往往只要有塑性图及变形抗力图就够了。若对锻件的晶粒大小有严格要求,而且在机械性能方面也有硬性规定时,除状态图、塑性图和变形抗力图之外,还需要参考再结晶图以及能说明所采用热力规范是否能保证产品机械性能的资料。 锻造温度范围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原则是,就能保证金属在锻造温度范围内具有较高的塑性和较小的变形抗

力,并得到所要求的组织和性能。锻造温度范围应尽可能宽一些,以减少锻造火次,提高生产率。 碳钢的锻造温度范围如图10(铁-碳状态图)中的阴影线所示。在铁碳合金中加入其他合金元素后,将使铁-碳状态图的形式发生改变。一些元素(如 Cr,V,W,Mo,Ti,Si等)缩小r相区,升高A 3和A 1 点;而 另一些元素(如Ni,Mn等)扩大r相区,降低A 3和A 1 点。所有合金元素均使S点和E点左移。由此可见,合金结构钢和合金工具钢也可参照铁-碳状态图来初步确 定锻造温度范围,但相变点(如熔点,A 3,A 1 ,A Cm 等) 则需改用各具体钢号的相变点。 1.始锻温度 始锻温度应理解为钢或合金在加热炉内允许的最高加热温度。从加热炉内取出毛坯送到锻压设备上开妈锻造之前,根据毛坯的大小、运送毛坯的方法以及加热炉与锻压设备之间距离的远近,毛坯有几度到几十度的温降。因此,真正开始锻造的温度稍低,在始锻之前,应尽量减小毛坯的温降。 合金结构钢和合金工具钢的始锻温度主要受过热和过烧温度的限制。钢的过烧温度约比熔点低100~150℃,过热温度又比过烧温度低约50℃,所以钢的始

相对湿度与露点对照表

室内温度25℃时露点与相对湿度对照表相对湿度露点相对湿度露点0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -2 4.49 1 5.0% -3.02 2.2% -24.02 1 6.0% -2.25 2.3% -23.57 1 7.0% -1.15 2.4% -23.14 1 8.0% -0.83 2.5% -22.73 1 9.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31 3.3% -19.86 90.0% 23.24 3.4% -19.55 3.5% -19.25 3.6% -18.95 3.7% -18.67 3.8% -18.39 3.9% -18.11

锅炉的受热面部件钢材允许使用的温度

锅炉的受热面部件钢材允许使用的温度(详见超超临界锅炉机组金属材料手册)序号部件名称钢号运行温度参数允许使用最高温度 1. 水冷壁管ST45.8 362-410℃450-480℃ 2. 省煤器管ST45.8 362-410℃450-480℃ 3. 顶棚过热器管ST45.8 370℃450-480℃ 4. 包墙管ST4 5.8 362℃450-480℃ 5. 低温过热器管#20 410-450℃450-480-500℃ 5. 低温过热器管15CrMo 410-450℃500-550℃ 6. 高温过热器管12Cr1MoV 540-550℃570-580℃ 7. 壁式再热器管12Cr1MoV 540-550℃570-580℃ 8. 中温再热器管12Cr1MoV 383-486℃570-580℃ 8.中温再热器管12Cr2MoWVTiB (即钢102)383-486℃600-620℃ 8.中温再热器管SA213-T91 383-486℃565-610℃ 9.高温再热器管12Cr1MoV 540-550℃570-580℃ 9.高温再热器管12Cr2MoWVTiB (即钢102)540-550℃600-620℃ 10.前(大)屏式过热器12Cr1MoV 540-550℃570-580℃ 10.前(大)屏式过热器12Cr2MoWVTiB(即钢102)540-550℃600-620℃11.后(小)屏式过热器12Cr1MoV 540-550℃570-580℃ 11.后(小)屏式过热器12Cr2MoWVTiB(即钢102)540-550℃600-620℃11.后(小)屏式过热器SA213-TP304H(相当于1Cr19Ni9)540-550℃705℃11.后(小)屏式过热器SA213-TP347H(相当于1Cr19Ni11Nb) 540-550℃705℃

空气温度湿度对照表

空气绝对湿度与空气相对湿度这两个物理量之间并无函数关系。例如,温度越高,水蒸发得越快,于是空气里的水蒸汽也就相应地增多。所以在一天之中,往往是中午的绝对湿度比夜晚大。而在一年之中,又是夏季的绝对湿度比冬季大。但由于空气的饱和水汽压也随着温度的变化而变化,所以又可能是中午的相对湿度比夜晚的小。由于在某一温度时的饱和水汽压可以从“不同温度时的饱和水汽压”表中查出数据,因此只要知道当前气温,算出当前空气中的水汽压,即可求出空气相对湿度来。 前言:空气有吸收水分的特征,PCB主料和辅料有相当部分也是对湿度十分敏感的材料,它们遇到空气中的相对湿度比工艺条件高或低时会吸湿或缩水造成自身形体变化,如黑菲林、重氮片、半固化片等。造成制程中不稳定的质量缺陷。今天我们来谈谈空气一个状态的参数——相对湿度。 生产中的相对湿度是由工业除湿机组和超声波加湿器自动调节的,当生产过程相对湿度局部出现小偏差,我们可以通过局部加减湿度来满足生产需求。例如直接喷水、开启超声波雾化加湿器设备、煮开水来增加空气湿度、开启除湿机及抽湿机,升温可以降低空气湿度。 湿度的概念是空气中含有水蒸气的多少。它有三种表示方法: 第一是绝对湿度,它表示每立方米空气中所含的水蒸气的量,单位是克/立方米;

第二是含湿量,它表示每千克干空气所含有的水蒸气量,单位是克/千克·干空气; 第三是相对湿度,表示空气中的绝对湿度与同温度下的饱和绝对湿度的比值,得数是一个百分比。(也就是指在一定时间内,某处空气中所含水汽量与该气温下饱和水汽量的百分比。) 相对湿度用RH表示。相对湿度的定义是单位体积空气内实际所含的水气密度(用d1 表示)和同温度下饱和水气密度(用d2 表示)的百分比,即RH(%)= d1/ d2 x 100%;另一种计算方法是:实际的空气水气压强(用p1 表示)和同温度下饱和水气压强(用p2表示)的百分比,即RH(%)= p1/ p2 x 100%。 前两种湿度表示它的计算结果是一个量化,并未能满足空气可利用的工艺状态,而我们工艺生产条件更注重空气状态,所以相对湿度是我们最常用衡量空气湿度的一种指标。饱和空气:一定温度和压力下,一定数量的空气只能容纳一定限度的水蒸气。当一定数量的空气在该温度和压力下最大限度容纳水蒸气,这样的空气称饱和空气;未能最大限度容纳水蒸气,这样的空气称未饱和空气。假如空气已达到饱和状态,人为的把温度下降,这时的空气进入一个过饱和状态,水蒸气开始以结露的形式从空气中分离出来变成液态水,这就是我们抽湿机的工作原理。

高速钢W18Cr4V的锻造及热处理

W 18Cr4V钢热处理工艺研究 摘要通过对W 18Cr4V钢的性能特点进行了分析、对W 18Cr4V 钢的锻造工艺以及对W 18Cr4V钢进行退火、淬火及回火等热处理研究,得到了在实际生产中, W 18Cr4V钢采用正确的锻造及热处理工艺处理后, 用它生产的刃具及冷作模具综合力学性能好, 使用寿命长. 关键词 W 18Cr4V钢;锻造;热处理 ;退火;淬火;回火 一、对W 18Cr4V钢的介绍 高速钢W 18Cr4V是一种高合金工具钢,钢中含有钨、钼、铬、钒等合金元素, 其总量超过 10%.特点是红硬性和耐磨性高,淬透性好,并且具有一定的韧性, 因而在实际生产中常用来制造刃具和冷作模具. 我们在产品使用中发现,决定其使用寿命的主要因素是锻造和热处理工艺的合理制定. 1、 W 18Cr4V钢的性能特点

W18Cr4V钢的化学成分见表 1。在钢中, 碳的质量分数为0. 70% ~ 0. 80%, 它一方面要保证能与钨、铬、钒形成足够数量的合金碳化物,又要有一定的碳量溶于奥氏体中,使淬火后获得碳含量过饱和的马氏体, 以保证高硬度和高耐磨性, 以及良好的热硬性。 钨是使高速钢具有热硬性的主要元素, W18Cr4V 钢在退火状态下钨与钢中的碳形成合金碳化物Fe4W2C, 淬火加热时, 一部分Fe4W2 C 溶入奥氏体,淬火后形成含有大量钨及其他合金元素, 有很高回火稳定性的马氏体。在 560℃回火时钨又以W2C形式弥散析出,造成二次硬化现象, 使钢具有高的热硬性,未溶的合金碳化物起阻碍奥氏体晶粒长大及提高耐磨性作用.。 铬对高速钢性能的主要影响是增加钢的淬透性并改善耐磨性和提高硬度。 钒与碳的结合力比钨或钼大,碳化物很稳定,淬火加热时高温下才可溶解, 能显著阻碍奥氏体晶粒长大。并且碳化钒的硬度高,颗粒细小、均匀,对提高钢的硬度、耐磨性和韧性有很大影响, 回火时钒也引起二次硬化现象.。 2 组织结构特点 W18Cr4V钢的铸态组织中有大量的莱氏体, 莱氏体中有粗大、不均匀分布的鱼骨状碳化物, 这些碳化物的存在导致高速钢在使用中容易崩刃和磨损。而这些粗大的碳化物不能用热处理的方法消除, 只能用锻造的方法将其击碎,并使它均匀分布,再用来制造各种刃具

钢的锻造温度范围

钢的锻造温度围 锻造热力规是指锻造时所选用的一些热力学参数,包括锻造温度、变形程度、应变速率、应力状态(锻造方法)、加热加冷却速度等。这些参数直接影响着金属材料的可锻性及锻件的组织和性能,合理选择上述几个热力学参数,是制订锻造工艺的重要环节。确定锻造热力学参数的主要依据是钢或合金的状态图、塑性图、变形抗力图及再结晶图等。用这些资料所确定的热力学参数还需要通过各种试验或生产实践来进行验证和修改。 在确定锻造热力学参数时,并不是在任何情况下,都需要上述的所有资料。当对锻件的组织和性能没有严格要求时,往往只要有塑性图及变形抗力图就够了。若对锻件的晶粒大小有严格要求,而且在机械性能方面也有硬性规定时,除状态图、塑性图和变形抗力图之外,还需要参考再结晶图以及能说明所采用热力规是否能保证产品机械性能的资料。 锻造温度围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原则是,就能保证金属在锻造温度围具有较高的塑性和较小的变形抗力,

并得到所要求的组织和性能。锻造温度围应尽可能宽一些,以减少锻造火次,提高生产率。 碳钢的锻造温度围如图10(铁-碳状态图)中的阴影线所示。在铁碳合金中加入其他合金元素后,将使铁-碳状态图的形式发生改变。一些元素(如 Cr,V,W,Mo,Ti,Si等)缩小r相区,升高A3和A1点;而另一些元素(如Ni,Mn等)扩大r相区,降低A3和A1点。所有合金元素均使S点和E点左移。由此可见,合金结构钢和合金工具钢也可参照铁-碳状态图来初步确定锻造温度围,但相变点(如熔点,A3,A1,A Cm等)则需改用各具体钢号的相变点。 1.始锻温度 始锻温度应理解为钢或合金在加热炉允许的最高加热温度。从加热炉取出毛坯送到锻压设备上开妈锻造之前,根据毛坯的大小、运送毛坯的方法以及加热炉与锻压设备之间距离的远近,毛坯有几度到几十度的温降。因此,真正开始锻造的温度稍低,在始锻之前,应尽量减小毛坯的温降。 合金结构钢和合金工具钢的始锻温度主要受过热和过烧温度的限制。钢的过烧温度约比熔点低100~150℃,过热温度又比过烧温度低约50℃,所以

高速钢模具锻造和淬火裂纹分析与消除措施实用版

YF-ED-J2744 可按资料类型定义编号 高速钢模具锻造和淬火裂纹分析与消除措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

高速钢模具锻造和淬火裂纹分析与消除措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1 高速钢冶金缺陷引起锻造裂纹 高速钢属莱氏体钢,含有大量合金元素, 形成大量共晶碳化物和二次碳化物。不良碳化 物硬而脆,是脆性相。共晶碳化物呈粗大骨骼 状或树枝状分布于基体,破坏了组织连续性。 钢锭虽经开坯压延和轧制,碳化物有一定程度 碎化,但碳化物偏析依然严重,沿轧制方向呈 带状、网状、大颗粒状和堆集状分布。碳化物 不均匀度随原材料直径和厚度增加而严重。共 晶碳化物相当稳定,常规热处理无法消除,导

致锻造时应力集中,成为裂纹源。原材料存在组织疏松、缩孔、气泡、白点、粗晶、内裂和非金属夹杂,急剧降低钢材热塑性和强韧性,加之,高速钢导热性差,仅为碳钢的三分之一,因热塑性差,变形抗力大,锻造第一锤重击即可碎裂。措施。严格原材料入库和投产前材质检验,合格钢材方可投产;选用小钢锭开坯轧制各种规格原材料,选用二次精炼电渣重熔钢锭,具有纯度高,杂质少,晶粒细,碳化物小,无偏析,等向性能优,化学成分和组织均匀等特点,对原材料进行科学合理锻造,击碎不均匀共晶碳化物脆性相,使之≤3级,变不均匀共晶碳化物脆性相为强化相,发生质的飞跃;锻坯应充分预热,均匀加热,充分透烧,勤翻动坯料和采用轻--重--轻双十字形变向镦

经验公式确定钢的热处理温度

钢的热处理工艺设计经验公式 ------------根据经验公式确定热处理的保温温度------------ 1钢的热处理 1.1正火加热时间 加热时间t=KD (1) 式中t为加热时间(s); D使工件有效厚度(mm); K是加热时间系数(s/mm)。 K值的经验数据见表1。 表1 K值的经验数据 1.2 正火加热温度 根据钢的相变临界点选择正火加热温度 +(100~150℃)(2)低碳钢:T=Ac 3 中碳钢:T=Ac +(50~100℃)(3) 3 +(30~50℃)(4)高碳钢:T=A Cm 亚共析钢:T=Ac +(30~80℃)(5) 3 共析钢及过共析钢:T=A +(30~50℃)(6) Cm 1.3淬火加热时间 为了估算方便起见,计算淬火加热时间多采用下列经验公式: t=a· K ·D︱ (不经预热) (7) t=(a+b)· K ·D︱(经一次预热) (8)t=(a+b+c)· K ·D︱(经二次预热) (9) 式中t—加热时间(min); a—到达淬火温度的加热系数(min/mm); b—到达预热温度的加热系数(min/mm); c—到达二次预热温度的加热系数(min/mm); K—装炉修正系数; D︱--工件的有效厚度(mm)。 在一般的加热条件下,采用箱式炉进行加热时,碳素钢及合金钢a多采用1~ 1.5min/mm;b为1.5~2min/mm(高速钢及合金钢一次预热a=0.5~0.3;b= 2.5~ 3.6;二

次预热a=0.5~0.3;b=1.5~2.5;c=0.8~1.1),若在箱式炉中进行快速加热时,当炉温较淬火加热温度高出100~150℃时,系数a约为1.5~20秒/毫米,系数b不用另加。 若用盐浴加热,则所需时间,应较箱式炉中加热时间少五分之一(经预热)至三分之一(不经预热)左右。工件装炉修正系数K的经验值如表2: 表2 工件装炉修正系数K 1.4淬火加热温度 按常规工艺, 亚共析钢的淬火加热温度为Ac 3 +(30~50℃);(10) 共析和过共析钢为Ac 1 +(30~50℃);(11) 合金钢的淬火加热温度常选用Ac 1(或Ac 3 )+(50~100℃)(12) 1.5回火加热时间 对于中温或高温回火的工件,回火时间是指均匀透烧所用的时间,可按下列经验公式计算: t=aD+b (13) 式中t—回火保温时间(min); D—工件有效尺寸;(mm); a—加热系数(min/mm); b—附加时间,一般为10~20分钟。 盐浴的加热系数为0.5~0.8min/mm;铅浴的加热系数为0.3~0.5min/mm;井式回火电炉(RJJ系列回火电炉)加热系数为1.0~1.5min/mm;箱式电炉加热系数为2~ 2.5mim/mm。 1.6回火加热温度 钢的回火定量关系式很早就有人研究,其经验公式为: 钢的回火温度的估算, T=200+k(60-x) (14)式中: x —回火后硬度值,HRC; k—待定系数,对于45钢,x>30,k =11;x≤30,k=12。 大量试验表明,当钢的回火参数P一定时,回火所达到的工艺效果——硬度值或力学性能相同。因此,按传统经验式确定回火参数仅在标准态(回火1h)时方可使用,实际生产应用受到限制.

钢材允许使用温度

钢材使用温度围

注:1、A3F钢板的使用限制如下:(1)不得用于介质为极度危害、高度危害或易爆的受压元件;(2)使用温度0~250℃; (3)设计压力≤0.6MPa;(4)容器容积≤10m3;(5)用于主要受压元件(壳体、成型封头),板厚≤12mm;用于法兰、法兰盖等,板厚≤16mm。 2、A3钢板的的使用限制如下:(1)不得用于介质为极度危害、高度危害或液化石油气容器的受压元件;(2)容器容积 ≤10m3;(3)用于主要受压元件(壳体、成型封头):使用温度0~350℃;设计压力≤1.0MPa;板厚≤16mm;(4)用于法兰、法兰盖、管板及类似受压元件时:使用温度>-20~350℃;设计压力≤4.0MPa;P×Di≤2000 ( D为公称直径,mm;P为设计压力,MPa)。当使用温度<0℃(但>-20℃)且板厚≥30mm时,应检验钢板的常温冲击功(纵向,V形夏比试样,一组三个试样的平均值)不低于27J。 3、16Mn钢板的的使用限制如下:(1)未附加检验或保证钢板常温冲击韧性要求的钢板不得用于压力容器主要受压元件; (2)用于法兰、法兰盖、管板及类似受压元件时使用限制同于A3钢;(3)经检验或复验,保证其常温冲击功(纵向,V形夏比试样,一组三个试样的平均值)不低于27J时,可用作压力容器主要受压元件,其使用限制如下:a、设计温度0~350℃; b、设计压力≤2.5MPa; c、板厚≤30mm。 4、16Mo、INCOLOY800尚无钢板、钢管标准,12CrMo、15CrMo、12Cr2Mo1、1Cr5Mo尚无钢板标准,设计选用可参照国外相 应钢材标准。 5、16Mo长期使用温度超过475℃时应考虑石墨化倾向的影响,因此累计使用时间超过4年的受压元件应检查是否产生 石墨化。 6、超低碳奥氏体不锈钢长期使用温度超过425℃,将导致碳化铬在晶界析出,而丧失抗晶界腐蚀能力。 7、公称含铬量≥13%的铁素体不锈钢钢板(复合板除外)不得用于设计压力≥0.25MPa,且壁厚>6mm的压力容器主要受 压元件。 8、表中注明温度下限者,下限温度即为本标准的适用围温度下限值(>-20℃)。 9、表中“抗氧化温度上限”仅适用于受力不大的非受压元件。 摘自:HGJ15-89中华人民国化学工业部设计标准“钢制化工容器材料选用规定”

空气温度湿度对照表

单位体积空气中所含水蒸汽的质量,叫做空气的“绝对湿度”。它实际上就是水汽密度。它是大气干湿程度的物理量的一种表示方式。通常以1立方米空气内所含有的水蒸汽的克数来表示。单位为克/立方米或克/立方厘米。水蒸汽的压强是随着水蒸汽的密度的增加而增加的,所以,空气里的绝对湿度的大小也可以通过水汽的压强来表示。由于水蒸汽密度的数值与以毫米高水银柱表示的同温度饱和水蒸汽压强的数值很接近,故也常以水蒸汽的毫米高水银柱的数值来计算空气的干湿程度。空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的“相对湿度”。空气的干湿程度和空气中所含有的水汽量接近饱和的程度有关,而和空气中含有水汽的绝对量却无直接关系。例如,空气中所含有的水汽的压强同样等于1606.24pa(12.79毫米汞柱)时,在炎热的夏天中午,气温约35℃,人们并不感到潮湿,因此时离水汽饱和气压还很远,物体中的水分还能够继续蒸发。而在较冷的秋天,大约15℃左右,人们却会感到潮湿,因这时的水汽压已经达到过饱和,水分不但不能蒸发,而且还要凝结成水,所以我们把空气中实际所含有的水汽的密度ρ1与同温度时饱和水汽密度ρ2的百分比ρ1/ρ2×100%叫做相对湿度。也可以用水汽压强的比来表示露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。所以露

点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。湿球温度的定义是在定压绝热的情况下,空气与水直接接触,达到稳定热湿平衡时的绝热饱和温度。

M35高性能高速钢的淬火工艺研究

【摘要】本实验采用9个梯度淬火加热温度对m35高性能高速钢进行淬火晶粒度、淬火硬度、回火程度、回火硬度、过热程度共5个热处理性能指标进行研究,针对丝锥产品所需性能的实际需要,得到符合生产要求的淬、回火工艺。 【关键词】m35;高性能高速钢;淬火工艺 随着近年来汽车工业和机床业的飞速发展,对加工刀具的要求也越来越高,高性能刀具正逐步替代传统刀具成为市场的主导,对m35高性能高速钢丝锥产品的研究已成为我公司根适应市场需的必然之举。 1.材料与工艺 1.1材料与设备 供试材料:m35冷拉圆钢(江苏天工,φ10×15mm棒料) 试验设备:联动式盐浴淬火炉、盐浴回火炉、洛氏硬度计、金相显微镜 1.2热处理工艺 1.2.1工艺 淬火加热温度选择:1170℃、1180℃、1190℃、1200℃、1210℃、1220℃、1230℃、1240℃、1250℃共9个温度 加热时间:加热系数12s/mm 回火温度:560℃,1小时,3次 1.2.2检验项目 根据热处理试验温度参数和检测项目确定试样数量每个温度参数选用4个试样,其中2件用于检测淬火晶粒度、淬火硬度;2件用于检测回火程度、回火硬度、过热程度。 2.试验结果 试验对不同工艺温度对m35高性能高速钢晶粒度、过热程度、淬火硬度、回火硬度的试验结果见表1。 3.讨论 m35钢是在m2钢中加入5%co,在高速钢各合金元素中,co的化学特性处于一种特殊的地位。co是非碳化物形成元素,在高速钢中,绝大部分co溶入固溶体,增加其合金度用以提高高硬性,同时,co使高速钢在回火过程中析出弥散度较大的碳化物,提高了回火后的硬度,高者可达68~70hrc, 600℃×4h后的硬度也有3hrc左右增幅(和m2作红硬性比较),所以能对较高硬度、高强度的钢材进行切削。在600℃的温度下,m35钢的硬度为54-55hrc,而m2钢则为47-48hrc。高温硬度的提高,乃是由于co有促进奥氏体中碳化物的溶解作用。当温度从250℃升至650℃时,m2钢的导热系数提高30%,而m35却增加了80%;而比热的数值随温度的增加而递增得更快。当温度从250℃升至650℃时,m2钢的比热值0.8倍.而m35增加了1.1倍。物理性能的改善必然带来切削性能的提高,在相同的条件下,m35钢刀刃的温度要比m2钢刀刃的温度低30-75℃。在m2钢中加入5%co可以降低刀具与工件之间的摩擦系数及改善其磨削加工性。 但在m2钢加入5%co,也不是十全十美的,它的锻造性能、脆性、脱碳倾向、被切削性能比m2钢差,这些问题在制订热处理工艺时应给予充分考虑。在实际生产中,小规格全磨制丝锥在磨沟时容易出现沟底裂纹甚至断裂,通过增加回火次数或适当提高回火温度可以解决,可能是由于淬火应力在回火过程中没能完全消除,在磨削作用下释放开裂,但在金相观察中并不易发现,应该引起注意。

钢加热温度范围的确定

一、钢热轧加热温度范围的确定: 1)始锻温度和终锻温度 始锻温度是钢或合金在加热炉内允许的最高加热温度。 终锻温度是保证在结束锻造之前钢仍具有足够的塑性,以及锻件在锻后获得再结晶组织。 例如:45钢的始锻温度和终锻温度分别为1200℃和800℃。也就是 说在800℃~1200℃温度范围内进行锻造出的锻件有良好的机械性能。2)开轧温度和终轧温度 ①开轧温度 一般说来,从防止加热的过热、过烧、脱碳等缺陷产生的可能性考虑,对于碳素钢加热最高温度常低于NJE50-100℃;开轧温度低于固相线NJE100-150℃。这是由于考虑输送距离造成的温降,则比 加热温度还要低一些。 ②终轧温度 对亚共析钢(ω(C)(0.8%)来说,终轧温度不得低于GS线,即略高于GS线50-100℃,以便在终轧之后迅速冷却到相变温度,获得细致、均匀的晶粒组织。否则会使金属内部纤维组织更加严重,导致钢材的物理和力学性能产生不均匀或方向性。对过共析钢(ω(C):0.8%-1.7%)终轧温度要求不得低于SK线,一般略高于SK线100-150℃。这是因为过共析钢热轧温度范围窄,即奥氏体区较窄,完全在单相 状态下轧制是不可能的。.

℃。~100开轧温度是第一道的轧制温度,一般比加热温度低50下限主要受终轧温度的限开轧温度的上限取决于钢的允许加热温度,制,钢件在轧制过程中一般应保持单相奥氏体组织。 终轧温度是指终轧生产的终了温度。一般情况下,亚共析钢的 终轧温度应当高于A线50~100℃。过共析钢的终轧温度在A~cmC3A 线之间。终轧温度对钢的组织和性能影响很大,终轧温度越高,晶1 粒集聚长大的倾向越大,奥氏体的晶粒越粗大,钢的机械性能越低。所以终轧温度也不能太高,最好在850℃左右,不要超过900℃,也 不要低于700℃。 3)温度方案的确定 通常按钢坯含碳量不同分别来规定它们的加(均)热温度即最高控制 炉温和出炉温度。 ①含碳量C≤O.3%的低碳钢,最高控制炉温为1380℃,出炉温度为1180~1220℃;②含碳量0.3%0.6%的高碳钢和中碳合金钢,最高控制炉温1320℃,出炉温度为1100~1150℃。 以上说的是不同的钢种所允许的最高控制温度和钢坯出炉温度,然而在现实生产中,我们不可能将温度控制的这么高,其一考虑节能,其二考虑温度太高很容易出现氧化烧损过热过烧等加热缺陷,因此必须严格控制钢坯的加热温度范围。按钢种的不同具体的加热温度和加热过程中的注意事项如下表:

钢材允许使用温度.docx

. 钢材使用温度围 钢材标准受压元件和主钢号 要受力构件的抗氧化温度钢板钢管锻件使用温度围上限(℃) (℃) A3F GB3274(GB700)——(1)530 A3GB3274(GB700)——(2)530 20R GB6654——≤ 475—20g GB713——≤ 475— 10GB711 (GB699)GB8163、 GB9948— ≤ 475530 GB3087、 GB6479 20GB711 (GB699)GB8163、 GB9948JB755 GB3087、 GB6479本标准附录 A≤ 475530 GB5310 25——JB755 ≤ 475530 本标准附录 A 35——JB755 ≤ 475530 本标准附录 A 45——JB755≤ 475530 16MnRC、15MnVRC GB6655≤ 400—16Mn GB3274( GB1591)( 3)— GB6479、GB8163JB755 ≤ 475— 本标准附录 A 16MnR GB6654—JB755≤ 475—15MnVR GB6654GB6479—≤ 400—15MnVNR GB6654——≤ 400— 0~450(正火 +回 18MNMoNbR GB6654——火);≤ 450 调— 质 20MnMo——JB755 ≤ 500— 本标准附录 A 20MnMoNb —— JB755 ≤ 450—本标准附录 A 15MnMoV——JB755 ≤ 520— 本标准附录 A 32MnMoVB —— JB755 0~350—本标准附录 A 35CrMo —— JB755 ≤ 540—本标准附录 A 16Mo( 4)(4)—≤ 520( 5)—12CrMo( 4)GB9948、 GB5310 —≤ 540— GB6479 15CrMo( 4)GB9948、 GB5310JB755 ≤ 560— GB6479本标准附录 A 12Cr1 MoV—GB5310JB755≤ 580—

高速钢刀具淬火裂纹的原因分析及预防措施

高速钢刀具淬火裂纹的原因分析及预防措施 高速钢属莱氏体钢,含有大量合金元素,冶炼后形成大量一次共晶碳化物和二次碳化物(约占成分总量的18%~22%),这对高速钢刀具的淬火质量及使用寿命有很大影响。高速钢淬火温度接近熔点,淬火后组织中仍有25%~35%的残余奥氏体,致使高速钢刀具容易产生裂纹和腐蚀。下面分析影响高速钢刀具淬火裂纹和腐蚀的原因,并提出相应预防措施。 1高速钢原材料的冶金缺陷 高速钢中所含大量碳化物硬而脆,为脆性相。一次共晶碳化物呈粗大骨骼状(或树枝状)分布于钢基体内。钢锭经开坯压延和轧制后,合金碳化物虽有一定程度的破碎和细化,但碳化物偏析依然存在,并沿轧制方向呈带状、全网状、半网状或堆积状分布。碳化物不均匀度随原材料直径或厚度的增加而增加。共晶碳化物相当稳定,常规热处理很难消除,可导致应力集中而成为淬火裂纹源。钢中硫、磷等杂质偏析或超标也是导致淬裂的重要原因。高速钢的导热性和热塑性差、变形抗力大,热加工时易导致金属表层和内层形成微裂纹,最终在淬火时因裂纹扩展而导致材料报废。大型钢锭在冶炼、轧制或锻造等热加工过程中形成的宏观冶金缺陷如疏松、缩孔、气泡、偏析、白点、树枝状结晶、粗晶、夹杂、内裂、发纹、大颗粒碳化物及非金属夹渣等均易导致淬火时应力集中,当应力大于材料强度极限时便会产生淬火裂纹。 预防措施为:①选用小钢锭开坯轧制各种规格的刀具原材料;②选

用二次精炼电渣重熔钢锭,它具有纯度高、杂质少、晶粒细、碳化物小、组织均匀、无宏观冶金缺陷等优点;③对不合格原材料进行改锻,击碎材料中的共晶碳化物,使共晶碳化物不均匀度≤3级;④采取高温分级淬火、再高温回火的预处理工艺,通过精确控温等措施,可有效避免高速钢原材料冶金缺陷引起的淬火裂纹。 2高速钢过热、过烧组织 高速钢过热、过烧组织的特点为晶粒显著粗化,合金碳化物出现粘连、角状、拖尾状及沿晶界呈全网状、半网状或连续网状分布;钢组织内部局部熔化出现黑色组织或共晶莱氏体,形成过烧组织,显著降低晶间结合力和钢的强韧性。引起高速钢过热、过烧组织的主要原因有:淬火加热温度过高,测温和控温仪表失准;盐浴炉淬火加热时,因盐浴表面烟雾导致辐射高温计测温出现误差;变压配电盘磁力开关失灵;刀具加热时离电极太近或埋入炉底沉积物中;原材料存在大量角状碳化物或碳化物不均匀度等级太高等。高速钢过热、过烧组织极易导致淬火裂纹。 预防措施为:①严格控制原材料质量,共晶碳化物级别应≤3~3.5级;②原材料入库和投产前应作金相检查,确保无宏观冶金缺陷;③刀具淬火加热前用试片校验高温盐浴炉,检查晶粒等级与淬火加热温度的关系是否合理(参见下表);④采用微机控温与测温,测温精度达到±1.5℃。共晶碳化物不均匀度等级出现过热(晶粒度8#)的淬火温度(±5℃) ≤31260℃ 3.51250℃ 4.51245℃

高速钢(红硬性)

高速钢的红硬性 开放分类:冶金1. 概述高速钢又名风钢或锋钢,意思是淬火时即使在空气中冷却也能硬化,并且很锋利。它是一种成分复杂的合金钢,含有钨、钼、铬、钒等碳化物形成元素。合金元素总量达10~25%左右。它在高速切削产生高热情况下(约500℃)仍能保持高的硬度,HRC能在60以上。这就是高速钢最主要的特性——红硬性。而碳素工具钢经淬火和低温回火后,在室温下虽有很高的硬度,但当温度高于200℃时,硬度便急剧下降,在500℃硬度已降到与退火状态相似的程度,完全丧失了切削金属的能力,这就限制了碳素工具钢制作切削工具用。而高速钢由于红硬性好,弥补了碳素工具钢的致命缺点,可以用来制造切削工具。高速钢的热处理工艺较为复杂,必须经过退火、淬火、回火等一系列过程。退火的目的是消除应力,降低硬度,使显微组织均匀,便于淬火。退火温度一般为860~880℃。淬火时由于它的导热性差一般分两阶段进行。先在800~850℃预热(以免引起大的热应力),然后迅速加热到淬火温度1220~1250℃,后油冷。工厂均采用盐炉加热。淬火后因内部组织还保留一部分(约30%)残余奥氏体没有转变成马氏体,影

响了高速钢的性能。为使残余奥氏体转变,进一步提高硬度和耐磨性,一般要进行2~3次回火,回火温度560℃,每次保温1小时。(1)生产制造方法:通常采用电炉生产,近来曾采用粉末冶金方法生产高速钢,使碳化物呈极细小的颗粒均匀地分布在基体上,提高了使用寿命。(2)用途:用于制造各种切削工具。如车刀、钴头、滚刀、机用锯条及要求高的模具等。2. 主要生产厂我国大连钢厂、重庆钢厂、上海钢厂是生产高速钢的主要生产厂。3. 主要进口生产国家我国主要从日本、俄罗斯、德国、巴西等国进口。 4. 种类有钨系高速钢和钼系高速钢两大类。钨系高速钢有W 18 CR 4 V,钼系高速钢有W6 Mo 5 Cr 4 V 2 等。 热处理概述 金属热处理是将金属工件放在一定的介质中加热、保温、冷却,通过改变金属材料表面或内部的组织结构来控制其性能的工艺方法。 1.金属组织 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。

经验公式确定钢的热处理温度修订稿

经验公式确定钢的热处 理温度 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

钢的热处理工艺设计经验公式 ------------根据经验公式确定热处理的保温温度------------ 1钢的热处理 正火加热时间 加热时间t=KD (1) 式中t为加热时间(s); D使工件有效厚度(mm); K是加热时间系数(s/mm)。 K值的经验数据见表1。 表1 K值的经验数据 正火加热温度 根据钢的相变临界点选择正火加热温度 低碳钢:T=Ac3+(100~150℃) (2) 中碳钢:T=Ac3+(50~100℃) (3) 高碳钢:T=A Cm+(30~50℃) (4)

亚共析钢:T=Ac3+(30~80℃) (5) 共析钢及过共析钢:T=A Cm+(30~50℃) (6) 淬火加热时间 为了估算方便起见,计算淬火加热时间多采用下列经验公式: t=a· K ·D︱ (不经预热) (7)t=(a+b)· K ·D︱(经一次预热) (8) t=(a+b+c)· K ·D︱(经二次预热) (9) 式中t—加热时间(min); a—到达淬火温度的加热系数(min/mm); b—到达预热温度的加热系数(min/mm); c—到达二次预热温度的加热系数(min/mm); K—装炉修正系数; D︱--工件的有效厚度(mm)。 在一般的加热条件下,采用箱式炉进行加热时,碳素钢及合金钢a多采用1~mm;b为~2min/mm(高速钢及合金钢一次预热a=~;b=~;二次预热 a=~;b=~;c=~),若在箱式炉中进行快速加热时,当炉温较淬火加热温度高出100~150℃时,系数a约为~20秒/毫米,系数b不用另加。若用盐浴

钢材的主要性能

一、钢材的主要性能 钢材的力学性能:有明显流幅的钢筋,塑形好、延伸率大。 技术指标:屈服强度、延伸率、强屈比、冷弯性能。 力学性能是最重要的使用性能,包括抗拉性能、冲击韧性、耐疲劳性等。工艺性能包括冷弯性能和可焊性。 (1)抗拉性能:抗拉性能钢材最重要的力学性能。 屈服强度是结构设计中钢材强度的取值依据。 抗拉强度与屈服强度之比(强屈比)σb/σs,是评价钢材使用可靠性的一个参数。 对于有抗震要求的结构用钢筋,实测抗拉强度与实测屈服强度之比不小于1.25; 实测屈服响度与理论屈服强度之比不大于1.3; 强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料。 钢材受力破坏前可以经受永久变形的性能,称为塑性,它是钢材的一个重要指标。钢材的塑性指标通常用伸长率表示。伸长率随钢筋强度的增加而降低。 冷弯也是考核钢筋塑性的基本指标。 (2)冲击韧性,是指钢材抵抗冲击荷载的能力,在负温下使用的结构,应当选用脆性临界温度较使用温度为低的钢材。 (3)耐疲劳性:钢材在应力远低于其屈服强度的情况下突然发生脆断破裂的现象,称为疲劳破坏。危害极大,钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高。 二、钢筋的工艺性能 1、钢材的性能主要有哪些内容 钢材的主要性能包括力学性能和工艺性能。力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。工艺性能是钢材在各加工过程中表现出的性能,包括冷弯性能和可焊性。 (1)抗拉性能。表示钢材抗拉性能的指标有屈服强度、抗 拉强度、屈强比、伸长率、断面收缩率。 屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。 抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6~0.65,低合金结构钢为0.65~0.75,合金结构钢为0.84~0.86。

绝对湿度与相对湿度对照表

5%10%15%20%25%30%35%40%45%50%55% 60%65%70%75%80%85%90%95%100%5℃0.340.68 1.02 1.36 1.70 2.04 2.38 2.72 3.06 3.40 3.73 4.07 4.41 4.75 5.09 5.43 5.77 6.11 6.45 6.7910℃0.470.94 1.41 1.88 2.35 2.82 3.29 3.76 4.23 4.70 5.16 5.63 6.10 6.577.047.517.988.458.929.3915℃0.64 1.28 1.92 2.56 3.21 3.85 4.49 5.13 5.77 6.417.057.698.338.979.6210.2610.9011.5412.1812.8220℃0.86 1.73 2.59 3.45 4.32 5.18 6.04 6.917.778.649.5010.3611.2312.0912.9513.8214.6815.5416.4117.2725℃ 1.15 2.30 3.45 4.60 5.75 6.908.059.2010.3511.5112.6613.8114.9616.1117.2618.4119.5620.7121.8623.0130℃ 1.52 3.03 4.55 6.067.589.0910.6112.1213.6415.1616.6718.1919.7021.2222.7324.2525.7627.2828.7930.3135℃ 1.98 3.95 5.937.909.8811.8513.8315.8017.7819.7621.7323.7125.6827.6629.6331.6133.5835.5637.5339.5140℃ 2.55 5.107.6510.2012.7515.3017.8520.4022.9525.5028.0530.6033.1535.7038.2540.8043.3545.9048.4551.0045℃ 3.26 6.529.7813.0416.3019.5622.8226.0829.3432.6135.8739.1342.3945.6548.9152.1755.4358.6961.9565.2150℃ 4.138.2712.4016.5320.6624.8028.9333.0637.1941.3345.4649.5953.7257.8661.9966.1270.2574.3978.5282.6555℃ 5.1910.3915.5820.7825.9731.1736.3641.5646.7551.9557.1462.3367.5372.7277.9283.1188.3193.5098.70103.8960℃ 6.4812.9519.4325.9132.3938.8645.3451.8258.2964.7771.2577.7284.2090.6897.16103.63110.11116.59123.06129.5465℃8.0216.0324.0532.0640.0848.0956.1164.1272.1480.1588.1796.18104.20112.21120.23128.24136.26144.27152.29160.3070℃9.8519.6929.5439.3949.2459.0868.9378.7888.6298.47108.32118.16128.01137.86147.71157.55167.40177.25187.09196.9475℃12.0224.0336.0548.0660.0872.0984.1196.12108.14120.16132.17144.19156.20168.22180.23192.25204.26216.28228.29240.3180℃14.5729.1343.7058.2772.8387.40101.97116.53131.10145.67160.23174.80189.36203.93218.50233.06247.63262.20276.76291.3385℃17.5535.1052.6570.2087.75105.29122.84140.39157.94175.49193.04210.59228.14245.69263.24280.78298.33315.88333.43350.9890℃21.0242.0463.0584.07105.09126.11147.13168.14189.16210.18231.20252.22273.23294.25315.27336.29357.31378.32399.34420.3695℃25.0350.0675.09100.12125.15150.18175.21200.24225.27250.30275.33300.36325.39350.42375.45400.48425.51450.54475.57500.60100℃ 29.65 59.30 88.94 118.59 148.24 177.89 207.54 237.18 266.83 296.48 326.13 355.78 385.42 415.07 444.72 474.37 504.02 533.66 563.31 592.96 绝对湿度与相对湿度对应表(大气压:1bar) 相对湿度 (RH) 绝对湿度 g/m 3 温度

相关文档
最新文档