8.4三元一次方程组解法举例第1课时评价作业

8.4三元一次方程组解法举例第1课时评价作业

8.4 三元一次方程组解法举例

第1课时

(一)必做题(60分)

1.对于方程组??

???-=--=++=+22362532z y x z y x y x ,最优的解法是( )

(A )消x (B)消y (C)消z (D)都一样

2.解方程组??

???=++-=-+=+-5123332z y x z y x z y x

(1)若先消去x ,得到关于y,z 的方程组是 ;

(2)若先消去y ,得到关于x,z 的方程组是 ;

(3)若先消去z ,得到关于x,y 的方程组是 .

通过消元转化为二元一次方程组的过程看,上面的三种方法中 比较简单.

3. 解方程组??

???=-+-=+-=+32422123z y x z y x y x

(二)选做题(20分)

4.解方程组:??

???=++==664:5:2:3:z y x z y y x

(三)思考题(20分)

5.解方程组:3,2,7.a b b c c a +=??+=-??+=?

二元一次方程组的概念及解法

二元一次方程组的概念及解法 知识点梳理 知识点一二元一次方程组的概念 含有两个未知数,并且含有未知数的相的次数都是1,像这样的方程叫做二元一次方程。 把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。 使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。 典例分析 例1、在方程组、、、、 、中,是二元一次方程组的有个; 例2、已知二元一次方程2x-y=1,若x=2,则y=;若y=0,则x=. 变式1:方程x+y=2的正整数解是__________. 变式2、在方程3x-ay=8中,如果是它的一个解,那 么a的值为? ? ? = = 1 3 y x

例3 方程组???=+=-5 21 y x y x 的解是( ) A 、 ???=-=21y x B 、???-==12 y x C 、???==21y x D 、???==12y x 例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组 。 例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。问鸡兔各几何。”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。 知识点二 解二元一次方程 消元解二元一次方程???代入消元法加减消元法 典例分析 例1、 把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = . 化成含x 的代数式表示y 的形式:y = .

二元一次方程组解法练习题含答案

二元一次方程组解法练习题精选 一.解答题(共16小题) 1.求适合的x,y的值. 2.解下列方程组 . 6.已知关于x,y的二元一次方程y=kx+b的解有和. (1)求k,b的值. (2)当x=2时,y的值. (3)当x为何值时,y=3? 7.解方程组: (1);(2).8.解方程组: 9.解方程组: 10.解下列方程组: 12.解二元一次方程组: ; . 15.解下列方程组: (1)(2). 16.解下列方程组:(1)(2)

二元一次方程组解法练习题精选(含答案) 参考答案与试题解析 一.解答题(共16小题) 1.求适合的x,y的值. 解二元一次方程组. 考 点: 分 先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消析: 去未知数x,求出y的值,继而求出x的值. 解 解:由题意得:, 答: 由(1)×2得:3x﹣2y=2(3), 由(2)×3得:6x+y=3(4), (3)×2得:6x﹣4y=4(5), (5)﹣(4)得:y=﹣, 把y的值代入(3)得:x=, ∴. 点 本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法. 评: 2.解下列方程组 (1) (2) (3)

(4).考 点: 解二元一次方程组. 分析:(1)(2)用代入消元法或加减消元法均可; (3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解. 解答:解:(1)①﹣②得,﹣x=﹣2, 解得x=2, 把x=2代入①得,2+y=1, 解得y=﹣1. 故原方程组的解为. (2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3, 把y=3代入①得,2x﹣3×3=﹣5, 解得x=2. 故原方程组的解为. (3)原方程组可化为, ①+②得,6x=36, x=6, ①﹣②得,8y=﹣4, y=﹣. 所以原方程组的解为. (4)原方程组可化为:,

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

三元一次方程组及其解法

7.3 三元一次方程组及其解法 【教学目标】 知识与能力 (1)了解三元一次方程组的概念. (2)会解某个方程只有两元的简单的三元一次方程组. (3)掌握解三元一次方程组过程中化三元为二元的思路. 过程与方法 通过消元可把“三元”转化为“二元”,充分体会“转化”是解二元一次方程组的基本思路. 情感、态度、价值观 通过本节的教学,应该使学生体会通过本节学习,进一步体会“消元”的基本思想,认识到数学的价值。 【教学重点】 (1)使学生会解简单的三元一次方程组. (2)通过本节学习,进一步体会“消元”的基本思想. 【教学难点】 针对方程组的特点,灵活使用代入法、加减法等重要方法. 【教学过程】 一、回顾旧知,引入新课 在7.2节中,我们应用二元一次方程组,求出了勇士队在我们的小世界杯足球赛第一轮比赛中胜与平的场数。 问题回顾 暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛。比赛规定:胜一场得3分,平一场得1分,负一场得0分。勇士队在第一轮比赛中赛了9场,只负了2场,共得17分。 那么这个队胜了几场?又平了几场呢? 解:设勇士队胜了x场,平了y场,则 胜 每场得分

?? ?=+=++17 39 2y x y x 解得???==25y x 提出问题: 在第二轮比赛中,勇士队参加了10场比赛,按同样的计分规则,共得18分。已知勇士队在比赛中胜的场数正好等于平与负的场数之和,那么勇士队在第二轮比赛中,胜、负、平的场数各是多少? 解:设勇士队胜了x 场,平了y 场,负了z 场,则 0 ?? ? ??+==+=++z y x y x z y x 18310 引出定义:像这种含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程组。一般情况下,三元一次方程组有三个方程,但不一定每个方程都出现三个未知数。 二、自主探究--------三元一次方程组的解法 探究一: 怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言) 解方程?? ? ??+==+=++③②① z y x y x z y x 18 310 解:把③分别带入①②得???=++=+++18)(310 y z y z y z y 整理得???=+=+⑤④18341022z y z y 由?????12⑤④得? ??=+=+⑦⑥ 18342044z y z y 由⑦⑥-得2=z 把2=z 代入④得1042=+y , 即 3=y

线性方程组典型习题及解答

线性方程组 1. 用消元法解方程组?????? ?=- +-+=-- + - =-+-+ =- -+-5 2522220 21 22325 4 321 53 2 154321 5 4321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 : ????? ???????---------→????????????---------→????????????---------420200110100112430211321312630202530112430211321512522110112121111211321? ??? ????? ???--------→60000 0110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解. 2. 讨论λ为何值时,方程组??? ??=++ = + +=++2 3 2 1 3 2 1 321 1 λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。 解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。 ()() ()()B A =??? ? ???? ? ?+------→→???? ????? ?→?? ??? ?????=22 2 2211210 1101 111 1 11111 1 1 1 111λλλλλλλ λλλ λλλλλλλ λλ λΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此 时方程组有唯一解;2 )1(,21,213 321++-=+=++- =λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解; 当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

含参数的二元一次方程组的解法

含参数的二元一次方程组的解法 二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。现选取几道题略作讲解,供同学们参考。 一、两个二元一次方程组有相同的解,求参数值。 例:已知方程 与 有相同的解, 则a 、b 的值为 。 略解:由(1)和(3)组成的方程组? ??=-=+5235y x y x 的解是 ? ??-=+=21y x 把它代入(2)得 a=14;把它代入(4)得b=2。 方法:是找每个方程组中都是已知数的方程组成新的方程组,得到的解,即是相同的解,再代入另一个方程,从而求出参数的解。 二、根据方程组解的性质,求参数的值。 例2:m 取什么整数时,方程组的解是正整数 略解:由②得x=3y 2×3y-my=6 y=m -66 因为y 是正整数,x 也是正整数所以6-m 的值为1、2、3、6;m 的值为0、3、4、5。 方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。 三、由方程组的错解问题,示参数的值。 例3:解方程组???=-=+872y cx by ax 时,本应解出???-==2 3y x 由于看错了系数c,从而得到解? ??=-=22y x 试求a+b+c 的值。 方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而,求出参数的值。8273=-?-?)(c 2-=c 把???-==23y x 和???=-=2 2y x 代入到ax+by=2中,得到一个关于a 、b 的方程组。 (1) (2) ???=+=+4535y ax y x (3) (4) ???=+=-1552by x y x ① ② ???=-=-0362y x my x

最新常见的三元一次方程组的解法

常见的三元一次方程组的解法 三元一次方程组的常规解法是:通过代入法或加减法把三元一次方程组转化为二元一次方程组,再把二元一次方程组转化为一元一次方程从而解出方程组.但有时我们也可根据三元一次方程组的结构特点采取非常规的方法来解方程组.常见的方法有: 一、缺项型的解法 例1 解方程组 4917(1) 31518(2) 232(3) x z x y z x y z -= ? ? ++= ? ?++= ? 分析:由于方程(1)缺少未知数y,这方程时只要在方程(2)(3)中消去未知数y即可把三元一次方程组转化为二元一次方程组,从而顺利地解出方程组. (2)2(3) ?-得:52734(4) x z += (1)3(4) ?+得:1785 x=5 x= 把5 x=代入(1)得:20917 z -= 1 3 z= 把5 x=, 1 3 z=代入(3)得:5212 y ++=, 2. y=- ∴方程组的解为: 5 2 1 3 x y z ? ?= ? =-? ? ?= ? 二、标准型的要选择确当的未知 例2 解方程组 34(1) 2312(2) 6(3) x y z x y z x y z -+= ? ? +-= ? ?++= ? 解:要消去三个未知数中的一个,相对而言消未知数z比较方面. (1)+(2)得:5216(4) x y += (3)+(2)得:3418(5) x y += (5)(4)2 -?得:20 x=

把20x =代入(4)得:100216y += 42y =. 把20x =,42y =代入(1)得:60424z -+= 14z =-. ∴方程组的解为:204214x y z =??=??=-? . 三、轮换的特殊解法 例3 解方程组2(1)4(2)6(3)x y y z z x +=??+=??+=? 解:这样轮换缺少未知数的方程可以采用下面特殊方法来解. (1)+(2)+(3)得:22212x y z ++= ∴6(4)x y z ++= (4)-(1)得:4z = (4)-(2)得:2x = (4)-(3)得:0y = ∴方程组的解为:204x y z =??=??=? . 四、有比巧设参数 x :y=2:1 (1) 例4 解方程组 y :z=1:3 (2) 23414x y z +-=- (3) 解:由(1)得:设其中的一份为k ,则2x k =,y k =. 把y k =代入(2)得:3z k =. 把2x k =,y k =,3z k =代入(2)得:431214k k k +-=-.

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

解线性方程组

课程设计阶段性报告 班级:学号:姓名:申报等级: 题目:线性方程组求解 1.题目要求:输入是N(N<256)元线性方程组Ax=B,输出是方程组的解,也可能无解或有多组解。可以用高斯消去法求解,也可以采用其它方法。 2.设计内容描述:将线性方程组做成增广矩阵,对增广矩阵进行变换然后采用高斯消元法消去元素,从而得到上三角矩阵,再对得到的上三角矩阵进行回代操作,即可以得到方程组的解。 3.编译环境及子函数介绍:我使用Dev-C++环境编译的,调用uptrbk() FindMax()和ExchangeRow(),uptrbk是上三角变换函数,FindMax()用于找出列向量中绝对值最大项的标号,ExchangeRow()用于交换两行 4. 程序源代码: #include #include #include //在列向量中寻找绝对值最大的项,并返回该项的标号 int FindMax(int p,int N,double *A) { int i=0,j=0; double max=0.0; for(i=p;imax) { j=i; max=fabs(A[i*(N+1)+p]); } } return j;

//交换矩阵中的两行 void ExchangeRow(int p,int j,double *A,int N) { int i=0; double C=0.0; for(i=0;i

3线性方程组典型习题解析

3 线性方程组 3、1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=? *???++ +=? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=? ???++ +=?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2, n a a a α?? ? ? == ? ? ??? 则上述方程游客一写成向量形式 1122n n x x x b. ααα++ +=***。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它就是一定有解的(至少零就就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r 、 2、非齐次线性方程组x b A = ()<() ()=()=n, ()=()()=()() A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解, 秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解 的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 就是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解、

三元一次方程组及其解法(2)练习

三元一次方程组及其解法(2) 一.选择题(共3小题) 1.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔1支,练习本2本共需4元,购1本练习本比1支圆珠笔多花1元,那么购铅笔、练习本、圆珠笔各1件共需() A.3元 B.2元 C.1元 D.0.9元 2.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需() A.105元 B.95元 C.85 元 D.88元 3.甲、乙、丙三人共解100道数学题,每人都只会做其中的60道题,且三人合在一起,这100道都能解答出来,将其中只有一人会做的题目叫做难题,三人都会做的题叫容易题,则难题比容易题多() A.30道 B.25道 C.20道 D.15道 二.填空题(共4小题) 4.已知y=ax2+bx+c. (1)当x=1时,y=5,得到等式______________; (2)当x=-2时,y=5,得到等式______________; 5.有甲乙丙三种货物,若购买甲3件、乙7件、丙1件,共420元;若购买甲4件、乙10件、丙1件,共520元,现在购买甲、乙、丙各1件,共需元.6.纸箱里有有红黄绿三色球,红球与黄球的比为1:2,黄球与绿球的比为 3:4,纸箱内共有68个球,则黄球有个. 7.已知a,b,c是有理数,观察表中的运算,并在空格内填上相应的数. a+6b 2a﹣5c a﹣2b+7c 2a+2b+c a,b,c的运 算 运算的结果﹣4 9 ﹣3

三.解答题(共3小题) 8.在y=ax2+bx+c中,当x=-1时,y=0;当x=2时,y=-3;当x=3时,y=0.求a,b,c的值. 9.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植农作物每公顷所需的劳动力人数及投入的设备资金如下表: 农作物品种每公顷需劳动力每公顷需投入资金 水稻4人1万元 棉花8人1万元 蔬菜5人2万元 已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用? 10.陈滴有12张面额分别为1元、2元、5元的纸币,共计22元,求1元、2元、5元的纸币各多少张.

三元一次方程组及解法资料讲解

要点一、三元一次方程及三元一次方程组的概念 1. 三元一次方程的定义: 含有三个相同的未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程. 要点诠释: (1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次. (2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零. 2.三元一次方程组的定义: 一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释: (1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可. (2) 在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建 立三元一次方程组求解 要点二、三元一次方程组的解法 解三元一次方程组的一般步骤 (1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程; (4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起.

要点诠释: (1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二 元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是: (2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的 解法 要点三、三元一次方程组的应用 列三元一次方程组解应用题的一般步骤: 1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数; 2.找出能够表达应用题全部含义的相等关系; 3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; 4.解这个方程组,求出未知数的值; 5.写出答案(包括单位名称). 要点诠释: (1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组 类型一、三元一次方程及三元一次方程组的概念 1. 下列方程组不是三元一次方程组的是().

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题精选(含答案) 一.解答题(共16小题) 1.求适合的x,y的值. 2.解下列方程组 (1)(2)(3)(4). 解方程组:4.解方程组:5.解方程组: 3. 6.已知关于x,y的二元一次方程y=kx+b的解有和. (1)求k,b的值. (2)当x=2时,y的值. (3)当x为何值时,y=3?

7.解方程组: (1);(2). 解方程组:9.解方程组: 8. 10.解下列方程组: (1)(2) 11.解方程组: (1)(2)

12.解二元一次方程组: (1);(2). 13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为. (1)甲把a看成了什么,乙把b看成了什么? (2)求出原方程组的正确解. 14.15.解下列方程组:(1);(2).解下列方程组:(1)(2) 16.

第二十六章《二次函数》检测试题 1,(20XX年芜湖市)函数2 y ax b y ax bx c =+=++ 和在同一直角坐标系内的图象大致是() 2,在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为() 3,已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,给出以下结论:① a+b+c<0;② a-b+c<0;③ b+2a <0;④ abc>0 .其中所有正确结论的序号是() A. ③④ B. ②③ C. ①④ D. ①②③ 4,二次函数y=ax2+bx+c的图象如图3所示,若M=4a+2b+c,N=a-b+c,P=4a+2b,则() A.M>0,N>0,P>0 B. M>0,N<0,P>0 C. M<0,N>0,P>0 D. M<0,N>0,P<0 5,如果反比例函数y= k x 的图象如图4所示,那么二次函数y=kx2-k2x-1的图象大致为() 6,用列表法画二次函数y=x2+bx+c的图象时先列一个表,当表中对自变量x的值以相等间隔的值增加时,函数y 所对应的函数值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是( ) A. 506 B.380 C.274 D.18 7,二次函数y=x2的图象向上平移2个单位,得到新的图象的二次函数表达式是() A. y=x2-2 B. y=(x-2)2 C. y=x2+2 D. y=(x+2)2 图3 y x O 图4 y x O A. y x O B. y x O y x O 图4 x -11 y O 图1

二元一次方程组的常见解法

i n 二元一次方程组的常见解法 二元一次方程组中含有两个未知数,所以解二元一次方程组的主要思路就 是消元,即消去一个未知数,使其转化为一元一次方程,这样就可以先解出一 个未知数,然后设法求另一个未知数.常见的消元方法有两种:代入消元法和 加减消元法. 一、代入法 即由二元一次方程中的一个方程变形,将一个未知数用含另 一个未知数的式子表示出来,再代入另一个方程中,实现消元,进而求解.一 般情况下用代入法解方程组时,选择变形的方程要尽可能的简单,表示的代数式也要尽可能的简单,以利于计算. 2x+5y=-21 ① 例1、解方程组 x+3y=8 ② 解 由②得:x=8-3y ③ 把③代入①得 2(8-3y )+5y=-21 解得:y=37 把y=37 代入③得:x=8-3×37=-103 x=-103 y=37 二、整体代入法 当方程组中的两个方程存在整数倍数关系时,用代入法 解可将整数倍数关系数中较小的一个变形,用另一个字母代数式表示它后代入 另一个方程. 3x -4y=9 ① 例2、解方程组 9x -10y=3 ② 解 由①得3x=4y+9 ③把③代入②得 3(4y+9)-10y=3

t h i n 解得 y=-12 把y=-12代入③得 3x=4×(-12)+9解得 x=-13 x=-13 所以方程组的解是 y=-12 三、加减消元法 即方程组中两个二元一次方程中的同一个未知数的系数相 等时,让两个方程相减.如果方程组中两个二元一次方程中的同一个未知数的 系数互为相反数时则让两个方程相减.消去一个未知数,得到一个一元一次方 程,这种方法叫加减消元法. 2x+3y=14 ① 例3、 解方程组 4x -5y=6 ② 解 由①×2得 4x+6y=28 ③ ③-②得:11y=22 解得 y=2 把y=2代入②得 4x -5×2=6解得 x=4 x=4 所以方程组的解为 y=2 四、整体运用加减法 即当两个二元一次方程中的某一部分完全相同或符号 相反时,可以把这两个方程两边相加或相减,把相同的部分整体消去. 3(x+2)+(y -1)=4 ① 例4 解方程组 3(x+2)+(1-y)=2 ② 解 ①-②得 (y -1)- (1-y)=4-2整理得 2y=4 解得 y=2

二元一次方程组解法练习题精选(含答案)

二元一次方程组解法练习题 一.解答题(共16小题) 1.解下列方程组 (1) (2) (3))(6441125为已知数a a y x a y x ? ? ?=-=+ (4) (5) (6) . (7) (8) ? ??=--+=-++0)1(2 )1()1(2 x y x x x y y x (9) (10) ?????? ?=-++=-++1 213 2 22 1 32y x y x 2.求适合的x ,y 的值. 3.已知关于x ,y 的二元一次方程y=kx+b 的解有和 . (1)求k ,b 的值. (2)当x=2时,y 的值. (3)当x 为何值时,y=3?

1.解下列方程组 (1)(2);(3);(4)(5).(6) (7)(8 ) (9) (10) ; 2.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为. (1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.

二元一次方程组解法练习题精选参考答案与试题解析 一.解答题(共16小题) 1.求适合 的x ,y 的值. 得到一组新的方程 解:由题意得: ﹣, 2.解下列方程组 (1) (2) (3) (4) . 故原方程组的解为. 故原方程组的解为 .)原方程组可化为.所以原方程组的解为 )原方程组可化为:x=x=代入×所以原方程组的解为3.解方程组:

:原方程组可化为,所以方程组的解为 4.解方程组: )原方程组化为 y= 所以原方程组的解为 5.解方程组: 解: 即 解得 所以方程组的解为. 6.已知关于x,y的二元一次方程y=kx+b的解有和. (1)求k,b的值. (2)当x=2时,y的值. (3)当x为何值时,y=3? 的二元一次方程组,再运用加减消元 )依题意得: , . y=,

线性方程组习题课

线性方程组求解 习题课

一、给定方程组123211*********x x x -???????????? =? ???????????-?????? 试考察用Jacobi 迭代法和Seidel 迭代法求解的收敛性。 解:对Jacobi 迭代法,迭代矩阵为 -1J 00.50.5B =I-D A=1010.50.50-?? ??--?????? 因为3 5 04 J I B λλλ-=+=,得特征值 1230,,22i i λλλ===- 得( )12J B ρ=> ,由定理知 Jacobi 迭代法发散。 对Seidel 迭代法,迭代矩阵为 ()1 S B D L U -=-=1 20001100.50.511000100.50.5112000000.5---?????? ??????-=--?? ??????????--?? ???? 显然,其特征值为1230,0.5λλλ===-

故()0.51s B ρ=<,由定理知Seidel 迭代法收敛。 二、设线性方程组111211212222a a x b a a x b ?????? = ??? ??????? ,11220a a ≠, 112221120a a a a -≠。证明:解线性方程组的Jacobi 迭代法和Gauss-Seidel 迭代法同时收敛或不收敛。 证明: 121 1111 122221 21 22 0000 00J a a a a B a a a a -??- ?-???? ?== ? ? ?-????- ??? ()2 1221 1122det J a a I B a a λλ-=-,故( )J B λ= ( )J B ρ= 。 1211111 1221 2212211122000000S a a a a B a a a a a a -??- ?-???? ?== ? ? ????? ?? ?

最新《三元一次方程组及其解法》例题与讲解

《三元一次方程组及其解法》例题与讲解 1.三元一次方程及三元一次方程组 (1)三元一次方程: 含有三个未知数,并且含未知数的项的次数都是1的方程叫做三元一次方程. (2)三元一次方程组: ①定义:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫三元一次方程组.如: ??? x +y =1,y +z =3,x -2z =5,??? x +3y +2z =2,3x +2y -4z =3,2x -y =7 等都是三元一次方程组. ②拓展理解: a.构成三元一次方程组中的每一个方程都必须是一次方程; b.三元一次方程组中的每个方程不一定都含有三个未知数,但方程组中一定要有三个未知数. 【例1】 下列方程组中是三元一次方程组的是( ). A.??? x 2-y =1, y +z =0,xz =2 B.????? 1 x +y =1, 1 y +z =2, 1z +x =6 C.??? a + b + c + d =1,a -c =2,b -d =3 D.??? m +n =18,n +t =12,t +m =0 解析:A ,B 选项中有的方程不是三元一次方程,C 中含有四个未知数,只有D 符合三元一次概念内涵,故选D. 答案:D 2.三元一次方程组的解 (1)三元一次方程的解:使三元一次方程左右两边相等的三个未知数的值,

叫做三元一次方程的解. 和二元一次方程一样,一个三元一次方程也有无数个解. (2)三元一次方程组的解:组成三元一次方程组的三个方程的公共解,叫做三元一次方程组的解.它也是三个数. (3)检验方法:同二元一次方程和二元一次方程组的检验方法一样,代入检验,左、右两边相等即是方程的解. 释疑点 检验三元一次方程组的解 三元一次方程组的解是三个数,将这三个数代入每一个方程检验,只有这些数满足方程组中的每一个方程,这些数才是这个方程组的解. 【例2】 判断??? x =2, y =-3, z =-3是不是方程组??? x +y -2z =5, 2x -y +z =4, 2x +y -3z =10 的解. 答:__________(填是或不是). 解析:把??? x =2, y =-3, z =-3 代入方程组的三个方程中检验,能使三个方程的左 右两边都相等,所以是方程组的解. 答案:是 3.三元一次方程组的解法 (1)解法思想:解三元一次方程组的基本思路是消元,其方法有代入消元法和加减消元法两种,通过消元将三元一次方程组转化为二元一次方程组或一元一次方程. (2)步骤: ①观察方程组中每个方程的特点,确定消去的未知数; ②利用加减消元法或代入消元法,消去一个未知数,得到二元一次方程组; ③解二元一次方程组,求出两个未知数的值; ④将所得的两个未知数的值代入原三元一次方程组中的某个方程,求出第三个未知数的值; ⑤写出三元一次方程组的解.

二元一次方程组解法详解上课讲义

一、二元一次方程组解法总结 1、二元一次方程组解法的基本思想 二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想. 即二元一次方程组形如:ax=b(a,b为已知数)的方程. 2、代入消元法 由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法. 3、用代入消元法解二元一次方程组的步骤 (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数. (3)解所得到的一元一次方程,求得一个未知数的值. (4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解. 4、加减消元法 两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法. 5、加减消元法解二元一次方程组的一般步骤 (1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;

(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得一个未知数的值; (4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值; (5)把求出的未知数的值写成的形式. 6、二元一次方程组解的情况 若二元一次方程组(a1,a2,b1,b2,c1,c2均为不等于0的已知数),则 (1)当时,这个方程组只有唯一解; (2)当时,这个方程组无解; (3)当时,这个方程组有无穷多个解. 二、重难点知识归纳 二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题. 三、典型例题讲解 例1、(1)下列方程中是二元一次方程的有() ①②③

数值分析计算实习题列主元高斯消去法解线性方程组

数值分析计算实习题 第5章解线性方程组的直接方法 【选题 列主元高斯消去法解线性方程组。 书上的计算实习题1、2、3都要求用列主元高斯消去法解线性方程组,所以考虑写一个普适的程序来实现。 对于线性方程组Ax二b,程序允许用户从文件读入矩阵数据或直接在屏幕输入数据。 文件输入格式要求: (1)第一行为一个整数n (2<=n<=100),表示矩阵阶数。 (2)第2~n+l行为矩阵A各行列的值。 (3)第n+2~n+n+2行为矩阵b各行的值。 屏幕输入:按提示输入各个数据。 输出:A. b、det(A).列主元高斯消去计算过程、解向量X。

【算法说明】 设有线性方程组Ax=b,其中设A为非奇异矩阵。方程组的增广矩阵为 ?12 ?21 [Nb] = 第1步(k=l ):首先在A的第一列中选取绝对值最大的元素?I,作为第一步的主元素: ?|| H0 然后交换(A, b)的第1行与第I行元素,再进行消元计算。 设列主元素消去法已经完成第1步到第k?l步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 A(k)x=b(k) 4? …4;) …唸) ? 忒 ? ? 輕 ■ [A.b]T[A ⑹,b")] = ??■ 咲■ ■ ■ ■ ■ * *■ 〃伏) ?? - % ■ 第k步计算如下: 对于 k=l, 2, ?…,0-1 (1)按列选主元:即确定t使 (2)如果tHk,则交换[A, b]第t行与第k行元素。(3)消元计算

5 4* J 叫=一鱼(=^ + 1,…,H) % 吗 <-?y + 〃如伽 (fJ = R + l,…/) b- <-勺+加汝仇, (i = /c + l,…,《) 消元乘数mik 满足: n (%-D 内) X1 < ------ -- ---- 9(j = ? 一 1,?一2■…J)tk M 1,(,=斤 +1, ???,?) fet e (4)回代求解

相关文档
最新文档