新编基础物理学上册3-4单元课后答案

基础物理

第三章

3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12

R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法(负质量法)求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:

2112

J MR = ① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为: 2222213()()2424232

c M R M R J J m

d MR =+=⨯⨯+⨯= ② 由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为: 2121332

J J J MR =-= 3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得

解:(1)对x 轴的转动惯量为:

20222

01(sin 60)32

L

x M J r dm l dl ML L ===⎰⎰ (2)对y 轴的转动惯量为:

20222015()(sin 30)32296

L y M L M J l dl ML L =⨯⨯+=⎰ (3)对Z 轴的转动惯量为:

22112()32212z M L J ML =⨯⨯⨯= 3-3 电风扇开启电源后经过5s 达到额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即

11252520.50.5 4.12516

f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60k

g ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

分析:分别考虑两个研究对象:闸瓦和杆。对象闸瓦对飞轮的摩擦力f 对O 点的力矩使飞轮逐渐停止转动,对飞由轮转动定律列方程,因摩擦系数是定值,则飞轮做匀角加速度运动,由转速求角加速度。对象杆受的合力矩为零。 题图3-2

相关推荐
相关主题
热门推荐