跳频方案

北电跳频方案

NNCE WENG RF

F eb.25 2005

跳频技术的引入

?对日益增长的话务需求,需要对网络进行扩容以满足容量和覆盖的要求。

因此可以考虑通过在现有的GSM900单频网络或在引入DCS1800的双频网络中通过提高频率复用度,增加单面积的容量配置来达到节省网络成本和提高容量的目的。通过引入跳频、功率控制、不连续发射等无线链路控制技术来达到扩容的目的。

跳频系统的的特点

?跳频是GSM规范的标准特性

?多径衰落分集( 频率分集)

—多径传播导致频率选择性衰落.

—跳频可使呼叫在话音质量严重降低之前跳出衰落低谷.

—跳频频率愈多, 跳频增益愈大.

—跳频在抵抗多径衰落方面的益处对于慢速移动的移动终端比快速移动的移动终端显著.?干扰分集

—在某一固定频率的强干扰仅对跳频信号在瞬间内有影响---强干扰被分为若干个弱干扰.

—缘于交织技术以及信号处理技术, GSM能非常有效地抵制瞬间干扰和弱干扰.

跳频的干扰分集效果

?4个频率跳频的例子

F1

F2

F3

F4

跳频得到的TDMA--在F1到F4上跳频:连续的干扰被离散为瞬间干扰经过解交织、前向纠错后:干扰得到抑制

?

上图:跳频对Rxqual (BER)略有改善

?

下图:跳频可显著改善丢帧率(20-30%)

跳频主要改善丢帧率FER

引入跳频技术后,我们发现某一C/I值所对应的RXQUAL值和非跳频网络是相似的,但在解码后所得到的误码率和帧删除率主要依赖于跳频数量的多少和系统负载情况,因此在跳频网络仅仅用C/I或QXQUAL来评估跳频网络是不够的。在跳频网络解码后的误码率和帧删除率的指标才能衡量网络的质量。

跳频的方式

?SFH是分离复用的关键

?SFH使得一个TRX工作在多个载频

上?跳频频率愈多, 跳频增益愈大?必须采用宽带耦合器

?SFH是分离复用的关键?SFH使得一个TRX工作在多个载频上?跳频频率愈多, 跳频增益愈大?必须采用宽带耦合器?

BFH不支持分离复用

?一个通话在几个工作在不同载频

上的TRX上顺序传输.?一个TRX对应一个频点,更多的跳频点意味着更多的TRX.?可采用谐振腔耦合器。

?BFH不支持分离复用?一个通话在几个工作在不同载频上的TRX上顺序传输.?一个TRX对应一个频点,更多的跳频点意味着更多的TRX.?可采用谐振腔耦合器。S(t)

f z (s n )

TRX1

TRX2TRXn

f a (s 1)f b (s 2)~

L 0= Fa, Fb, ?, Fz

S(t)

TRX

f a (s 1)f b (s 2)f z (s n )

...基带跳频原理

合成器跳频原理

Key Parameters for Hopping

?Basic parameter

—MA: list of frequencies used in hopping(what to hop)

—HSN: hopping sequence number (how to hop)

—Hopping group: timeslots using the same MA and HSN (who to hop)—MAI: mobile allocation index(hop in which frequency)**

—MAIO: MAI offset to avoid frequency collision in one cell

Frequency Load Calculation

For RF hopping, quality is maintained with the frequency load control:

Frequency load=number of hopping TRX per cell /MA list length

For example:

cell with 8TRX, using 1/1 reuse and frequencies in MA is 42, then Frequency load=(8-1)/42=16.7%

Frequency Load Principle

?For 1x3 reuse, the min requirement is:

Frequency load<=50%

?For 1x1 reuse, the min requirement is:

Frequency load<=16%

Lower this value, then better NW quality, and also lower traffic get better hopping performance.

Before Frequency plan…

?What pattern is the most adapted one to the network.?What number of frequencies will be allocated to the BCCH and TCH layers.

Frequency Reuse pattern

?Group Reuse pattern

—BCCH, TCH Hopping, non-Hopping

?Fractional Reuse Pattern

—RF Hopping with 1x1, 1x3, 2x6, 3x9, etc.

Fractional reuse with 1x3 is mostly used in Nortel solution.

1x3跳频方案(1)

? 3 MA list, reuse once in one site.?Regular sector and regular MA assignment ?Be careful when define MAIO

Frequency group

TCH channel T113,16,19,22,25,28,31,34T214,17,20,23,26,29,32,35T3

15,18,21,24,27,30,33,36

T 1

T 2

T 3

T 1

T 2T 3

reuse distance T 1

T 1

T 2

T 2no co-channel adjacent cells

1x3跳频方案(2)

--西安市区现网频率规划方案

TCH Hopping Group:

BCCH For Macro Cells :

Non-hopping TCH(TDMA1-TDMA2):

备注:1。26,73用于优化频点。

2。27,28用于微蜂窝。

3。25,29,72作为隔离频点。

B A 194B B 193B

C 192B

D 191B

E 190B

F 189B

G 188B A 287B B 286B C 285B D 284B E 283B F 282B G 281B A 3

80B B 379B C 378B D 377B E 376B F 375B G 374

M A IO 012345678910111213T 13033363942454851545760636669T 23134374043464952555861646770T 3

32

35

38

41

44

47

50

53

56

59

62

65

68

71

12341314

15165678171819209

10

111221

22

23

24

3*4 o f 2 g r o u p s

1x3跳频方案(3)--半跳频与1x3跳频方案的比较

?假设:S888基站配置,3TDMA不跳频,5TDMA跳频,14个跳频频点,1%的阻塞率,80%设计话务负荷。

?不跳频的话音信道数:21

?话音信道总数:59

?不跳频话音信道提供的话务量:12.8 Erl,

?总的话音信道提供的话务量:46.0 * 80% = 36.8 Erl,

?跳频话音信道提供的话务量:36.8 –12.8 = 24 Erl,

?比较一个不跳频TDMA帧,如下:

?跳频话音信道提供的话务量:36.8 – 1.9 = 34.9 Erl,

?5TDMA跳频话音信道话务量与7TDMA跳频话音信道话务量比24/34.9 = 69%。

?对于一个TDMA不跳频配置,服务小区和其中一个同频干扰小区的撞频概率公式:

?Pc (S, i)_1 = (Ts * Ti) / (64 * Nfr_s * Nfr_i)

?对于三个TDMA不跳频配置,服务小区和其中一个同频干扰小区的撞频概率公式:

?Pc (S, i)_3 = (69%*Ts * 69%*Ti) / (64 * Nfr_s * Nfr_i)

= 0.48 * (Ts * Ti) / (64 * Nfr_s * Nfr_i)

= 0.48 * Pc (S, i)_1

?结论:

从计算结果不难看出,三个不跳频配置TDMA帧比一个不跳频配置TDMA帧减少一半的跳频信道的撞频概率。

1x3跳频方案(4)--半跳频和其它扩频方案的比较

仅在原来TCH跳频组中增加一定的频点数,即把原来在七个载频上参加跳频的频点数由每组14个频点扩为每组22个频点。

服务小区与其中之一的同频干扰小区在这种简单的扩频方案中的撞频概率是:

Pc (S, i)_1 = (Ts1 * Ti1) / (64 * Nfr_s1 * Nfr_i1)

= (Ts1 * Ti1) / (64 * 22* 22) = (Ts1 * Ti1) / 30976

服务小区与其中之一的同频干扰小区在半跳频状态下,根据原先话务分配量下评估的

撞频概率是:

Pc (S, i)_3 = (Ts3 * Ti3) / (64 * Nfr_s3 * Nfr_i3)

= (69%*Ts1 * 69%*Ti1) / (64 * 14 * 14)

= 0.48 * (Ts1 * Ti1) / (64*14*14)

= (Ts1 * Ti1) / 26000= ~ Pc (S, i)_1

换句话说,我们提出的半跳频方案中的跳频信道(TDMA3~TDMA7)的撞频概率与简单扩TCH跳频组(每组22个频点数)的概率

基本接近。

比较原先频率规划方案,服务小区与其中之一的同频干扰小区跳频信道上的撞频概率是:

Pc (S, i)_1= (Ts1 * Ti1) / (64 * Nfr_s1 * Nfr_i1)

= (Ts1 * Ti1) / (64 * 14 * 14)

= (Ts1 * Ti1) / 12544

半跳频在跳频话音信道上的撞频概率减少了(1-12544/26000)= 51.75%.

因此,半跳频不仅表现在与原来频率规划相比跳频信道上的撞频概率减少,而且,在不跳频的话音信道上有更好的通话质量,这归功于保留2个TDMA帧为不跳频,它与直接在话音信道跳频组的扩频方案相比更有利于通话质量的改善。

1x3跳频方案(5)

--连续跳频

河北省GSM网络P10-1期频率规划方案

本期的频率规划方案中我们将采用连续跳频组的射频跳频方案。012345Maio=0,2,4147101316Maio=1,3,5258111417Maio=0,2,4

3

6

9

12

15

18

012345Maio=0,2,4123456Maio=0,2,48910111213Maio=0,2,4

151617181920

间隔跳频组:

连续跳频组:

1x3跳频方案(6)

--连续跳频

河北省GSM网络P10-1期频率规划方案

òCluster 1x3

A3

A1

A2A1A2A3A2A1

A2A1

A3

A2A2

A3

A1A3

A1

A3A1

A1

A2

A3A2

A3

A1

A3

A3

A1

A2

Channel

1,2,3,4,5,6

...

8,9,10,11,12,13

...15,16,17,18,19,20

...

MAIO TRX1 TRX2 TRX3 ...

Sector 1 0 2 4 ...Sector 2 0 2 4 ...Sector 3 0 2 4 ...Min # RF 6 12 18

结论:

1。通过对Maio 的分配避免了同站内的邻频干扰。

2。由于所有跳频组连续分布,不同跳频组之间有保护频点,因此避免邻站之间的邻频和同频干扰。

?此方案针对跳频频率进行修改,保持BCCH、半跳频频率不变化的情况下,将现有跳频频点30-71号频点和25,29,72号频点进行重新组合,组成9组跳频组,具体情况如下:

说明:

根据跳频组的分类,对跳频实行3*9的复用,更改了传统的1*3的复用方式,不同基站可以根据情况使用不同跳频组。为了利于规范性使用和规划、维护、优化使用方便,应规则使用A1/B1/C1, A2/B2/C2,A3/B3/C3。

MAIO的设置:0扇区0,1,2,3,4

1扇区0,1,2,3,4

2扇区0,1,2,3,4

优点:

?更改了传统的1*3的跳频复用方式,加大了频率复用距离;

?根据实际情况,可以灵活使用跳频组;

?对于优化工作意义较大,可有效控制由于越区覆盖引起的跳频信道上的干扰。

缺点:

?对于多载波的小区的覆盖区域需要加强控制,避免由于跳频组变短后的不良影响;

?相对于1*3跳频复用方式规划较为复杂。

多重频率复用MRP技术(1)

MRP技术(Multiple Reuse Pattern)将整段频率划分为相互正交的BCCH频段和干TCH频段,每一段载频作为独立的一层。不同层的频率采用不同的复用方式,频率复用逐层紧密。

BCCH30,31,32,33,34,35,36,37,38,39,40,41,42,43,4415CH

TCH146,47,48,49,50,51,52,53,54,55,56,5712CH

TCH258,59,60,61,62,63,64,65,669CH

TCH367,68,69,70,71,72,73,74,759CH

TCH476,77,78,79,80,816CH

BCCH A B C D E 130********

23536373839

34041424344TCH1A B C D

146474849

250515253

354555657

TCH2A B C

1585960

2616263

3646566

5x3 REUSE4x3 REUSE3x3 REUSE……

蓝牙跳频算法.

蓝牙跳频算法 1. 引言 “蓝牙”,英文名称为“Bluetooth”,是一种开放性短距离无线通信技术标准。其宗旨是提供一种短距离、低成本的无线传输应用技术。它同IEEE802.11b一样,使用2.4GHz ISM(即:工业、科学、医学)频段。跳频是蓝牙的关键技术,对应于单时隙分组,蓝牙的跳频速率为1600跳/秒;对应于多时隙分组,跳频速率有所降低;但在建立链接时则提高为3200跳/秒。以2.45GHz为中心频率,来得到79个1MHz带宽的信道。在发射带宽为1MHz时,其有效数据速率为721kbps。蓝牙跳频技术,是实现蓝牙扩谱的关键技术。由于2.4GHz ISM频段是对所有无线电系统都开放的频段,而蓝牙系统不是工作在该频段的第一个系统,大多数无线局域网、某些无绳电话以及某些军用或民用通信都在使用该频段,微波炉、高压钠灯的无线电波也在此频率范围之内,所以ISM频谱已变得相当拥挤而嘈杂,使用ISM频段的任何系统都会遇到干扰。蓝牙技术通过使用扩频的方式,使得系统所传输的信号工作在一个很宽的频带上,传统的窄带干扰只能影响到扩频信号的一小部分,这就使得信号不容易受到电磁噪声和其他干扰信号的影响,从而更加稳定。同时,蓝牙以跳频技术作为频率调制手段,如果在一个频道上遇到干扰,就可以迅速跳到可能没有干扰的另一个频道上工作;如果在一个频道传送的信号因受到干扰而出现了差错,就可以跳到另一个频道上重发,从而加强了信号的可靠性和安全性。 2. 蓝牙跳频算法 跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多个频率频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中,跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率。 2.1 蓝牙跳频序列标准 蓝牙基带标准共定义了10种类型跳频序列,其中79跳系统和23跳系统各有5种类型(欧洲/美国使用的是79条系统,日本/法国/西班牙使用的是23跳系统)。呼叫(paging)跳频序列为32(16)个不同唤醒频率(不同的系统对应的频点数不同),均匀分布在79(23)MHz范围内,周期为32(16)。呼叫响应序列为32(16)个不同响应频率,与当前呼叫频率序列一一对应,主,从单元使用不同规则得到该序列。查询(inquire)跳频序列为32(16)个不同唤醒频率,均匀分

跳频通信系统抗干扰性能分析

题目:跳频通信系统抗干扰性能分析 姓名: 学院:信息科学与技术学院 系:通信工程系 专业: 年级: 学号: 教师: 2012年7月10日

跳频通信系统抗干扰性能分析 摘要 扩频技术是一种信息传送技术,它利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传送信息所需的最小带宽。而跳频技术以其良好的抗干扰性能和衰落性及较低的信号被截获概率,成为战术通信领域应用最广的一种抗干扰手段。本文在介绍跳频通信基础原理的基础上,并借助计算机仿真工具Matlab /Simulink 搭建仿真模型,得到了在多径信道下的误码率-信噪比曲线,从而分析跳频通信系统的抗干扰性能。 关键字:跳频、Simulink 仿真、多径、抗干扰 一.引言 跳频通信时现代通信中采用的最常用的扩频方式之一,其基本原理是指收发双方传输信号的载波频率按照预定规律进行离散变化。与定频通信相比,由于发送的信号调制在多个伪随机跳变的频率上,敌方不容易捕获到所发送的信息,有利于信号的隐藏,可以有效躲避干扰。因此,跳频技术在通信对抗尤其是卫星通信中处于特别有利的位置。扩频技术正在取代常规通信技术成为军事通信的一种主要抗干扰通信技术。因此,对扩频通信的研究,成为通信对抗中的重要部分。本文通过Matlab 软件仿真跳频通信系统的基本过程,在多径信道下分析其抗干扰能力。 二.跳频通信的基本原理 扩频通信系统是一种信息处理传输系统,这种系统是利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传输信息所必需的最小带宽。在接收机中利用同一码对接收信号进行同步相关处理以解扩和恢复数据。现有的扩频系统可分为:直接序列扩频、跳频、跳时,以及上述几种方式的组合。其中跳频系统是如今使用最多的扩频技术。 跳频扩频的调制方式可以为二进制或M 进制的FSK(MFSK)。如果采用二进制FSK ,调制器选择两个频率中的一个,设为0f 或1f ,对应于待传输的信号0或1.得到的二进制FSK 信号是由PN 码生成器输出序列输出觉得的频率平移量,选择

跳频详述

一、跳频概述 1.1 跳频序列设计FH sequences design ; 1. 作用:(1)控制频率跳变以实现频谱扩展;(2) 跳频组网时作为地址码主要设计 2. 总体限制:汉明相关特性 (1) 汉明自相关最大旁瓣,影响性能:系统抗多径能力和同步性能(同步引导序列) (2) 汉明互相关性能峰值,影响性能:多址组网能力和抗干扰能力。 3. 序列分为:素数序列,m/M 跳频序列,RS 码跳频序列,bent 序列,混沌映射序列构造序列族。 宽间隔跳频的意义:(游程) (a)对抗单频窄带干扰和部分频带干扰; (b)对抗跟踪式干扰,跳频跨度大,敌方干扰机的搜索时间长,调谐时间也长; (c)抗多径衰落:当直射波和折射波通过不同的路径到达接收机,只要跳频时隙小于其的时延差,。当折射波到达接收机时,工作频率已经跳到另一个频率上,多径可以排除;条件:相邻时隙的载波频率之差大于信道的相关带宽。 跳频频段的的间隔特性有利于宽间隔调频序列的设计,目前有(连续性)中间频带法[1983],对偶频带法[1985], 梅文华有较多探索[1994][1997][2001],国外的基本没见到。

1.2 跳频频率合成器frequency hopping synthesizer ; 跳频系统对频率合成器的要求:频率转换速度快,频率稳定度高及纯度高,频率数目多,能在编码控制下跳变。 工作频段:覆盖系数max min /f f 大于2到3时,可以划为几个分频段。 频率合成器;直接频率合成法(倍分频法,快,复杂)、间接频率合成法(锁相,慢),直接数字合成法DDS(简单快速,切换ns 级,杂散抑制差) DDS 工作原理: 一般信号形式 00()cos(2)S t U f t πθ=+ 通过变换 *00()22()s t f t f nT n n θπ πθθ====?? 其中,0022/s s f T f f θππ?== (0f 对应输出,s f 对应参考频率) 表示连续两次采样之间的相位增量,控制θ?可以控制合成信号频率 把2π分成q 等分,最小相位增量为2/q δπ= 若每次的相位增量是δ的R 倍,则有:

蓝牙跳频解决方案

蓝牙跳频解决方案 Bluetooth无线传输系统是一种自组网络系统,网络中不存在固定的基站或者网络中心来建立连接并维持网络同步。网络中各个设备地位是平等的,网络连接不需要管理员或用户的干预,可由各Bluetooth设备自动完成。传统的自组网络一般是在一定范围内建立一个包含所有成员的网络,而Bluetooth可以在同一范围内同时建立几个甚至几十个相互之间没有任何同步和联系的网络(在Bluetooth中称之为微微网,即Piconet)。这些Piconet彼此之间不可避免地会相互干扰。另外,蓝牙使用的频段是2.4 GHz的ISM(即工业、科学、医学)频段(2 400~2 483.5 MHz),是全球通用的免费频段,该频段中的各个部分都有可能遇到不可预测的干扰源(如微波炉、某些照明设备等),其它使用该频段的无线电系统(如802.11无线局域网等)也会引入比较严重的干扰,再加上不同Bluetooth微微网之间的相互干扰,Bluetooth的无线传输环境可以说相当恶劣。? 避开干扰的一个方法是通过某种自适应算法找到ISM频段中未被严重干扰的部分,另一个就是采用扩频技术。Bluetooth技术采用的是跳频扩频技术,即FH-CDMA。在Bluetooth中,ISM 频段被划分为79个带宽1 MHz的频道,载频间距1 MHz,彼此之间正交。跳频系统载频受伪随机码控制,不断随机跳变,可以看成载波按一定规律变化的多频频移键控(MFSK)。从总体上总体上看,信号被扩展到一个很宽的频带,但在任一时刻只有一小段频段被使用,这样ISM 频段的大部分干扰都可以用这种方法躲避。Bluetooth的各微微网的跳频序列彼此之间不正交,会产生短时干扰。Bluetooth之所以不采用正交跳频序列,一方面是因为美国联邦通信委员会(FCC)不允许在ISM频段采用正交跳频序列,另一方面是各Piconet之间彼此没有联系,因而不可能同步。Bluetooth的跳频系统发送端如下图所示。 ? Bluetooth信道采用的是跳频/时分复用方案,信道分为若干个625 μs时隙,每一个时隙对应不同的频率。正常的跳频速率为1 600跳/秒,每一个时隙可以传送一个单时隙数据包。传送3时隙和5时隙数据包时,跳频序列不变(即每时隙对应的载频与单时隙包相同),但在传送一个数据包的过程中载频不变,都使用和第一个时隙相对应的频道。? Bluetooth技术规范共定义了10种跳频选择方案,其中5种对应于79跳系统。跳频算法的主要指标如下:跳频序列由Bluetooth设备标志(主设备Bluetooth地址低位部分28 bit)决定,每个时隙的载频由该时隙的相位(即时隙号)决定。Bluetooth设备标志共28位,可以区分228个跳频序列,数量非常巨大。时隙号(相位)是27位的主设备CLK,一个完整的跳频序列持续的时间为227×625μs≈23 h。跳频序列中任意32个连续载频覆盖的范围至少达64 MHz,每个频率的访问机会都是相同的。可见Bluetooth跳频序列数量巨大,而且每个序列都有较好的随机性。更为重要的是,任意时刻的载频完全由Bluetooth设备标志和时钟决定,可以用组合逻辑电路实现,不需要进行存储,因此跳频序列实现简单。当Bluetooth设备标志和时钟切

跳频扩频系统

跳频扩频系统 一、定义及原理 跳频扩频系统: 采用码序列控制信号的载波,使之在多个频率上跳变而产生扩频信号。接收端产生一个与信号载波频率变化相同移频信号,用它作变频参考,再把信号恢复到原来的频带。调频系统可随机选取的频率数通常是几百个或更多。 跳频系统的载频受一个伪随机码控制,不断地、随机地跳变,因此跳频系统可视作载频按照一定规律变化的多频频移键控(MFSK)。与直扩系统不同,跳频系统中的伪随机序列并不直接传输,而是用来选择信道。跳频系统主要由PN码产生器和频率合成器两部分组成,快速响应的频率合成器是频率跳变系统的关键部件。频率跳变系统的发射机在一个预定的频率集中,由PN码序列控制频率合成器,使发射频率能随机地由一个跳到另一个。接收机中的频率合成器也按相同的顺序跳变,产生一个与发射频率只差一个中频的本振频率,经混频后得到固定的中频信号,该中频信号经放大后送到解调器,恢复传送的信息。此处,混频器实际上担当了解调器角色,只要收发双方同步,就可将频率跳变信号转换为一个固定频率的信号。 二、跳频系统的结构

三、跳频系统的波形 发送端的波形

接收端的波形 四、跳频系统的优点 跳频扩频技术的优点如下: (1)抗单频干扰,部分带宽干扰能力强 跳频系统的抗干扰原理和直扩系统不同,直扩是靠频谱的扩展和解扩处理来提高信噪比的;跳频是靠躲避干扰,来达到提高信噪比的。虽然不能像直扩系统那样,但由于载波频率是跳变的,减少了单频干扰和窄带干扰进入接收机的概率。故调频系统具有抗单频及部分带宽干扰的能力。当跳频的概率数目足够多、跳频的带宽足够宽时,其抗干扰能力是很强的。 (2)抗多径衰落的能力强 利用载波频率的快速跳变,具有频率分集的作用,从而增强了系统抗多径衰落的能力。 (3)便于实现多址通信 应用跳频通信可以很容易地组建一个多址网络,网络内的各

蓝牙技术原理及应用

蓝牙技术的原理及应用 学院:****姓名:**** 班级:*** 学号:**** 产生背景 随着经济的发展,人们对随时随地提供信息服务的移动计算机和宽带无线通信的需求越来迫切。以人为本、个性化、智能化的移动计算机,以其方便、快捷的无线接人、无线互联的新产品,已经逐渐融入到人们的日常生活和工作中。随之而来的便携式终端和无线通信相关的新技术层出不穷,其中短距离的无线通讯技术更是百花齐放、目不暇接。蓝牙技术就是在这种背景下产生的。 蓝牙技术的起源 1998年5月,爱立信、IBM、Intel、Nokia和东芝五家公司联合成立T蓝牙特别利益集团(Bluetoothspeeial Interest Group—BSIG),并制订了近距离无线通信技术标准—蓝牙技术。旨在利用微波取代传统网络中错综复杂的电缆,使家庭或办公场所的移动电话、便携式计算机、打印机、复印机、键盘、耳机及其它手持设备实现无线互连互通。它的命名借用了一千多年前一位丹麦皇帝哈拉德·布鲁斯(Harald Bluetooth)的名字。 所谓蓝牙技术,实际上是一种短距离无线电技术,它以低成本的近距离无线连接为基础,为固定和移动设备通信环境建立一个特别连接的短程无线电技术。利用“蓝牙”技术,能够有效地简化掌上电脑、笔记本电脑和移动电话等移动通信终端设备之间的通信,也能够成功地简化以上这些设备与因特网之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,为无线通信拓宽了道路。它具有无线性、开放性、低功耗等特点。因此,蓝牙技术已经引起了全球通信业界和广泛用户的密切关注。 蓝牙技术的特点 蓝牙技术具有许多优越的技术性能,主要有蓝牙特性、TDMA结构、使用跳频技术、蓝牙设备的组网、软件的层次结构等,下面详细介绍其特点。 蓝牙设备的工作频段选在全球通用的2.4GHz的ISM(工业、科学、医学)频段,这样用户不必经过申请便可以在2400~2500MHz范围内选用适当的蓝牙无线电收发器频段。频道采用23个或79个,频道间隔均为1MHz,采用时分双工

跳频和扩频通信

跳频通信和扩频通信 跳频通信是扩频通信的一个分支,它的突出优点是抗干扰性强,因而很适用于军事领域。当70年代末第一部跳频电台问世以后,就预示着其发展势头锐不可挡。到了80年代,世界各国军队普遍装备跳频电台。这十年是跳频电台发展速度最快的十年。广泛使用跳频电台曾被誉为80年代VHF频段无线电通信发展的主要特征。90年代,跳频通信如虎添翼,在军用跳频通信领域已相当成熟的同时,跳频通信的应用又拓宽到民用领域。业内人士指出,跳频通信是对抗无线电干扰的有效手段,称其为无线电通信的“杀手锏”。跳频通信是如此的神奇,以致于自其问世至今的短短30年间,倍受世界各国,特别是几大军事强国的青睐。 2 跳频通信的基本概念 2.1 定义 我们在用收音机收听某电台,当电台在中波和短波两个波段上播放同一个节目时,有这样的体会:若中波波段信号不好,则随即换到短波波段收听;当短波波段信号不好,则又换回到中波波段收听。这种以更换波段的手段来改善收听效果的方法,就是跳频的通俗含义。只不过这种跳频仅在接收端发生,而且是由人工干预来实施跳频的。我们假设,当广播电台发送的频段也能“紧跟”收音机用户更换的话,那么,这种通信方式就是跳频通信。因此,跳频通信可这样描述:通信收发双方同步地改变频率的通信方式称为跳频通信。 2.2 同步条件(通信条件) 与定频通信相比,跳频通信的载波频率一直在跳变。工作中,发方以相当快的速率(跳速)改变频率,收方必须与发方同步地改变频率,双方才能保持通信。也就是说,跳频通信时,收发双方必须采用同一种跳频图案。跳频电台之间要成功地进行跳频通信,收发双方必须同时满足三个条件:跳频频率相同;跳频序列相同;跳频的时钟相同(允许存在一定的误差)。三个条件缺一不可,否则无法实现跳频通信。 3 跳频通信的主要特点 3.1 抗干扰性强 跳频通信抗干扰的机理是“打一枪换一个地方”的游击策略,敌方搞不清跳频规律,因而具有较强的抗干扰能力。一方面,我方的跳频指令是个伪随机码,其周期可长达十年甚至更长的时间。另一方面,跳变的频率可以达到成千上万个。因此,敌方若在某一频率上或某几个频率上施放长时间的干扰也无济于事。

跳频是最常用的扩频方式之一

跳频 跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多频频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中:跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率;数据终端包含对数据进行差错控制。 与定频通信相比,跳频通信比较隐蔽也难以被截获。只要对方不清楚载频跳变的规律,就很难截获我方的通信内容。同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其他未被干扰的频点上进行正常的通信。由于跳频通信系统是瞬时窄带系统,它易于与其他的窄带通信系统兼容,也就是说,跳频电台可以与常规的窄带电台互通,有利于设备的更新。 通信收发双方的跳频图案是事先约好的,同步地按照跳频图案进行跳变。这种跳频方式称为常规跳频(Normal FH)。随着现代战争中的电子对抗越演越烈,在常规跳频的基础上又提出了自适应跳频。它增加了频率自适应控制和功率自适应控制两方面。 在跳频通信中,跳频图案反映了通信双方的信号载波频率的规律,保证了通信方发送频率有规律可循,但又不易被对方所发现。常用的跳频码序列是基于m序列、M序列、RS码等设计的伪随机序列。这些伪随机码序列通过移位寄存器加反馈结构来实现,结构简单,性能稳定,能够较快实现同步。它们可以实现较长的周期,汉明相关特性也比较好,但是当存在人为的故意干扰(如预测码序列后进行的跟踪干扰)时,这些序列的抗干扰能力较差。 在90年代初,出现了基于模糊(Fuzzy)规则的跳频图案产生器。在这种系统中,由模糊规则、初始条件以及采样模式共同来决定系统的输出序列。只要窃听者不知道模糊规则、初始条件、采样模式三者的任何一个,就无法预测到系统的输出频率,由此就提高了系统的抗窃听能力和抗干扰能力。模糊跳频给出的跳频码序列与传统的跳频码序列相比更加均匀,也更难预测。 90年代末有人提出了混沌(chaotic)跳频序列。其基本思想是通过混沌系统的符号序列来生成跳频序列。在这个混沌系统中要确定一个非线性的映射关系、初始条件和混沌规则,三者唯一确定一个输出序列。由此确定的混沌跳频序列体现了良好的均匀性,低截获概率,良好的汉明相关特性以及具有理想的线性范围。 与一般的数字通信系统一样,跳频系统要求实现载波同步、位同步、帧同步。此外,由于跳频系统的载频按伪随机序列变化,为了实现电台间的正常通信,收发信机必须在同一时间跳变到同一频率,因此跳频系统还要求实现跳频图案同步。跳频系统对同步有两个基本要求:一是同步速度快,二是同步能力强。目前跳频电台的同步方法有精确时钟法、同步字头法、自同步法、FFT捕获法、自回归谱估计法等等。在实际应用中,同步方案常常综合使用多种同步方法。例如战术跳频系统中常用扫描驻留同步法,综合使用了精确时钟法、同步字头法、自同步法三种同步方法,分成扫描和驻留两个阶段进行。扫描阶段完成同步头频率的捕获,驻留阶段从同步头中提取同步信息,从而完成收发双方的同步。

nRF24L01点对点跳频技术应用

nRF24L01点对点跳频技术应用(转载) 分类:技术应用 关键字:nRF24L01;射频;无线通信;跳频 1 nRF24L01概述 nRF24.L01是一款新型单片射频收发器件,工作于2.4 GHz~2.5 GHz ISM频段。内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型ShockBurst技术,其中输出功率和通信频道可通过程序进行配置。nRF24L01功耗低,在以-6 dBm的功率发射时,工作电流也只有9 mA;接收时,工作电流只有12.3 mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。 nRF24L01主要特性如下: GFSK调制: 硬件集成OSI链路层; 具有自动应答和自动再发射功能; 片内自动生成报头和CRC校验码; 数据传输率为l Mb/s或2Mb/s; SPI速率为0 Mb/s~10 Mb/s; 125个频道: 与其他nRF24系列射频器件相兼容; QFN20引脚4 mm×4 mm封装; 供电电压为1.9 V~3.6 V。 2 引脚功能及描述 nRF24L01的封装及引脚排列如图1所示。各引脚功能如下:

图(1) CE:使能发射或接收; CSN,SCK,MOSI,MISO:SPI引脚端,微处理器可通过此引脚配置nRF24L01: IRQ:中断标志位; VDD:电源输入端; VSS:电源地: XC2,XC1:晶体振荡器引脚; VDD_PA:为功率放大器供电,输出为1.8 V; ANT1,ANT2:天线接口; IREF:参考电流输入。 3 工作模式 通过配置寄存器可将nRF241L01配置为发射、接收、空闲及掉电四种工作模式,如表1所示。

跳频系统概述

6.1 跳频系统概述 6.1.1 为什么要跳频 通常我们所接触到的无线通信系统都是载波频率固定的通信系统,如无线 对讲机,汽车移动电话等,都是在指定的频率上进行通信,所以也称作定频通信。这种定频通信系统,一旦受到干扰就将使通信质量下降,严重时甚至使通信中断。 例如:电台的广播节目,一般是一个发射频率发送一套节目,不同的节目占用不同的发射频率。有时为了让听众能很好地收听一套节目,电台同时用几个发射频率发送同一套节目。这样,如果在某个频率上受到了严重干扰,听众还可以选择最清晰的频道来收听节目,从而起到了抗干扰的效果。但是这样做的代价是需要很多额谱资源才能传送一套节目。如果在不断变换的几个载波频率上传送一套广播节目,而听众的收音机也跟随着不断地在这几个频率上调谐接收,这样,即使某个频率上受到了干扰,也能很好地收听到这套节目。这就变成了一个跳频系统。 另外在敌我双方的通信对抗中,敌方企图发现我方的通信频率,以便于截获所传送的信息内容,或者发现我方通信机所在的方位,以便于引导炮火摧毁。定频通信系统容易暴露目标且易于被截获,这时,采用跳频通信就比较隐蔽也难以被截获。因为跳频通信是“打一枪换一个地方”的游击通信策略、使敌方不易发现通信使用的频率,一旦被敌方发现,通信的频率也已经“转移”到另外一个频率上了。当敌方摸不清“转移规律”时,就很难截获我方的通信内容。 因此,跳频通信具有抗干扰、抗截获的能力,并能作到频谱资源共享。所以在当前现代化的电子战中跳频通信已显示出巨大的优越性。另外,跳频通信也应用到民用通信中以抗衰落、抗多径、抗网间干扰和提高频谱利用率。 6.1.2 什么是跳频图案? 为了不让敌方知道我们通信使用的频率,需要经常改变载波频率,即“打一枪换一个地方”似地对载波频率进行跳变,跳频通信中载波频率改变的规律,叫作跳频图案。

跳频通信技术的研究

跳频通信技术的研究 当今信息时代,如何有效的利用宝贵的频带资源,如何进行准确可靠的信息通信是通信领域中至关重要的问题。扩频通正是在这种背景下迅速发展起来的。从20世纪40年代起,人们就开始了对扩频技术的研究,其抗干扰、抗窃听、抗测向等方面的能力早已为人们所熟知。但由于扩频系统的设备复杂,对各方面的要求都很高,在当时的技术条件下,要制成适应军事和民用需要的扩频系统是不可能的,因而扩频技术发展缓慢。进入20世纪60年代后,随着科学技术的迅速发展,许多新型器件的出现,特别是大规模、超大规模集成电路、微处理器、数字信号处理(DSP)器件、扩频专用集成电路(ASIC)以及像声表面波(SAW)器件、电荷耦合器件(CCD)这样的新型器件的问世,使扩频技有了重大的突破和发展,许多新型系统相继问世,兵在实际的使用和实验中显示出了它们的优越性,使扩频通信成为未来通信的一种重要方式。并因此受到了人们极大的重视。扩展频谱系统主要包括以下几种扩频方式: (1)直接序列扩频(DS) (2)跳频(FH) (3)跳时(TH) (4)线性调频(Chirp) 本文中主要讲述对跳频通信的研究。本论文共分X章, 第一章扩频技术及其理论基础 1.1概论 扩展频谱系统具有很强的干扰性,其多址能力、保密、抗多径等功能也倍受人们的关注,被广泛地应用于军事通信和民用通信中。 扩展频谱系统是指发送的信息被展宽到一个很宽的频带上,这一频带比要发送的信息的带宽宽得多,在接收端通过相关接收,将信号恢复到信息带宽的一种系统,简称为扩频系统或SS(Spread Spectrum)系统。

1.2 扩频通信的理论基础 扩频通信技术是把要发送的信号扩展到一个很宽的频带上,然后再发送出去,系统的射频带宽比原始信号的带宽宽得多。这样做,系统的复杂度比常规系统的复杂度要高得多,付出的代价是昂贵的,能得到什么好处呢?可以从著名的香农定理来看。 香农定理指出:在高斯白噪声干扰条件下,通信系统的极限传播速率(或称信道容量)为 C=B lb(1+S/N)b/s (1-1)式中:B为信号带宽,S为信号平均功率,N为噪声功率。若白噪声的功率谱密度可为,噪声功率N= B,则信道容量C可表示为 (1-2) 由上式看出,B、、S确定后,信道容量C就确定了。由香农第二定理知,若信源的信息速率R小于或等于信道容量C,通过编码,信源的信息能以任意小的差错概率通过信道传输。为使信源产生的信息以尽可能高的信息速率通过信道,提高信道容量是人们所期望的。 由香农公式可以看出: (1)要增加系统的信息传输速率,则要求增加信道容量。增加信道容量的方法可以通过增加传输信号带宽B,或增加信噪比S/N来实现。由式(1-1)可知,B与C成正比,而C与S/N呈对数关系,因此,增加B比增加S/N 更有效。 (2)信道容量C为常数时,带宽B与信噪比S/N可以互换,即可以通过增加带宽B来降低系统对信噪比S/N的要求;也可以通过增加信号功率,降低信号的带宽,这就为那些要求小的信号带宽的系统或对信号功率要求严格的系统找到了一个减小带宽或降低功率的有效途径。 (3)当B增加到一定程度后,信道容量C不可能无限地增加。由式(1-1)可知,信道容量与信号带宽成正比,增加B,势必会增加C,但当B增加到一定程度后,C增加缓慢。由式(1-2)知,随着B的增加,由于噪声功率N= B,因而N也要增加,从而信噪比S/N要下降,影响到C的增加。1-2扩频系统的物理模型

军用跳频电台

军用跳频电台 军用跳频电台大多是短波或超短波电台。 跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多频频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中:跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率;数据终端包含对数据进行差错控制。 与定频通信相比,跳频通信比较隐蔽也难以被截获。只要对方不清楚载频跳变的规律,就很难截获我方的通信内容。同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其他未被干扰的频点上进行正常的通信。由于跳频通信系统是瞬时窄带系统,它易于与其他的窄带通信系统兼容,也就是说,跳频电台可以与常规的窄带电台互通,有利于设备的更新。 通信收发双方的跳频图案是事先约好的,同步地按照跳频图案进行跳变。这种跳频方式称为常规跳频( Normal FH)。随着现代战争中的电子对抗越演越烈,在常规跳频的基础上又提出了自适应跳频。它增加了频率自适应控制和功率自适应控制两方面。 在跳频通信中,跳频图案反映了通信双方的信号载波频率的规律,保证了通信方发送频率有规律可循,但又不易被对方所发现。常用的跳频码序列是基于m序列、M序列、RS码等设计的伪随机序列。这些伪随机码序列通过移位寄存器加反馈结构来实现,结构简单,性能稳定,能够较快实现同步。它们可以实现较长的周期,汉明相关特性也比较好,但是当存在人为的故意干扰(如预测码序列后进行的跟踪干扰)时,这些序列的抗干扰能力较差。 在90年代初,出现了基于模糊(Fuzzy)规则的跳频图案产生器。在这种系统中,由模糊规则、初始条件以及采样模式共同来决定系统的输出序列。只要窃听者不知道模糊规则、初始条件、采样模式三者的任何一个,就无法预测到系统的输出频率,由此就提高了系统的抗窃听能力和抗干扰能力。模糊跳频给出的跳频码序列与传统的跳频码序列相比更加均匀,也更难预测。 90年代末有人提出了混沌(chaotic)跳频序列。其基本思想是通过混沌系统的符号序列来生成跳频序列。在这个混沌系统中要确定一个非线性的映射关系、初始条件和混沌规则,三者唯一确定一个输出序列。由此确定的混沌跳频序列体现了良好的均匀性,低截获概率,良好的汉明相关特性以及具有理想的线性范围。 与一般的数字通信系统一样,跳频系统要求实现载波同步、位同步、帧同步。此外,由于跳频系统的载频按伪随机序列变化,为了实现电台间的正常通信,收发信机必须在同一时间跳变到同一频率,因此跳频系统还要求实现跳频图案同步。跳频系统对同步有两个基本要求:一是同步速度快,二是同步能力强。目前跳频电台的同步方法有精确时钟法、同步字头法、自同步法、FFT捕获法、自回归谱估计法等等。在实际应用中,同步方案常常综合使用多种同步方法。例如战术跳频系统中常用扫描驻留同步法,综合使用了精确时钟法、同步字头法、自同步法三种同步方法,分成扫描和驻留两个阶段进行。扫描阶段完成同步头频率的捕获,驻留阶段从同步头中提取同步信息,从而完成收发双方的同步。 在自适应跳频中,同步还包括收发双方频率集更新的同步,保证双方同步地实现坏频点替代,否则会使收发双方频率表不一致,导致通信失败。 频合器是跳频通信系统中的关键部分,目前大多数跳频电台中使用的频率合成器采用的是锁相环(PLL)频率合成技术,但是该技术的频率转换速度已经接近其极限,要进一步改善的技术难度越来越大,而且分辨率较低。为了能够进一步提高跳频速率,提出了直接式数字频合器(DDS)。它采用全数字技术,具有频率分辨率高,频率转换时间快,输出频率可以很高而且稳定性好,相位噪声低等优点,可满足快速跳频电台对频率合成器的要求。例如在美国的JTIDS中,跳速达到每秒35800跳,只有采用直接数字频合器才能实现。但是DDS的价格昂贵,复杂度大,直接用于战术跳频电台有一定的难度。如果采用DDS+PLL的方法,结合两者的长处,可以获得单一技术难以达到的效果。 在跳频系统中,即使在信道条件良好的情况下,仍有可能在少数跳中出现错误,因此有必要进行差错控制。差错控制的方法主要分为两类:一是自动请求重发纠错(ARQ)技术;二是采用前向纠错(FEC)技术。 ARQ技术可以很好的对付随机错误和突发错误,它要求有反馈电路,当信道条件不好时,需要频繁的重发,最终可能导致通信失败。 FEC技术不需要反馈电路,但是需要大量的信号冗余度以实现优良的纠错,从而会降低信道效率。由于纠错码对突发错误的纠错能力较差,而通过交织技术可以使信道中的错误随机化,因此,经常采用编码与交织技术相结合的办法来获得良好的纠错性能。 在跳频系统中常用的纠错编码技术有汉明码、BCH码、trellis码、RS码、Golay码、卷积码和硬判决译码、软判决译码等。1993年提出了TURBO码,其信噪比接近于Shannon极限,引起了人们的极大兴趣。与RS码等常用的跳频编码相比, TURBO码在跳频系统中显示了极大的应用潜能。此外,还可以把不同的编码方法结合在一起,取长补短,进行联合编码。在快跳频方式下,还可以运用重发大数判决来克服跳频频段内的快衰落。 跳频电台在实际应用中通常要组成跳频通信网,以实现网中的任何两个通信终端均能够做到点到点的正常通信。组网除了要避免近端对远端的干扰、码间干扰、电磁干扰等其它干扰以及由系统引起的热噪声等噪声干扰以外,还要注意避免由组网引起的同道干扰、邻道干扰、互调干扰、阻塞干扰等。采用跳频的多址通信网具有很多优点:抗干扰能力强,低截获概率,低检测概率,对频率选择性衰落有很好的抑制作用等等。但是,与常用的DS/CDMA系统相比,跳频网的最大用户数相对较小。 跳频通信网可以分为同步通信网和异步通信网。跳频通信网有多种组网方式,如分频段跳频组网方式、全频段正交跳频组网方式等。在分频段跳频组网方式中,系统把整个频段分成若干个子频段,不同的通信链路采用不同的子频段进行通信,从而有效地防止同一通信网间的干扰。全频段正交跳频组网方式仅用于同步跳频通信网中,也就是说整个通信网中只有一个基准时钟,通过设计在某一相同时刻t的N个相互正交的跳频频率序列来进行组网,这样尽管各个终端间的通信均使用相同频段,但是由于瞬时的跳频频率点不相同,因此可保证它们之间不会出现同频道干扰。自适应跳频通信系统中,由于在通信过程中会去除那些通信条件恶劣的信道,因此频率更新后可能会出现同频道干扰现象,故必须设计一种良好的频点更新算法,保证更新后的跳频序列之间依然是正交的,否则可能会使各通信节点之间频繁出现频率碰撞,导致无法正常通信。实际应用中也可以把以上两种组网方式结合进行。例如英国Recal-Tacticom公司的Jaguar系列电台在组网中就同时采用了这两种组网方式,可组网数目达到200—300个。 除了以上这些关键技术以外,调制解调方法在跳频系统中也很重要,可以采用FSK、QAM、QPSK、QASK、DPSK、QPR、数字chirp调制等多种调制方式。 自适应跳频系统是在常规跳频系统的基础上,实时地去除固定或半固定干扰,从而自适应地自动选择优良信道集,进行跳频通信,使通信系统保持良好的通信状态。也就是说,它除了要实现常规跳频系统的功能之外,还要实现实时的自适应频率控制和自适应功率控制功能,因此就需要一个反向信道以传输频率控制和功率控制信息。 通过可靠的信道质量评估算法,发现了干扰频点后,应当在收发双方的频率表中将其删除,并以好的频点对它们进行替换,以维持频率表的固定大小。这种检测和替换是实时进行的。为增加跳频信号的隐蔽性和抗破译能力,跳频图案除具有很好的伪随机性、长周期外,各频率出现次数在长时间内应具有很好的均匀性。在引入自适应频率替换算法对频率表进行实时更新后,为保障系统性能,仍然要求跳频图案具有很好的均匀性,所以应当依次用不同的质量较好的频点来分别替换被干扰的频点。 收端频率表的更新会导致收发频率表的不一致性。为了使收发频率表同步更新,必须通过反馈信道将收端的频率更新信息通知发方。这种信息的相互交换是一种闭环控制过程,需要制定相应的信息交换协议来保证频表可靠的同步更新。衡量协议有效性的另一个重要指标便是频点去除的速度。在检测出干扰频点后,干扰频点去除的速度越快,对通信的影响越小。 信道质量评估的另一个作用是进行自适应功率控制。功率控制就是要把有限的发送功率最好地分配给各个跳频信道,使得各个信道都能够以最小发射机功率实现正常通信,从而提高跳频信号的隐蔽性和抗截获能力。在自适应跳频系统中,系统检测每个信道的通信状况,并通过信道质量评估单元中的功率控制算法对每个跳频信道单独进行功率控制。 功率控制算法可以基于两种原则:一是比特误码率最小原则,算法为各个跳频信道选择适当的功率,

第五届纺大杯学生羽毛球比赛秩序册【模板】

第五届“纺大杯”学生羽毛球比赛 秩 序 册 主办单位:武汉纺织大学体育运动委员会 承办单位:武汉纺织大学体育课部 时间:2015年4月11日 地点:阳光校区大学生活动中心

关于举办2015年武汉纺织大学第届纺大杯学生羽毛球比赛的通知 各院系: 根据武汉纺织大学体育课部年度竞赛计划,2015年武汉纺织大学第届纺大杯学生羽毛球比赛将于2015年4月11日至12日在阳光校区大学生活动中心举行。现将相关事宜通知如下: 一、时间与地点: 比赛定于2015年4月11日至12日在阳光校区大学生活动中心举行。 二、报名时间与办法: 报名办法:根据规程要求,认真填写报名表。 1、将电子版报名表发邮件到规程中指定邮箱。 2、纸质版报名表盖院系公章,且必须有院系分管学生工作书记签名,送交体育课部部办公室。 3、报名截止时间:2015年3月31日下午17:00。 请各院系积极配合,组织好各院系报名工作,保证各年级学生都能知晓此次活动且能踊跃报名参赛,为推动我校学生羽毛球运动的发展做出积极地贡献。 武汉纺织大学体育运动委员会 2015年3月21日 第五届“纺大杯”学生羽毛球比赛

竞赛规程 一、主办单位 武汉纺织大学体育运动委员会 二、承办单位 武汉纺织大学体育课部 三、协办单位 武汉纺织大学裁判协会 四、竞赛时间和地点 2015年4月11日至12日在阳光校区大学生活动中心举行。 五、竞赛项目 男子团体、女子团体 六、参赛单位 以学院为单位组队参加。 七、参赛办法 (一)每学院可报男、女各一个队,领队、教练员各一人,每队报运动员6名。 (二)运动员基本参赛条件 1.报名参赛的运动员,必须是本校在校全日制本专科大学生及研究生。 2.思想政治进步,遵守赛会纪律和运动员手册,并经校医院检查证明身体健康,同意参赛者。 八、竞赛办法 1.团体赛分两个阶段进行,根据报名队数决定第一阶段采用分组循环、第二阶段交叉淘汰决出前八名;循环赛顺序采用“1号位固定的逆时针轮转法”, 2.团体赛出场顺序为单打、双打、单打。 3.团体赛采用三场二胜制。 4.团体赛运动员不得兼项。 5. 团体比赛第一阶段每局采用11分制,三局二胜制,必

基于matlab的跳频通信系统的仿真

摘要 跳频通信系统是一种典型扩展频谱通信系统,它在军事通信、移动通信、计算机无线数据传输和无线局域网等领域有着十分广泛的应用,已成为当前短波保密通信的一个重要发展方向。本文介绍了跳频通信系统的基本工作过程,从跳频系统的结构组成、工作原理、主要技术指标、跳频通信系统的解跳和解调等方面阐述了跳频通信基本原理,并对跳频通信系统的抗干扰技术及其性能进行了仿真研究和理论分析。本文从理论上分析了跳频通信系统的抗干扰性能,其组成部分包括信号生成部分、发送部分、接收部分、判决部分、跳频子系统模块五个部分,并以2FSK系统为例,给出了上述通信干扰样式下的误码率理论分析结果,并利用Matlab中的Simulink仿真系统实现跳频系统的仿真和分析,达到了预期的效果。 关键词:跳频系统; 扩频通信; Matlab; Simulink仿真

目录 第1章绪论 (1) 1.1 概述 (2) 1.2 跳频通信简介 (1) 1.2.1 跳频通信系统概述 (1) 1.2.2 跳频技术的应用背景和发展趋势 (2) 1.3 MATLAB简介 (3) 1.4 本文研究内容及章节安排 (3) 第2章跳频通信系统的基本原理 (4) 2.1 跳频通信系统的结构组成 (4) 2.1.1 跳频系统的发送部分 (4) 2.1.2 跳频系统的接收部分 (5) 2.2 跳频通信系统的性能指标 (6) 2.3 跳频通信系统的调制方式 (7) 2.4 频率合成器 (8) 2.5 跳频信号的解跳与解调 (8) 2.5.1 跳频信号的解跳 (8) 2.5.2 跳频信号的解调 (9) 第3章跳频通信系统仿真及性能分析 (10)

ISM频段上蓝牙与802.11b的共存机制

ISM频段上蓝牙与802.11b的共存机制 姓名:刘凯学号:08120094 班级:08研通1 前言 蓝牙和802.11b无线局域网近年来应用的十分广泛,两者共用ISM频段,势必产生互相干扰的问题,研究两者的共存性机制是很重要的。本文主要介绍了共存性的两种机制:协作性共存和非协作性共存机制,并着重阐述了IEEE 802.15 Task Group 2所采纳的非协作性的自适应跳频(AFH)机制。 一、概述 蓝牙技术是实现WPAN的重要手段,而IEEE 802.1lb则是构建WLAN 的标准之一,两者均工作于2400-2483.5MHz ISM频段(如图1所示),且应用方式和使用对象存在相辅和互补的趋势,IEEE802.11b比较适合于企业无线网络,而蓝牙技术则可以应用于任何可以用无线方式替代线缆的场合,随着无线局域网设备的日益普及和蓝牙技术的飞速发展,双方的相互干扰不可避免。 图1 Bluetooth与IEEE802.11b在2.4GHz ISM频段上的使用 不同系统在无线传输过程中在时间和频率上的重叠就造成冲撞,即所谓的共信道干扰。如图2所示,其中任一时隙占据1MHz带宽的蓝牙跳频系统的信号和占据22MHz信道宽度的WLAN 直接序列扩频系统的信号间有可能因冲突而造成数据丢失,这与蓝牙系统的跳频方式及两系统的业务分布(Traffic Distribution)有关。

图2 Bluetooth与IEEE802.11b的共信道干扰 两种设备在较近范围内运行时传输性能可以接受,这是由于协议自身的保护能力和纠错控制机制的作用,且在环境不极端恶劣,对数据传输速率和质量要求不高的条件下。如果在一个小范围内存在多个蓝牙及WIFI设备,且需要实时数据传输的蓝牙HID,Headset,A V 等服务时,这种干扰造成的影响是绝不能被接受的。大量基于理论分析WLAN和蓝牙在时间和频率上的冲撞造成双方的通信吞吐量(Throughput)下降,分组出错率(PER)升高。因此,必须使用一定方法实现两种技术的共存,并且稳定地工作。 二、共存机制 针对干扰而引出的共存问题,蓝牙SIG成立了共存研究小组,IEEE设立了IEEE 802.15 WPAN Task Group 2 (TG2)。业界的公司也纷纷提出了各自的解决方案。TG2定义的共存机制是:Coexistence is defined by TG2 as the ability of one system to perform a task in a given (shared) environment where other systems may or may not be using the same set of rules。 根据蓝牙设备和WLAN设备之间能否互通信息(exchange information),有以下两类共存机制:协作机制(Collaborative)和非协作机制(Non-Collaborative)。协作机制依据的是IEEE 802.11b和蓝牙的信息沟通,共存的实现是通过在时域的正交性传输即分时传输。这种先置的条件通常需要两种系统模块集成在相同的物理单元,如在同一个PC或PDA。非协作机制运行不需要IEEE 802.11b和蓝牙两个模块间的任何预先的沟通,比如配备Headset的移动电话和内嵌无线网卡的笔记本电脑。它们通过两种基本的处理来取得共存:信道分类和自适应控制。信道分类是估计信道条件,发现附近是否有干扰源的过程,所有的非协作机制为此过程共享一些通用的目的和方法,比如BER (Bit Error Rate),FER (Frame Error Rate)。以得到的信道分类结果为基础,自适应控制会相应采取合适的冲突避免措施。通常,这些建议的共存机制都只需在蓝牙方面实现来改善WLAN系统的存在和介入带来的影响。 协作机制主要基于MAC层的时序安排(Scheduling),IEEE802.15提交的建议方案是Mobilian’s META(MAC Enhanced Temporal Algorithm)+Symbol’s TDMA(Time Division

相关文档
最新文档