hsp70

hsp70
hsp70

1、热休克蛋白的发现

热休克蛋白最初是在果蝇中发现的。早在1962年Ritossa把25℃下培养的果蝇幼虫无意间置于32℃的环境中30min后在其巨大唾液腺染色体上发现了3个新的膨突,说明该区域基因转录增强,可能在热休克时有某种蛋白合成的增加。人们将该现象称为热休克反应。1974年Tissieres等用SDS凝胶电泳技术和放射自显影技术首次证明,热休克反应产生一组特殊的蛋白质,即热“休克蛋白”。近年研究表明,HSP的生成,不仅见于果蝇,而且是普遍存在于从细菌直至人类的整个生物界(包括植物和动物)的一种现象

2 热休克蛋白的分类及特性

热休克蛋白按照蛋白的大小共分为以下几个家族,分别为HSP100,HSP90,HSP70,HSP60 以及小分子热休克蛋白,每个家族各有很多成员。其中HSP70家族成员最多,共有21种蛋白质,是一组在进化上高度保守的应激蛋白。主要包括HSP68、72、73。、HSC70、GRP75、78、80、Bip等

HSP70有许多重要的生物学特性:第一、存在的普遍性,从原核生物到真核生物都有表达。第二、高度的保守性,不同来源的HSP氨基酸序列有50%-90%的同源性。第三、正常情况下HSP70在细胞内表达水平很低,只有在应急条件下,HSP70的合成才显著,以提高其本身的抗应急能力。第四、正常情况下HSP70位于细胞浆内,只有当细胞受到应急作用时,才迅速移入细胞核。

3、HSP70的表达与调控

随着研究的深入,人们发现真核生物HSP70的转录需要三个步骤:在应急条件下,如热休克,导致热休克转录因子(HSTF)的激活。活化的HSTF与HSP70基因的HSE区域结合,从而诱导基因的转录。HSTF是一种蛋白质,HSE是位于HSP70基因启动子TATA盒上游的一段保守序列,具有增强子的一些特性。HSP70可作

为一种负性调节物来调节HSP的表达:在正常情况下HSP70蛋白与HSTF结合,以单体的形式存在,此时HSTF的活性被抑制,不具有与HSE结合的能力。热应急条件下,细胞内大量增加的非稳定蛋白等与HSP70有高度的亲和力,可竞争性地结合HSP70使大量的HSTF游离出来,形成三聚体,进入细胞核【1】]。HSTF

三聚体与HSE快速、高效地结合,保证HSP基因的高效转录,从而HSP70蛋白的合成增多。当产生的HSP70的水平到一定量,足够结合HSTF的时候,使其活性降低,从而关闭热休克基因的表达.

[1] 陈劲松. 热休克蛋白的分子遗传学研究进展[J ] . 国外医学一遗传学分,2001 ,24 (3) 128 - 132.

正常情况下HSP70的mRNA很不稳定,半衰期很短,只有20min左右,而在热应激下可长达几个小时之久。HSP70 mRNA常温下的不稳定由mR2 NA降解系统控制,而热应激影响了系统的活性[ 2 ]。热应激下细胞内其他的mRNA虽不被降解,但翻译停止,HSP70mRNA大量翻译。

[2] 孙克年 .能提高牛乳品质的饲料添加剂 [J ].《中国奶牛》

4 热休克蛋白70家族的功能

4.1分子伴侣功能

分子伴侣 ,是一类帮助新合成或解折叠蛋白质正确折叠和成功组装而本身非最终装配产物的组成蛋白,HSP70是目前发现的主要的分子伴侣之一,在细胞内分

布最广,含量最大.HSP70主要从以下几个方面发挥其分子伴侣功能:一是保持新合成蛋白的恰当构型,防止在正确的多聚体形成之前的错误折叠或聚集,二是帮助蛋白质分子的跨膜运输,三是促进受损蛋白的恢复或降解,以维持细胞的功能.

HSP70发挥上述功能可能与HSP70自身ATP酶结构域或者G末端的EEVD序列有关[3] .HSP70以 ATP依赖的方式结合未折叠多肽疏水区以保持其状态,再通过有控制的释放帮助其折叠,细胞内很多蛋白质合成后暂时与 HSP结合 ,保持其

伸展状态以利于穿过内质网或线粒体膜[4]。

[3]Mosser DD,Caron A W and Bourget L. The Chaperone Function of hsp70 Is Required for Protection against Stree-Induced Apoptosis [J].Mol. Cell Biol.,2000; 20: 7146-7159.

[4] 李永和 .牛奶成分的营养调控 [J ].《中国乳业》

4.2提高细胞的耐受性

HSP70广泛存在于细胞中,与核仁和细胞膜结合,从而提高细胞对热的耐受力,它可以维持细胞内的稳态它在细胞内的高表达可以显著改善细胞的生存能力。例如,长期耐力试验后运动肌群中的HSP70含量明显提高【5】。再如,微量注射HSP70单克隆抗体后细胞的热耐受性明显降低【6】。王枫等人用硫酸镉诱导细胞HSP70高表达,发现1小时后细胞HSP70 mRNA水平显著升高;且其水平在一定程度与细胞耐受力呈正相关【7】。由此可见,HSP70在细胞保护方面起着不可磨灭的作用。[5] Currie RW. Tanguaru RM. Kingama JG. Heat-shock response and

limitation of tissue neerosis during occlusion/reperlusion in rabbit hearts [J.Circulation. 1993.87(4):963-971].

[6] Riabowol KT. Mizzen IA. Welch WJ. Heat shock is lethal to fibroblasts microinjected with antibodies against HSP70 [J].Science.

1998.242(3)433-436

[7 ] 王枫,郭俊生. HSP70 高表达对K562 细胞耐热力的影

响[J ] . 中国公共卫生,2000 , 16 (7) :587 - 588.

4.3 抗细胞凋亡作用

研究发现当机体处于不利条件下,如热应激能引起自身细胞的程序性死亡,即“细胞凋亡”。在1997年,Cabai发现细胞内HSP70水平的增高可以减少细胞的凋亡,原因是阻断了信号通路从而抑制应激诱导的应激激酶的活性【8】。

[8 ] Cabai VL , MerimAB ,MosserDD. et al . HSP70 pre2

vent s activation of st ress kinase ,A novel pathway of

cellular ther motolerance [J ] . J Biol Chem ,1997 ,272

(29) :18033 - 18037.

4.4抗氧化作用

在应急条件下氧自由基增多,可使脂质氧化并且影响细胞膜系的通透性和流动性,从而对细胞及细胞器如线粒体、叶绿体等产生破坏。超氧化物歧化酶(SOD)能将氧自由基歧化呈无毒的水,从而解除SOD对细胞的毒害作用。HSP70可以激活蛋白激酶C,增强蛋白酶的活性从而促进ATP水解,刺激生成SOD.

5、HSP70与气道慢性炎症

在气道慢性炎症中,粘液的过度分泌显著加大了疾病的发生率和死亡率,成为重要的危害因素之一。黏蛋白(MUC ) ,是黏液的主要成分。而HSP70参与MUC的分泌过程,从而了解了HSP70 在气道慢性炎症中的作用机理,可为气道慢性炎症性疾病提供新的治疗方向【9】。

HSP70通过上调TNF2α诱导MUC表达,研究发现发现HSP70可诱导TNF-α表达增加,

TNF-α在慢性气道炎症黏液高分泌中也作为重要的炎症因子促进MUC的表达。首先,TNF-α通过一系列途径途径激活转录因子Sp21 而促进MUC2 和MUC5AC基因转录[10 ]。TNF-α也能反式激活EGFR诱导MUC5AC基因表达增加[11 ] 此外, TNF2α还可在转录后水平调节MUC 基因

[10 ] Kohri K, Ueki I F, Nadel J A, et al. Neutrophil elastase induces

mucin p roduction by ligand2dependent ep idermal growth factor re2 cep tor activation[ J ]. Am J Physiol Lung CellMol Physiol, 2002, 283 (9) : L5312L540.

[11] Lee CW, Lin CC,LinWN, et al. TNF2alpha inducesMMP29 ex2

p ression via activation of Src /EGFR, PDGFR /PI3K/Akt cascade

and p romotion of NF2kappaB /p300 binding in human tracheal

smooth muscle cells [ J ]. Am J Physiol Lung Cell Mol Physiol, 2007, 292 (3) : L7992812.

HSP70还通过上调IL28从而影响气道炎症及气道黏液高分泌【12】研究发现在气道损伤时, HSP70 会被释放到气管内,并激活固有的或者特异性免疫应答。Chase等[ 13 ]利用外源性重组HSP72刺激人气道上皮细胞,结果发现HSP72可上调IL28的表达。IL28可募集并活化中性粒细胞,通过释放活性氧和TGF2β,从而加强EGFR信号通路,导致MUC表达。最后HSP70还可最为分子伴侣参与MUC的分泌过程

[ 13] ChaseMA, WheelerDS, Lierl KM, et al. Hsp72 induces inflam2 mation and regulates cytokine p roduction in airway ep ithelium through a TLR42 and NF2kappaB2dependent mechanism [ J ]. J Im2

munol, 2007, 179 (9) : 631826324.

6、HSP70抗肿瘤细胞凋亡作用

细胞凋亡是细胞的程序性“自杀”过程。HSP70家族对细胞凋亡起到了保护的作用。HSP70 作为分子伴侣在肿瘤细胞中优先大量表达,保护肿瘤免受大面积凋亡和坏死

[14 ]

[14] Nylandskd J ,Brank K,J aattela I , et a1. Heat shock

protein 70 is required for the survivallf canncer cell

[J ] . Ann N YA cad Sci. 2000 ,926 :122 - 125.

据报道以腺病毒为载体将反义HSP70 基因转染到肿瘤细胞中可减少HSP70 的表达导致肿瘤细胞凋亡[15 ]

[ 15 ] Dresses R ,Dlsner L ,Quentin T , et al. Heat shock

protein 70 is able to prevent heat shock - jnduced re2

sistance of t ragel cells to CTL [J ] . J Immunol ,2000 ,

164 (5) :2362 - 2371.

但HSP70 对于肿瘤细胞的作用十分复杂的在有些条件下,HSP70具有促肿瘤细胞凋亡的作用,。Dressel R 等发现用鼠HSP70 基因转染人类黑色素瘤细胞后导致HSP70过表达,促进了CTL 介导的肿瘤细胞凋亡[16 ]

[ 16 ] Iosser D ,Caron AW ,Bourgert L ,et al. The chaperone

function of HSP70 is required for protection againstst ress - induced apoptosis[J ] . Mol Cell Biol ,2000 ,20(19) :7146 - 7159.

6、HSP70与脑缺血

6.1脑缺血后HSP70的调节及脑保护机制

在脑缺血缺氧等应激条件下,由于A TP 严重缺乏,HSP70 的同系物Ssb 与HSF聚合生成HSF/ HSE 复合物,使得HSF 无法游离, 最终导致HSP70 基因转录减少,故只有在供血情况下才可调节HSP70 mRNA 的转录。同时由于缺少必要的能量物质基础导致HSP70 在缺血核心区表达被抑制。

大量的实验表明,HSP70 的高表达增加了神经细胞对缺血产生代谢压力的抵抗力。HSP70主要是通过对抗内源性损伤因子的毒副作用来

提高对脑的保护。Choi 等[17 ] 通过基因敲除小鼠的实验发现HSP70 的表达可增加SOD的活性,从而减少氧自由基对脑的损害。

[17] Choi S , Park K A , Lee H J , et al . Expression of Cu/ Zn SOD protein is suppressed in hsp 70. 1 knockout mice. J Biochem

Mol Biol , 2005 , 38 : 1112114.

Lai 等[18] 发现, HSP70 能阻止兴奋性氨基酸与其受体结合,从而

减少了对脑细胞的毒性作用。

[18] Lai Y, Du L , Dunsmore K E , et al . Selectively increasing inducible heat shock protein 70 via TAT2protein t ransduction protect s neurons f rom nit rosative st ress and excitotoxicity. J Neurochem , 2005 , 94 : 3602366.

此外 HSP70对脑的保护作用还通过其分子伴侣作用和抗细胞凋亡来实现的

6.2 HSP70 转基因治疗

治疗脑缺血的方法有很多但目前主要都是药物治疗,但传统的药物治疗有很多缺陷,很多药物难以透过血脑屏障发挥作用,但通过HSP70

转基因治疗可以克服这些缺点。基因治疗被认为是将来最有希望的治疗脑缺血的方法之一。Lee 等[19]用转猪HSP70β基因小鼠来实验,结果发现转基因小鼠多器官内HSP70 的合成减轻了热休克引起的高热、循环休克及脑缺血损伤程度。van der Weerd 等[20] 对大脑中动脉永久缺血后的HSP70 过表达的转基因小鼠与野生型小鼠进行MRI

对比研究,同样说明了转基因小鼠对脑缺血的损伤程度较轻。现在为止,基因治疗虽然被认为是将来最有希望的治疗脑缺血的方法,但目前仅在动物实验中取得一定成果,应用于临床仍有待进一步研究。

[19]Lee W C , Wen H C , Chang C P , et al . Heat shock protein

72 overexpression protect s against hypert hermia , circulatory

shock , and cerebral ischemia during heat st roke. J Appl

Physiol , 2006 , 100 : 207322082.

[20]van der Weerd L , Lyt hgoe M F , Badin R A , et al .

Neuroprotective effect s of HSP70 overexpression after

cerebral ischaemia2an MRI study. Exp Neurol , 2005 , 195 :

2572266.

概念结构设计和逻辑结构设计

概念结构设计和逻辑结构设计 一.系统概述 本系统通过调查从事医药产品的零售,批发等工作的企业,根据其具体情况设计医药销售管理系统。医药管理系统的设计和制作需要建立在调查的数据基础上,系统完成后预期希望实现药品基本信息的处理,辅助个部门工作人员工作并记录一些信息,一便于药品的销售和管理。通过此系统的功能,从事药品零售和批发等部门可以实现一些功能,如:基础信息管理,进货管理,库房管理,销售管理,财务统计,系统维护等。 二.概念结构设计 1.员工属性 2.药品属性 3.客户属性 4.供应商属性 5.医药销售管理系统E--R 图 三.逻辑结构设计 该设计概念以概念结构设计中的E--R 图为主要依据,设计出相关的整体逻辑结构,具体关系模型如下:(加下划线的表示为主码) 药品信息(药品编号,药品名称,药品类别,规格,售价,进价,有效期,生产日期,产地,备注) 供应商信息(供应商编号,供应商名称,负责人,) 员工 姓名 家庭地址 E-maill 电话 员工 编号 年龄 帐号

四.系统各功能模块如何现(数据流实图);1.基本信息管理子系统 基本信息管理子系统 药品信息员工信息客户信息供应商信息2.库存管理子系统 库存管理子系 统 库存查询库存信息出入库登记库存报表3.销售管理子系统 销售管理 销售登记销售退货销售查询 4.信息预警子系统 信息预警 报废预警库存预警 5.财务统计子系统 财务统计 统计销售额打印报表 6.系统管理子系统

系统管理 权限管理修改密码系统帮助 五.数据库设计(E-R图,数据库表结构) 1.药品基本信息表 列名字段数据类型可否为空说明药品编号 药品名称 药品类别 规格 进价 有效期 生产日期 售价 产地 备注 2.员工基本信息表 列名字段数据类型可否为空说明员工编号 性别 身份证号 员工年龄

第10章 湍流边界层

第10章 湍流边界层 10.1 壁面湍流特性和速度分布规律 当边界层内流体及管内流体处于层流流动状态时,流体受到壁面的限制仅仅表现在粘性切应力作用下,进行粘性旋涡的扩散;而当处于湍流流动状态时,流体受到壁面的限制则是在粘性切应力和湍流附加切应力的同时作用下,进行旋涡的扩散。 由于湍动旋涡的扩散速度远大于粘性旋涡扩散的速度,因此,在相同条件下,湍流速度边界层的厚度要比层流速度边界层厚。 但在高雷诺数的条件下,湍流速度边界层仍是贴近壁面的薄层,因此,建立湍流边界层方程的前提条件与层流时相同。 但是,由于两种切应力的作用,湍流速度边界层的结构要比层流速度边界层复杂得多。 因此,一定要先了解壁面湍流的分层结构和时均速度分布规律。 10.1.1 壁面湍流分层结构及其特性 在壁面湍流中,随着壁面距离的变化,粘性切应力和湍流附加切应力各自对流动的影响也发生变化。 以y 表示离开壁面的垂直距离,随着y 的增加,粘性切应力的影响逐渐减小,而湍流附加切应力的影响开始不断增大,而后逐渐减小。 这就形成了具有不同流动特征的区域。 壁面湍流速度边界层可以分为内层(壁面区),包括粘性底层、过度层(重叠层)和对数律层(完全湍流层);外层,包括尾迹律层和粘性顶层(间歇湍流层)。 定义 ()ρ τw x v v = =** (10.1.1) 因为*v 具有速度的量纲,故称为壁面切应力速度,它在湍流中是一个重要的特征速度。 以下对各层的划分做详细说明。 粘性底层:所在厚度约为* 5 0v y ν ≤≤,其内粘性切应力起主要作用,湍流附加切应力可以忽 略,流动接近于层流状态,因此在早期研究中称之为层流底层。 由于近期的实验研究,观察到该层内有微小旋涡及湍流猝发起源的现象,因此称为粘性底层。 过渡层:所在厚度约为* * 30 5 v y v ν ν ≤≤,其内粘性切应力和湍流附加切应力为同一数量级,流 动状态极为复杂。 由于其厚度不大,在工程计算中,有时将其并入对数律层的区域中。 对数律层:所在厚度约为()δν ν 2.01030 * 3 * ≈≤≤v y v ,其内流体受到的湍流附加切应力大于粘 性切应力,因而流动处于完全湍流状态。 由这三层组成的内层,称为三层结构模式,若将过度层归入对数律层,则称为两层结构模式。 外层中的尾迹律层和粘性顶层所在厚度分别约为δν 4.010* 3 ≤≤y v 和δδ≤≤y 4.0。 对于尾迹

压紧机构

压滤机的压紧装置蔡忠群压滤机:在过滤介质一侧施加机械力实现过滤的机械。 压滤机是集机电液于一体,具有现代技术水平先进的过离机械产品,它主要由机架部分,过滤部分,压紧部分,电气控制部分,(自动拉板部分)。 压紧部分:手动压紧、机械压紧、液压压紧。 一.手动压紧:主要是以螺旋式机械千斤顶推动压紧板将滤板压紧。螺旋式机械千斤顶是千斤顶当中比较常用的一种。 千斤顶,是一种起重高度小(小于1m)的最简单的起重设备。它有机械式和液压式两种。机械式千斤顶又有齿条式与螺旋式两种,由于起重量小,操作费力,一般只用于机械维修工作,在修桥过程中不适用。液压式千斤顶结构紧凑,工作平稳,有自锁作用,故使用广泛。其缺点是起重高度有限,起升速度慢。千斤顶主要用于厂矿、交通运输等部门作为车辆修理及其它起重、支撑等工作。其结构轻巧坚固、灵活可靠,一人即可携带和操作。千斤顶作为一种使用范围广泛的工具,采用了最优质的材料铸造,保证了千斤顶的质量和使用寿命。 千斤顶分为机械千斤顶和液压千斤顶两种,原理各有不同。从原理上来说,液压千斤顶所基于的原理为帕斯卡原理,即:液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。机械千斤顶采用机械原理,以往复扳动手柄,拔爪即推动棘轮间隙回转,

小伞齿轮带动大伞齿轮、使举重螺杆旋转从而使升降套筒获得起升或下降,而达到起重拉力的功能。但不如液压千斤顶简易。 按结构特征分千斤顶的结构和技术规格 可分为齿条千斤顶、螺旋(机械)千斤顶和液压(油压)千斤顶3种。 (1). 齿条千斤顶: 由人力通过杠杆和齿轮带动齿条顶举重物。起重量一般不超过20吨,可长期支持重物,主要用在作业条件不方便的地方或需要利用下部的托爪提升重物的场合,如铁路起轨作业。 (2).螺旋千斤顶:采用螺杆或由螺杆推动的升降套筒作为刚性顶举件的千斤顶。即用刚性顶举件作为工作装置,通过顶部托座或底部托爪在行程内顶升重物的轻小起重设备。头部经特殊热处理,梅花形防滑面设计,使产品在使用中不易产生滑脱、顶弯、折断等现象。螺旋千斤顶顶为进一步降低外形高度和增大顶举距离,可做成多级伸缩式的。普通螺旋千斤顶靠螺纹自锁作用支持重物,构造简单,但传动效率低,返程慢。自降螺旋千斤顶的螺纹无自锁作用,但装有制动器。放松制动器,重物即可自行快速下降,缩短返程时间,但这种千斤顶构造较复杂。螺旋千斤顶能长期支持重物,最大起重量已达100吨,应用较广。下部装上水平螺杆后,还能使重物做小距离横移。螺旋千斤顶按其结构和使用场所分为:①普通型螺旋千斤顶,其代号的表征字母为ql。②普通高型螺旋千斤顶,其代号的表征字母为qlg。③普通低型螺旋千斤顶,其代号的表征字母为qld。④钩式螺旋千斤顶,其代号的表征字母为qlg。⑤剪式螺旋千斤顶,其代号的表征字母为qlj。⑥自落式螺旋千斤顶,其代号的表征字母为qlz。 (3). 液压千斤顶: 由人力或电力驱动液压泵,通过液压系统传动,用缸体或活塞作为顶举件。液压千斤顶可分为整体式和分离式。整体式的泵与液压缸联成一体;分离式的泵与液压缸分离,中间用高压软管相联。液压千斤顶结构紧凑,能平稳顶升重物,起重量最大达1000吨,行程1米,传动效率较高,故应用较广;但易漏油,不宜长期支持重物。如长期支撑需选用自锁千斤顶,螺旋千斤顶和液压千斤顶为进一步降低外形高度或增大顶举距离,可做成多级伸缩式。液压千斤顶除上述基本型式外,按同样原理可改装成滑升模板千斤顶、液压升降台、张拉机等,用于各种特殊施工场合。液压千斤顶按其结构、用途分为如下两种:①立式螺纹连接结构的液压千斤顶其代号的表征字母为qyl。②立卧两用液压千斤顶,其代号的表征字母为qw。 可分类为分离式千斤顶,卧式千斤顶,爪式千斤顶,同步千斤顶,一

机械压紧手动拉板结构及原理

机械压紧手动拉板型结构及工作原理 1、机架部分 机架是由固定压板、活动压板、横梁、支架、大小脚组成。 (1)固定压板:它与小脚连接,除起到支承横梁的重要作用外,中间有进料孔,也可作为进气、进洗涤水的通道,暗流还具有出液通道。 (2)活动压板:是用来压紧滤板的。活动压板两侧装有滚轮,供其前后运动时支撑、定位,在压紧或拉开时,滚轮应处于滚动状态。 (3)横梁:它是滤板的运动导轨及支承件。 2、压紧机构 本压滤机采用机械压紧方式 机械传动压紧是采用电力机械驱动来压紧滤板的。在电力机械驱动下,丝杠带动活动压 板向前压紧全部滤板,向后则带动活动压板复位。 压紧机构是电动机、针轮减速机、主从动齿轮、平面轴承、丝杠螺母、丝杠、卡板等组成,它们固定在电机支架上,丝杠前端通过六角端盖固定在活动压板中心。当电机正转时,通过针轮减速机及齿轮的减速,带动丝杠螺母转动,从而带动丝杠向前推动活动压板向固定压板方向前进,使各滤板逐步形成压紧状态,随着丝杠不断的向前,压紧力越来越大,同时电机驱动电流相应增大,当压紧力达到一定程度时,电机驱动电流也将上升到过流继电器预先调定值,使过流继电器动作,电机停转。由于丝杠及丝杠螺母螺旋升角λ<4.5°小于摩擦角将产生自锁,保证滤板在工作中始终处于压紧状态。松开时,只需电机反转,当活动压板后退到检测感应区时,活动压板停止后退。 3、过滤机构 厢式压滤机的过滤机构由滤板、滤布所组成; 当滤板压紧后,物料进入滤板的滤室内,固体颗粒被滤布截留在滤室内,液体则穿过滤布顺着滤板沟槽进入出液通道,排出机外。

操作程序及使用方法 本系列压滤机运行前必须对泵站加足液压油,并确认各部位正常后按以下程序进行操作: 下 一 次 工 作 循 环 1.压紧滤板 (1)机械压紧:接通总电源,按下“滤板压紧”按钮,活动压板将在丝杠的推动作用下,把全部滤板压向固定压板一端,并施以预定的压紧力。 (2)液压压紧:接通总电源,按下“压板压紧”按钮,启动油泵。活动压板将在活塞杆的推动作用下,把全部滤板压向固定压板一侧,达到预定的压紧力。 2.进料过滤 滤板压紧后,检查各管路阀门开闭状况,确认无误后,启动进料泵。用储槽进料时,开启进料阀时,应缓慢调节到位。浆液即通过固定压板上的进料孔进入各滤室,在规定的压力范围

细胞概念图:第2节:微管及其功能

千里之行 始于足下 1 微管 组成蛋白(右图) α-微管蛋白、β-微管蛋白 微管组装的结构单位 二者结合形成αβ-微管蛋白二聚体(图) α-微管蛋白有一个GTP 结合位点,GTP 不水解,称为不可交换位点(负极)β-微管蛋白 有一个GTP 结合位点,GTP 可水解,称为可交换位点(正极) γ-微管蛋白位于中心体外周物质(PCM),用于诱导微管的成核与组装 微管组装过程(右下图) 二聚体→原纤丝一个二聚体的β亚基不断加聚到另一个二聚体的α亚基13根原纤丝→片层 相邻原纤丝错位1nm ,13根形成一个平行四边形 片层→成核片层弯曲缝合成微管→组装、去组装踏车行为 当一端组装的速度和另一端解聚的速度相同时,微管的长度保持不变,即踏车行为 组装与去组装取决于二聚体的浓度是否高于临界浓度 微管结合蛋白/药物 stathmin(微管去稳定蛋白) 机体中二聚体的浓度远高于临界浓度,需要与其结合妨碍组装 二者结合受本身磷酸化调控 stathmin 磷酸化失去活性stahmin 去磷酸化恢复活性 秋水仙素秋水仙素可与二聚体结合而加载到微管负极端,妨碍微管继续组装紫杉醇 与微管结合后阻止微管去组装 细胞内微管起源 胞体起源于→中心体 中心粒 中心粒外周物质γ-微管蛋白 γ-微管蛋白与二聚体α-微管蛋白结合(负极),微管沿正极组装 纤毛、鞭毛起源于基体

千里之行 始于足下 2 微管的功能 对网格结构的调节 微管结合蛋白(右图) MAP →1,2,3,4 tau 蛋白 MAP2、tau C 端具有微管结合域(带正电荷),可与微管表面(带负电荷)结合,稳定微管(右图) 对细胞结构的组织作用 细胞器在细胞内具有特定的空间分布,线粒体的运输等依赖的是微管的作用 表现(解聚微管后) 内质网回缩到细胞核周围高尔基体解体成小膜泡细胞分裂停止 依赖于微管的物质运输驱动蛋白(左图) 第三种分子马 达 组成 马达结构域两个重要功能 ATP 结合位点 微管结合位点 位于N 端→负极向正极移动位于C 端→正极向负极移动 杆状区 轻链(尾部)货物结合域 沿微管运动的分子机制 下图① 动力蛋白(右下图) 独特之处已知马达蛋白中最大、速度最快 细胞质动力蛋白与胞内体/溶酶体、高尔基体及其他一些膜泡运输,动粒和有丝分裂纺锤体的定位,染色体分离等密切相关轴丝动力蛋白下页讲述 纤毛与鞭毛的摆动 (下面简述) 纺锤体和染色体运动 参与的蛋白 细胞质动力蛋白 结合着丝粒,驱动着丝粒沿微管移动 驱动蛋白13 位于着丝粒,作用于微管正极端,促进微管解聚驱动蛋白5作用于交错重叠的微管,介导驱动纺锤体距离的加长 下图②

湍流

力学的世纪难题——湍流 周恒 中国航空报 June12,2014 Abstract 人们关心流体的运动是很自然的,因为地球为大气所包围,而地球表面的2/3为水面覆盖。作为科学问题的湍流,是在1883年Reynolds做 了区分层流和湍流这两种不同形态流动的实验后确立的。而自20世纪初以 来,由于工程技术的发展,对认识湍流的规律提出了迫切的要求,从而大 大地推动了湍流的研究。在这100多年中,对湍流的认识的确取得了很大 进展,否则如航空、航天、船舶、动力、水利、化工、海洋工程等工程技 术,以及气象、海洋科学等自然科学都不可能有很大的进展。但另一方面, 人们对湍流的认识又还很不全面,从而制约了这些工程技术和自然科学的 进一步发展,也可能会对21世纪的某些新兴科学技术的形成起到制约作 用。因而在21世纪之始,再一次将这一世纪难题提到科学工作者面前是很 必要的。 1湍流运动的复杂性 湍流运动复杂性的根源在于它是强非线性系统的运动。控制湍流运动的方程:Navier-Stokes(N-S)方程是非线性的。在多数情况下,它的解是不稳定的,从而导致了流动的多次分叉,形成了复杂流态,而方程的非线性又使各种不同尺度的流动耦合起来,无法将它们分别研究。 一个世纪以来,数学家们曾对N-S方程做过大量研究,但由于其非线性带来的困难,正面的成果远不如对其他数学物理方程的研究所得到的多。看起来,进一步对N-S方程的数学性质做研究尽管重要,但依靠这一途径来解决工程技术和自然数学中提出的湍流问题恐怕是不现实的。 物理学家、力学家以及一部分数学家试图从另一途径来解决湍流,即通过直接建立能反映其某些重要特性的模型来认识湍流。例如,在20世纪 1

概念结构理论

概念结构理论 刘壮虎 北京大学哲学系,liuzhh@https://www.360docs.net/doc/df11459105.html, 摘要 本文不从概念的外延和内涵出发,而是将概念作为初始出发点,按照概念结构整体论的观点,在思想—概念—语言三者统一的基础上,建立概念结构的形式理论,讨论其基本性质及其意义,并在此基础上研究若干相关的问题。 实际中使用的推理,比我们通常说的逻辑推理要更广泛,本文建立依赖于语言的相对于主体的推理,并根据这种相对的推理建立相对的一致的概念。通过这种一致的概念,讨论不一致信念集的特征。这种推理也可以部分地用于概念的分类上,本文通过两个简单的实例来说明这种方法的应用。 词项的同义是语言学中的重要问题,按整体论的观点,比同义更一般的不可分辨性更为重要,本文给出了概念的不可分辨性的定义,并讨论其在语言中的表现。不同语言间的翻译也是语言学中的重要问题,本文在概念结构的形式理论基础上的对不同语言间的翻译进行了一些初步的讨论。 本文只是在对最简单的语言进行讨论,通过这样的讨论体现概念结构形式理论的思想、方法和研究框架。 §1前言 一、外延和内涵 概念有外延和内涵,是概念研究中的一个教条。我认为,这个教条是错误的,至少是不准确的。 概念有不同类型的,如亚里士多德就提出了十大范畴,而在三段论中使用的只是实体范畴和性质范畴。在讨论概念的外延和内涵时,也往往集中在个体、类和性质的范围内(与实体范畴和性质范畴相当),就算有所推广,也不是所有的概念。就是在个体、类和性质的范围内,概念有外延和内涵也是存在质疑的,如不可数名词的外延、性质化归为类等问题。 对外延和内涵的形式化的研究中,大多数说的是语句的外延和内涵,如各种内涵逻辑,它们与概念的外延和内涵是完全不同。 将内涵看作可能世界到外延的函数(或者在此基础上的修改),对于处理语句的内涵确实是一种比较好的方法,但将这种方法用于处理概念的内涵和外延,却带

湍流降阻应用实例

湍流降阻 湍流减阻技术有泥沙减阻[ 1]、微汽泡及吹气和吸气减阻[ 2,3]、聚合物减阻[ 4]、涂层减阻[ 5]、磁减阻[6]、仿生非光滑减阻[7-12]等, 这些技术主要是控制边界层内的湍流结构, 特别是拟序结构, 从而达到控制湍流动能损耗, 实现减阻目的。 仿生学研究发现鱼类等水生动物和有翼昆虫等飞行动物经历了近亿年进化过程, 形成了一种满足自身生存需要的非光滑减阻表面。如Reif 教授在研究40 多种不同生长阶段的鲨鱼后, 发现当鲨鱼快速游动时, 表皮上有精细间隔的鳞脊, 鳞脊间有圆谷, 鳞脊的排列基本上与流动方向平行, Reif 认为, 鲨鱼皮上的鳞脊可以使边界层稳定, 减小快速游动阻力[9]。受此启发, 用仿生非光滑技术改变近壁区流场, 减小壁面摩擦阻力, 不会给使用体带来附加设备、额外能量消耗和污染物, 仅改变壁面形状就达到减阻效果,在各种减阻技术中被认为是最有前途的方法。

图1 为三角形、扇贝形和刀刃形三种仿生非光滑沟槽形状参数示意图, 其中s = 0. 1mm, h =0. 05mm, 刀刃形沟槽刃宽t = 0. 2 × h 。三种模型在相同的计算域中模拟, 将光滑表面与沟槽表面置于同一流场中, 便于结果对比, 减小计算误差。先在ANSYS 中建立几何模型, 对其进行离散化, 再将离散单元导入GAMBIT 中, 进行网格平滑处理和区域划分, 最后将网格导入FLU ENT 中进行计算及结果显示。为了便于观察流场运动情况, 沿流向布置8 个沟槽。三角形和扇贝形用六面体网格离散, 刀刃形用三角形网格离散。流向均匀划分40 个网格点, 垂向不等间距划分40 个网格点, 中心处网格最稀, 从中心向两边网格间距以0. 25 倍等比速度减小, 沟槽表面划分变尺寸网格, 沟槽网格密度在谷底最稀, 谷顶最密, 网格间距从谷顶到谷底以0. 5 等比速度减小。三种情况下沟槽表面所划分的网格密度相同, 并等于光滑表面。 图2 CFD模型 表1 三种沟槽表面上网格点数列表 网格总数沟槽表面积形状顶角s h 沟槽表面 网格数 三角形90°0.1 5×10-214 181023 4.53×10-6扇贝形- 0.1 5×10-216 197821 4.95×10-6刀刃形- 0.1 5×10-221 240005 6.00×10-6

概念结构和逻辑结构

中北大学 数据库课程设计 概念结构和逻辑结构设计 2012 年 6月 3 日

一、概念结构设计 建立系统数据模型的主要工具是实体-联系图,即E-R图。E-R图的图形符号约定如表1-1所示: 表 1-1 E—R图的图形符号 系统的E-R图,如图1-1所示,每个实体及属性如下: 家庭成员:姓名、称呼、密码、出生日期 收入记录:收入项目编号、收入项目名称、收入人员、收入金额、收入日期 支出记录:支出项目编号、支出项目名称、支出人员、支出金额、支出日期 银行信息:银行账号、银行名称、开户人、存款金额、开户日期 1.家庭成员关系E-R图 2.收入记录E-R图

3.支出记录E-R图 4.银行信息E-R图 5.系统E-R图

二、逻辑结构设计 1.概述 数据库逻辑设计将概念结构转换为某个DBMS所支持的数据模型对其进行优化。 在对该家庭理财管理系统的实体关系图进行了分析之后,分别对其实体、联系作了属性的分析,得出这些实体与联系的主键与码值,为以后对该家庭理财管理系统的数据库的物理设计提供了方便与基础。 2.数据模型 2.1基本的数据模型有: 家庭成员(姓名、称呼、密码、出生日期); 收入记录(收入项目编号、收入项目名称、收入人员、收入金额、收入日期); 支出记录(支出项目编号、支出项目名称、支出人员、支出金额、支出日期); 银行信息(银行账号、银行名称、开户人、存款金额、开户日期) ; 2.2经过优化后的数据模型有: 家庭成员(ID,姓名、称呼、密码、出生日期); 银行信息(银行账号、银行名称、开户人、存款金额、开户日期); 使用者(ID,帐号,密码); 收入记录(ID,名称,收入人员,金额,日期); 支出记录(ID,名称,支出人员,金额,日期); 管理收入(家庭成员ID,收入记录ID); 管理支出(家庭成员ID,支出记录ID); 查看收入(家庭成员ID,收入记录ID); 查看支出(家庭成员ID,支出记录ID);

微管

微管(microtubule)综述 微管(microtubule)是存在于所有真核细胞中由微管蛋白(tubulin)组装成的长管状细胞器结构,平均外径为24nm,通过其亚单位的组装和去组装能改变其长度,对低温、高压和秋水仙素敏感。细胞内微管呈网状或束状分布,并能与其它蛋白共同组装成纺锤体、基粒、中心粒、鞭毛、纤毛、轴突、神经管等结构,参与细胞形态的维持、细胞运动和细胞分裂。 (一)成分 微管由两种类型的微管蛋白亚基,即α-微管蛋白和β-微管蛋白组成,它们的氨基酸顺序已经测定,α-微管蛋白含450个氨基酸残基,其分子量为50kD,β-管蛋白含455个氨基酸,α-和β-微管蛋白均含酸性C末端序列。除极少数例外,如人的红细胞,微管几乎存在于从阿米巴到高等动植物所有真核细胞胞质中,而所有原核生物中没有微管。微管蛋白分子在生物进化上可能是最稳定的蛋白分子之一。 α-微管蛋白和β-微管蛋白形成微管蛋白异二聚体,是微管装配的基本单位。微管蛋白二聚体含有鸟嘌呤核苷酸的两个结合位点,二价阳离子亦能结合于微管蛋白二聚体上。此外,微管蛋白二聚体上具有一个秋水仙素结合位点,一个长春花碱结合位点。 (二)形态 微管是由微管蛋白二聚体组装成的长管状细胞器结构,平均外径为24nm,内径15nm,微管壁由13根原纤维排列构成,在横切面上,微管呈中空状,微管壁由13根原纤维排列构成(图9-10,图

9-11)。微管可装配成单管,二联管(纤毛和鞭毛中),三联管(中心粒和基体中)。细胞内还存在一些微管附属结构,如纤毛或鞭毛中的动力蛋白臂等,微管附属结构的功能有:(1)稳定微管;(2)构成微管间的连接,使微管成一定的排列;(3)使微管与其它结构,主要是膜结构相连接;(4)产生力。 (三)装配 1.装配过程 所有微管遵循同一原则由相似的蛋白亚基装配而成,主要装配方式是:首先,α-微管蛋白和β-微管蛋白形成长度为8nm的αβ二聚体,αβ二聚体先形成环状核心(ring),经过侧面增加二聚体而扩展为螺旋带,αβ二聚体平行于长轴重复排列形成原纤维(protofilament)。当螺旋带加宽至13根原纤维时,即合拢形成一段微管。新的二聚体再不断加到这一端微管的端点使之延长。最终微管蛋白与微管达到平衡(图9-12)。 原纤维中重复的亚单位是αβ异二聚体,αβ→αβ→αβ,微管中这种亚单位排列即构成微管的极性,所有的微管都有确定的极性。微管的两个末端在结构上不是等同的,这是非常重要的结构特征。细胞内所有由微管构成的亚细胞结构也是有极性的。αβ→αβ即为头→尾的方向,微管蛋白加上或释放主要发生于(+)极,微管的延长主要依靠在(+)极组装GTP-微管蛋白,然后GTP水解为GDP 或GTP与微管蛋白分离。目前的微管装配动态模型认为,微管两端具GTP帽(取决于微管蛋白浓度),微管将继续组装,反之,具GDP帽则解聚。在一定条件下,微管一端发生装配使微管延

风沙环境下高雷诺数壁湍流结构及其演化机理研究

附件1 “风沙环境下高雷诺数壁湍流结构及其演化机理研究” 风沙运动引发的灾害已经成为影响人类社会的一个重要环境问题。要实现对风沙灾害的有效预报和合理防治,必须深刻认识风沙灾害的成因和规律。从流动的角度来看,风沙运动实质上是颗粒物质与高雷诺数大气边界层湍流相互作用的结果,其特征雷诺数Reτ可达106~107量级。目前有关风沙运动研究的理论基础仅基于定常平均假设,导致理论预测与实际情况存在显著差异。为提高风沙运动的预测精度和防治水平,必须依靠湍流特别是高雷诺数壁湍流的最新研究进展和理论突破。 高雷诺数壁湍流在湍流统计特性、流动结构等方面与低雷诺数情况存在较大差异,而风沙运动作为一种典型的高雷诺数流动,为高雷诺数湍流研究提供了非常有用的基准。本项目拟以高雷诺数风沙运动为主要研究对象,通过理论分析、实验室模拟、数值仿真和野外观测相互结合的方式,研究高雷诺数壁湍流的流动特性和机理,揭示湍流拟序结构对起沙和沙尘输运的作用和影响规律,为风沙灾害的预报和防治提供理论支持、预测方法和工程依据,由此形成风沙运动研究的中国特色。 一、科学目标 以我国风沙灾害防治为背景,针对高雷诺数湍流边界层的一般规律、沙尘起沙机制和输运特性,开展高雷诺数壁湍流的理论分析、实验测量、数值模拟和野外观测,掌握高雷诺数壁湍流流动特性和雷诺数影响规律,认识高雷诺数壁湍流拟序结构及尺度作用机理,揭示沙尘起跳和长距离输运机理,构建适用于高雷诺数风沙预报的数值计算

方法和计算平台。由此促进高雷诺数湍流和风沙运动学科的交叉融合,提升我国在湍流和风沙物理学领域的创新能力。 二、研究内容 (一)壁湍流统计特性的雷诺数效应。 开展高雷诺数壁湍流的大气边界层净风场测量,结合中等雷诺数直接数值模拟和高雷诺数大涡模拟,研究壁湍流统计特性随雷诺数的变化规律和趋势,包括:雷诺数对平均速度型与卡门常数的影响;湍动能第二峰的产生条件及能量输运特性;风沙对湍流统计特性的影响。 (二)高雷诺数壁湍流结构的动力演化特性与尺度作用机理。 结合流动显示、三维流场测量和直接数值模拟等手段,研究高雷诺数壁湍流中大尺度拟序结构的起源、演化和相互作用的特性、规律和机理,包括:边界层内大尺度/超大尺度结构的生成和动力学演化过程;边界层内外区流动结构的相互作用机制;沙尘与湍流拟序结构的相互影响规律。 (三)考虑高雷诺数效应的风沙运动预报方法。 综合考虑在高雷诺数条件下出现的湍流脉动、大尺度结构等复杂因素,建立计及内外区相互作用的湍流模型,发展适用于高雷诺数风沙预报的新型预报方法,完成近地表风沙流形成与发展过程的模拟,较为准确地预测沙粒的扬起过程及输运特性。 三、资助期限5年(2015年1月至2019年12月) 四、资助经费2000万元 五、申请注意事项 (一)申请人应当认真阅读本项目指南和通告,不符合项目指南和通告的申请项目不予受理。 (二)申请书的附注说明选择“风沙环境下高雷诺数壁湍流结构

微管结合蛋白对微管结构和功能的调节

微管结合蛋白对微管结构和功能的调节1 高金珉,刘敏,李登文,周军 南开大学生命科学学院,天津(300071) E-mail:junzhou@https://www.360docs.net/doc/df11459105.html, 摘要:微管是真核生物主要的细胞骨架之一,在细胞形态维持、胞内物质运输、细胞分裂、细胞迁移、细胞信号转导等方面发挥着重要的作用。微管功能的发挥与微管所具有的结构特性密切相关。细胞内有很多微管结合蛋白,通过不同的方式结合于微管,并影响微管的结构特性,从而调节微管的功能。本文对调节微管结构和功能的这一类蛋白进行综述,并着重介绍一个新的微管结合蛋白CYLD。 关键词:微管;微管动态性;微管结合蛋白;CAP-Gly;CYLD 中图分类号:Q28 1.引言 微管细胞骨架广泛参与了细胞内的多种生命活动,微管结合蛋白对微管的调节是细胞生物学领域的一个研究热点。细胞内存在众多的微管结合蛋白,调节微管各方面的功能,其异常变化也会影响微管功能的发挥。有很多看似不相关的症状都与微管功能的丧失有关。微管结合蛋白的突变导致蛋白颗粒在纤毛和鞭毛中沿着微管运输的功能丧失,是视网膜营养不良症、多囊肾以及更复杂的Bardet-Biedl综合症的发病原因[1]。微管结合蛋白的异常表达或修饰也会影响其对微管的调节作用,甚至导致癌变和神经组织退行性病变,如Alzheimer病或Huntington病[2, 3]。另外,目前肿瘤治疗也广泛使用针对微管的药物,微管结合蛋白与微管的相互作用往往会影响肿瘤对药物的敏感性[4, 5]。深入了解微管结合蛋白对微管的调节作用以及对微管功能的影响,将有助于人们认识相关疾病的病因,研究更好的诊断和治疗方法,以及对肿瘤化疗药物的个性化选择和提高药物敏感性提供依据。 2.微管的结构特性 2.1 微管的功能 微管是真核生物主要的细胞骨架之一,在细胞内呈网状或束状分布,与其它蛋白一起组装成纺锤体、中心粒、轴突、神经管、基体、鞭毛、纤毛等结构。微管和其他细胞骨架一起维持着细胞内高度有序而又富于变化的结构。微管广泛参与细胞内的生命活动,包括细胞形态的维持、细胞内运输、细胞迁移、细胞分裂、细胞信号转导等[6],对于生物体的生长、发育和繁殖至关重要。 2.2微管的组装 微管的基本构成单位是由α微管蛋白和β微管蛋白组成的异二聚体,这种二聚体通过水解GTP提供能量聚合成微管。微管蛋白的聚合首先经历一个核化的过程,形成很短的微管核,然后新的二聚体通过非共价连接的方式加到这个核的两端,进行微管的延长,最终形成由13根原纤维组成的中空管状的微管结构。在这种结构中,微管蛋白二聚体都是头尾相接,使微管形成一端以α微管蛋白结尾,另一端则以β微管蛋白结尾的极性结构。 1本课题得到高等学校博士学科点专项科研基金(项目编号:20060055008)的资助。

结构概念体系

结构概念体系现今发展的优点与不足 ——以中银大厦和悉尼歌剧院为例 建筑与土木一班王凯林141604010033 摘要:结构是建筑物的基本受力骨架。无论工业建筑、居住建筑、公共建筑或某些特种构筑物,都必须承受自重、外部荷载作用、变形作用以及环境作用。对结构的基本功能要求是:可靠、适用、耐久,以及在偶然事故中,当局部结构遭到破坏后,仍能保持结构的整体稳定性。随着科学技术的迅速发展,各类学科的分工越来越细,在土木工程专业范围内建筑力学、材料力学、建筑学、城市规划、结构、地基基础、施工组织、施工技术、房屋设备等许多学科发展都很快。对于结构工程师,也应具备必要的建筑设计知识,在建筑设计的方案阶段,主动考虑并建议最适宜的结构体系方案,使之与建筑功能和造型有机结合,才能使建筑结构达到完美地统一。所以,各专业相互渗透、密切配合,懂得各种组合结构对工程带来的结构稳定性,经济利益等等是是十分重要的。 关键词:结构概念体系;缺点;优点 一、不足之处——以悉尼歌剧院为例

1.1悉尼歌剧院简介 凡是去澳大利亚旅游的人,没有不去悉尼的;去悉尼,必然会去参观悉尼歌剧院。可以这样说,悉尼歌剧院现在是悉尼甚至是澳大利亚的一个标志。悉尼歌剧院位于悉尼湾一侧的班尼朗半岛上,距港湾大桥很近,位置十分显要,是各国船只进出港时必经之地。它不同于一般方盒子式房屋组成的建筑群,而是在坚实平整的基座上建造了几组活跃起伏的壳体屋盖组成的、造型奇特的建筑群,像群帆泊港,又似白鹤飞翔,格外引人注目。 应该说,从建筑的角度看,它是很有特色的。8个壳体分成两组,每组4个,分别覆盖2个大厅;另外有2个小壳体置于餐厅之上。两组壳体对称互靠,外贴乳白色面砖,给人以丰富的联想:好像白帆,又如贝壳,姿同海浪,貌了以莲花。这个杰作出自38岁的丹麦建筑师伍重之手,它是从30个国家参加竞赛的二百多个建筑方案中脱颖而出的,一举夺标,不可不称之出类拔萃。尽管有人批评它是功能迁就形式,但它能突破传统的建筑形式,标新立异,刻意创新,大家从建筑设计的角度上大力赞美它,应该说还是不过分的。 悉尼歌剧院共耗时14年,斥资1200万澳币,于1973年10月20日正式竣工开幕。歌剧院内部有许多地方是用法国进口的玻璃所镶嵌,配上澳洲独有的建材材料,其内部建筑结构则是仿效玛雅文化和阿兹特克神庙。外面的玻璃是由法国制造的双层玻璃──素色及黄玉色,共有700种尺寸、2000片。悉尼歌剧院是世界著名艺术表演场地,每年举办约2400次活动,曾邀请纽约爱乐、德国碧娜.鲍许乌帕塔舞蹈剧场(Tanztheatre Wuppertal Pina Bausch)、菲利浦.葛拉斯乐团(The Philip Glass Ensemble)等国际团体,并获得伊丽莎白女王、美国总统福特、柯林顿、南非总统曼德拉、联合国前安理会总理安南等众多国际名人造访,为歌剧院增添许多光采。2007年被联合国教科文组织评为世界文化遗产。[1] 1.2 结构上存在的不足 不过,这位杰出的建筑师对悉尼歌剧院的结构方案却考虑的太少了。这个建筑方案中选后,邀请世界著名的结构工程师帮助作结构设计,结果经过近三年的研究,得出的结论是:只能放弃它的壳体方案。为什么呢?因为悉尼歌剧院的建筑方案虽然好得无以复加,但其结构方案有一个致命的缺点:选错了结构型式。大家知道如果壳体屋盖都是凸面向上平放,当受重力作 用时,可通过壳体的薄膜压应力来抵抗外荷载;当受风力作用时,所受的向上风吸力,只要小于

慢性阻塞性肺疾病的药物治疗.doc

慢性阻塞性肺疾病的药物治疗 临床药学室赖瑛 慢性阻塞性肺疾病(COPD)是一种具有气流受限特征的、可以预防和治疗的疾病。气流受限不完全可逆、呈进行性发展,与肺部对香烟烟雾等有害气体或有害颗粒的异常炎症反应有关。COPD主要累及肺脏,但也可引起全身(或称肺外)的不良效应。COPD由于其患病人数多,死亡率高,社会经济负担重,已成为一个重要的公共卫生问题。根据《慢性阻塞性肺疾病诊治指南》(2007年修订版)我们将慢性阻塞性肺疾病的药物治疗归纳如下,以便各位药学工作者学习。 1、COPD稳定期治疗 药物治疗用于预防和控制症状,减少急性加重的频率和严重程度,提高运动耐力和生活质量。根据疾病的严重程度,逐步增加治疗,如果没有出现明显的药物不良反应或病情的恶化,应在同一水平维持长期的规律治疗。根据患者对治疗的反应及时调整治疗方案。 1.1 1.1支气管舒张剂 支气管舒张剂可松弛支气管平滑肌、扩张支气管、缓解气流受限,是控制COPD症状的主要治疗措施。短期按需应用可缓解症状,长期规则应用可预防和减轻症状,增加运动耐力,但不能使所有患者的FEV1都得到改善。与口服药物相比,吸入剂不良反应小,因此多首选吸入治疗。 主要的支气管舒张剂有β2受体激动剂、抗胆碱药及甲基黄嘌呤类,根据药物的作用及患者的治疗反应选用。用短效支气管舒张剂较为便宜,但效果不如长效制剂。不同作用机制与作用时间的药物联合可增强支气管舒张作用、减少不良反应。β2受体激动剂、抗胆碱药物和(或)茶碱联合应用,肺功能与健康状况可获进一步改善。(1) β2受体激动剂:主要有沙丁胺醇、特布他林等,为短效定量雾化吸入剂,数分钟内开始起效,15~30min达到峰值,持续疗效4~5 h,每次剂量100~200μg(每喷100μg),24h内不超过8~12喷。主要用于缓解症状,按需使用。福莫特罗(formoterol)为长效定量吸入剂,作用持续12 h以上,与短效β2受体激动剂相比,维持作用时间更长。福莫特罗吸入后1~3 min起效,常用剂量为4.5~9μg,每日2次。(2)抗胆碱药:主要品种有异丙托溴铵(ipratropium)气雾剂,可阻断M胆碱受体。定量吸入时开始作用时间比沙丁胺醇等短效β2受体激动剂慢,但持续时间长,30~90min达最大效果。维持6~8h,剂量为40~80μg (每喷20μg),每天3~4次。该药不良反应小,长期吸入可改善COPD患者健康状况。噻托溴铵(tiotropium)选择性作用于M3和M1受体,为长效抗胆碱药,作用长达24 h以上,吸入剂量为18μg,每天1次。长期吸入可增加深吸气量(IC),减低呼气末肺容积(EELV),进而改善呼吸困难,提高运动耐力和生活质量,也可减少急性加重频率。(3)茶碱类药物:可解除气道平滑肌痉挛,广泛用于

细胞骨架答案

第七章细胞骨架 一、填空题 A-七-1.细胞骨架是指存在于真核细胞中的蛋白纤维网架体系,狭义的骨架系统主要包括微丝、微管和中间丝。 A-七-2. 构成微管的蛋白有两类:α微管蛋白和β微管蛋白。 A-七-3. 微管在细胞中有三种存在形式:单管、二联管和三联管,其中主要分布在纤毛和鞭毛杆状部位的是二联管。 A-七-4. 装配时具有“踏车现象”的细胞骨架是微丝和微管。 A-七-5. 紫杉醇是作用于微管的特异性药物,而鬼笔环肽是作用于微丝的特异性药物。 A-七-6.微丝的基本组成单位是肌动蛋白,其在细胞中也有两种存在方式:①球状肌动蛋白②纤丝状肌动蛋白。 A-七-7. 在细胞骨架系统中较为稳定的一种骨架纤维是中间纤维。 A-七-8.中间纤维蛋白分子八聚体之间在纵向端对端首尾相连组成一条原纤维,四条原纤维侧向相互作用最终形成中间纤维。 A-七-9. 细胞骨架中具有极性的为微丝和微管。 B-七-10. 鞭毛和纤毛内部是由微管组成的轴丝构成的结构。其基部的结构式为__三联管__,而其杆部的结构式为二联管。 B-七-11. 微管是由异二聚体组装成的 13 条原丝依靠共价键排列而成。一些药物如__秋水仙素__可以抑制微管的组装。 B-七-12. 秋水仙素是作用于微管的特异性药物,破坏纺锤体的形成,使细胞停滞在分裂中期。 B-七-13. 细胞中微管组织中心包括中心体、纤毛和鞭毛的基体。 B-七-14. 微管在体内装配时,微管的_负极_附着在微观组织中心上而受保护,因此在细胞内微管的延长或缩短变化大多发生在另外一端。 ?B-七-15. 纺锤体微管包括动粒微管和。 B-七-16. 马达蛋白可分为三个不同的家族,其中驱动蛋白家族和动力蛋白家族以微管作为运行轨道,而肌球蛋白家族以肌动蛋白纤维作为运行轨道。

对管内湍流边界层结构与流动阻力特性的数值研

收稿日期:1999209224;修改稿收到日期:22001204204.基金项目:上海市青年科技启明星计划(98Q F14040); 曙光计划(2000SG14040)资助1 作者简介:潘卫国(19672),男,教授,博士1文章编号:100724708(2001)0420393204 对管内湍流边界层结构与流动阻力特性的数值研究 潘卫国1, 聂雪军1, 雷俊智1, 岑可法2 (11上海电力学院热能与环保工程研究所,上海200090;21浙江大学,杭州310027)摘 要:在研究紊流边界层的过程中,本文考虑了分子粘性对紊流产生的作用、雷诺数以及壁面附近脉动动能的耗散不是各向同性对紊流产生的影响,采用Jones2L aunder模型对管内紊流流动边界层厚度、边界层内的脉动动能K,动能耗散E,管壁切应力S o以及由此可得的管内流动摩擦阻力系数K 进行了数值计算,计算结果与实验值、理论计算值具有较好的一致性。 关键词:湍流;边界层;数值计算 中图分类号:O35 文献标识码:A 1 引 言 空气在管内流动时,管壁附近有一极薄的边界 层,在这一薄层内,气流的速度由固壁处的零逐渐增 加到相应的无摩擦外流原有的值,当雷诺数R e< 2300时,边界层内为层流流动,此时流动阻力压力 降与速度的一次方成正比,摩擦阻力系数为K= 64R e,其边界层厚度D=5M L u;而工程上一般碰 到的管内流动其R e数都很大,流动为湍流流动,管 内流动压力降近似与流速的平方成正比。由于湍流 混合,使得接近管轴的流体和接近壁面的流体层之 间进行着动能和质量交换,边界层内结构就比较复 杂[1],为此,本文试用数值计算的方法探讨管内湍流 边界层结构与流动阻力特性。 2 低Re数的K-E双方程模型的建立 高R e数的K2E双方程模型对旺盛的管内紊流 区作了较好数值模拟,而对研究紊流边界层,必须要 考虑分子粘性对紊流产生的作用、雷诺数以及壁面 附近脉动动能的耗散不是各向同性这些影响。根据 Jones和L aunder的观点,对高R e数K2E双方程中相 应的项乘上f L、f1和f2因子所得的低R e数K-E双 方程模型可以模拟紊流边界层的结构[2,3],其方程如 下: 5(Q uK) 5x+5(Q M K) 5y= 5 5x[ (L+ L t R E ) 5K 5x]+ 5 5y[ (L+ L t R k ) 5K 5y]+ L t G-Q E+D - (1) 5(Q u E) 5x+ 5(Q M E) 5y= 5 5x[ (L+ L t R E ) 5E 5x]+ 5 5y[ (L+ L t R E ) 5E 5y]+ E K C1f -1 L t G- C2f2 - Q E2 K +E - L t=C L f -L Q K 2 E (2) 以上三式中下划线的部分就是低R e数K2E模 型区别于高R e数K2E模型的部分,其中f L、f1、f2、D 和E由不同的研究者得出不同的数学表达式[4~9], Jones和L aunder认为:f L=exp -215 1+0102R L, f1=110,f2=1-013exp(-R2L),D=2L5K 5y 2 , E=2 LL t Q 52u 5y2 2 式中R L=K 2 M E;  R k=K 12y M;  y+=u T y M;u T =S W Q;未注明的其它参数C L=0109,C D= 110,C1=1144,C2=1192, R K=110,R E=113。 低R e数K2E模型是对高R e数K2E方程的修正, 即考虑了高阶张量在低R e数时的影响,引入f L、f1 和f2的目的分别是为了模拟在壁面处分子粘性对 切应力的影响、考虑壁面附近湍流脉动动能耗散率 的变化以及湍流边界层内各向同性特性的减弱。 Patel[10]等曾采用多种低R e数K2E模型计算了 二维边界层流动与换热并作了比较,结果表明,采用 Jones2L aunder模型得出的计算值与实验结果的符 合程度比其它模型要好,因此下面采用 Jones2L aunder模型对管内紊流流动边界层厚度、边 第18卷第4期计算力学学报V o l.18N o14 2001年11月CH I N ESE JOU RNAL O F COM PU TA T I ONAL M ECHAN I CS N ovem ber2001

结构力学概念题

1.自由度:确立体系几何位置所需的独立坐标数; 稳定:结构保持原有的平衡形式; 稳定自由度:确定结构失稳时所有可能所变形状态所需独立参数数目; 结构动力自由度:为了确定运动过程中任意时候全部质量的位置所需的独立几何参数的数目;结构静力自由度:指结构独立运动方式的个数; 2.几何组成分析的目的和意义: 3.梁、刚架、桁架、拱、索这些结构的目的、特点、联系和区别?(主要从他们的内力、受力特点出发) 4.虚功原理和能量原理的联系与区别? 5.图乘法与积分法联系与区别? 6.影响线的概念:单位位移荷载作用下某一位置变化规律的图形; 性质:起点至终点,荷载不经过处不绘制弯矩图; 静定结构的内力(反力)影响线是直线或折线,位移影响线是曲线;超静定结构的内力和位移影响线都是曲线; 影响线应用(最值内力和位移)(静力法和机动法) 7.[K]物理意义:K ij表示Δj=1单独作用下引起的沿Δi方向的结点力(考法:求总刚) 8.动力计算:①单自由度:W=(1/mδ)1/2=(k/m)1/2 ②2个自由度:刚:︳k-w2M︳=0 柔度:|uδ-I/w2|=0 9.强迫振动的概念: 10.极限荷载(考点塑性变形,最终破坏是由于结构由几何不变—>几何可变)极限分析方法,塑性铰,破坏结构,三个定理

在结构极限荷载的分析中,上限定理指:平衡条件所求得的荷载≥极限荷载(破坏)下限定理:所求荷载≤极限荷载 结构处于极限状态下应满足平衡、屈服、单向机构三条件。 11.超静定结构的特点:①内力不能由平衡条件唯一确定,需考虑变形条件②非荷载因素只有引起结构变形时才能产生内力③荷载下内力与EI的相对值有关,非荷载下内力与EI的绝对值有关; 12.静定结构的特性:静定结构只有在荷载作用下产生内力,其他作用时只引起位移和变形。静定结构有弹性支座和弹性结点时,内力与刚性支座和刚性结点一样,但位移不同; 13.W≤0 ﹤=﹥无多余约束的几何不变 14.M=EIy″ M=P(δ-y) 15.位移法可以静定也可以超静定; 16.单刚中K ij的物理意义 等效结点荷载的等效原则:结构在等效荷载作用下,结构的结点位移与实际荷载作用下的结点位移相等; (几何不变体系:结构;几何可变体系:机构) 17.静定结构在小变形G=Eε条件下适用 静定结构位移计算:Δ=Δp﹢Δt﹢Δc Δp= Δt= Δc= 18.力矩分配法的概念:

相关文档
最新文档