CuO-ZnO-Al_2O_3催化剂上低压CO_2加氢合成甲醇反应性能的研究

CuO-ZnO-Al_2O_3催化剂上低压CO_2加氢合成甲醇反应性能的研究
CuO-ZnO-Al_2O_3催化剂上低压CO_2加氢合成甲醇反应性能的研究

天然气化工2009年第34卷

随着世界经济的发展,生产过程中排放的CO 2

数量不断增加,从而造成了环境污染和导致全球的温室效应,同时,CO 2又是自然界中存在的最丰富的碳资源,从环境保护和CO 2资源利用等方面来说,研究和开发CO 2的有效利用和固定化技术具有非常重要的现实意义,又是绿色化学和化工过程中重要的研究课题之一[1]。CO 2催化加氢合成甲醇、二甲醚及甲酸等过程都是合理有效利用CO 2的途径和化学固定方法之一,已经引起一些研究者的广泛关注,取得了一系列的研究成果[2-8]。然而,由于CO 2分子的惰性及其在热力学上的稳定性,CO 2加氢反应过程普遍都在较高的反应压力条件下进行,这就要求反应装置及设备耐高压,投资成本增加,相比较而言,低压下进行CO 2加氢反应可以克服这些不利之处,改善反应体系的压力条件并降低设备投资成本。本文研究了CuO -ZnO -Al 2O 3催化剂制备方式、反应温度、反应压力、反应空速等因素对低压CO 2加氢合成甲醇反应性能的影响,进行了低压CO 2加氢合成甲醇反应的有益探索。

1

实验部分

1.1

实验药品与仪器

药品:Cu(NO 3)2·3H 2O (分析纯,天津市科密欧化

学试剂开发中心),Zn(NO 3)2·6H 2O (分析纯,天津市科密欧化学试剂开发中心),Al (NO 3)3·9H 2O (分析

纯,天津市天大化工实验厂),无水Na 2CO 3(分析纯,西安化学试剂厂)。

仪器:见“1.3催化剂性能评价”中实验装置流程。

1.2催化剂制备方法

采用共沉淀法分别以并流沉淀、反加沉淀、正

加沉淀3种方式制备了CuO -ZnO -Al 2O 3催化剂[9-11],具体过程如下:

(1)并流共沉淀法

配制总浓度为1.0mol/L 的硝酸铜、硝酸锌和硝酸铝的混合溶液(n (Cu)/n (Zn)/n (Al)=6/3/1)与浓度为

1.0mol/L 的Na 2CO 3溶液,同时加入到沉淀槽中。滴

加速度为3mL/min 。沉淀温度为70℃,最终的pH 值控制在8.0,沉淀结束后连续搅拌1h ,静置,80℃下老化2h ,抽滤,洗涤,110℃温度下干燥,350℃下焙烧4h ,冷却后,催化剂置于干燥器中待用。

(2)反加共沉淀法

配制总浓度为1.0mol/L 的硝酸铜、硝酸锌和硝酸铝的混合溶液与浓度为1.0mol/L 的Na 2CO 3溶液,将混合溶液加入到Na 2CO 3溶液中。其余步骤同并流共沉淀法。

(3)正加共沉淀法

配制总浓度为1.0mol/L 的硝酸铜、硝酸锌和硝酸铝的混合溶液与浓度为1.0mol/L 的Na 2CO 3溶液,将Na 2CO 3溶液加入到混合溶液中,其余步骤同并流共沉淀法”。

1.3催化剂性能评价

采用微型固定床反应器装置(中科院大连化物

收稿日期:2009-07-28;作者简介:赵云鹏(1973-),男,硕士,副教授,电邮zhyypp@https://www.360docs.net/doc/d013474301.html, 。

CuO -ZnO -Al 2O 3催化剂上低压CO 2加氢合成甲醇

反应性能的研究

赵云鹏,贾丽华,辛

岗,赵

(齐齐哈尔大学化学与化学工程学院,黑龙江齐齐哈尔161006)

摘要:采用共沉淀法制备了CuO -ZnO -Al 2O 3催化剂,研究了不同制备方式对催化剂性能的影响,确定了并流共沉淀法为最佳的催化剂制备方式。考察了反应温度、反应压力、反应空速等因素对低压CO 2加氢合成甲醇反应性能的影响。在原料气配比一定(V (H 2)/V (CO 2)=2.6/1)的条件下,确定了优化的工艺参数为:反应温度240℃、反应空速2400h -1。此反应条件下,CO 2转化率

9.0%,甲醇选择性14.1%。

关键词:二氧化碳;催化加氢;甲醇;共沉淀法;CuO -ZnO -Al 2O 3催化剂中图分类号:O 643.32

文献标识码:A

文章编号:1001-9219(2009)06-04-03

4

第6期

所制)进行低压CO 2加氢合成甲醇反应催化剂性能

的评价,实验装置流程如图1所示。

在微型固定床反应器的反应管中装填催化剂量为4.2mL 。通入氮/氢混合气(V (N 2)/V (H 2)=4∶1)进行催化剂还原,程序升温至300℃,催化剂在300℃下恒温还原2h 后,程序降温至反应温度,切换为H 2和CO 2(V

(H 2)/V (CO 2)=2.6/1)的反应气。反应原料气由钢瓶经减压器控制在一定的压力,经过气体净化器后,由质量流量控制器(D07-11/ZM ,北京建中机器厂)控制氢气和CO 2气体的流量,在装有催化剂的反应管内进行CO 2加氢合成甲醇反应,评价催化剂的性能,考察催化剂制备方式、反应工艺条件等因素对催化剂性能的影响。反应管出口气经过冷阱收集的液相产物用气相色谱(GC9800,上海科创色谱仪器有限公司)分析。压力控制器(SY -9412,北京圣业科技发展有限公司)调节反应系统内压力的大小,不凝性气体经过压力控制器后用气相色谱(1490,惠普上海分析仪器有限公司)在线分析。

2

结果与讨论

2.1

沉淀方式对催化剂性能的影响

采用并流共沉淀、反加共沉淀和正加共沉淀3种沉淀方式制备了CuO -ZnO -Al 2O 3催化剂,不同沉淀方式对CuO -ZnO -Al 2O 3催化剂性能的影响结果见表1。

从表1中数据可以看出,在相同的反应条件下,3种沉淀方式制备的CuO -ZnO -Al 2O 3催化剂性能有明显的差异,CO 2转化率、甲醇选择性及甲醇产率由高到低排列的顺序依次为:并流沉淀>反加沉淀>正加沉淀,即采用并流沉淀法制备的催化剂性能最好,这是因为Cu 2+,Zn 2+和Al 3+的硝酸盐混合溶液与碳酸钠溶液保持在一定的速率同时加入到搅拌的沉淀槽中,可以保持在恒定的pH 值条件下进行沉淀反应,使金属离子Cu 2+,Zn 2+和Al 3+同时沉淀,形成了比较均一的混合沉淀物,从而保证了催化剂的性能达到最优。

2.2

反应温度对催化剂性能的影响

在反应压力1.0MPa ,空速2400h -1,V (H 2)/

V (CO 2)=2.6/1的条件下,研究了220℃、240℃、260℃

和280℃4个不同反应温度对CO 2转化率、甲醇选择性及甲醇产率的影响,如图2所示。

从图2中曲线变化可以看出,随着反应温度的升高,CO 2的转化率提高,但反应温度高于240℃时,CO 2转化率提高得比较缓慢;反应温度在240℃时,甲醇选择性和甲醇产率最高。从化学反应热力学方面分析,CO 2加氢合成甲醇反应是放热过程,

CO 2与H 2的水煤气变换逆反应生成CO 的过程是

吸热的,温度升高不利于甲醇的生成,而对CO 的生成有利,当反应温度高于240℃时,CO 2加氢合成甲醇的反应速度减慢,而CO 2与H 2的水煤气变换逆反应生成CO 的速度加快,因此,在240℃时甲醇的

沉淀方式并流沉淀反加沉淀正加沉淀

CO 2转化率/%

9.06.03.4

甲醇选择性/%14.111.16.8

甲醇产率/%

1.30.670.23

反应条件:T =240℃,p =1.0MPa,GHSV =2400h -1,V (H 2)/V (CO 2)=2.6/1

天然气化工2009年第34卷

选择性达到最大。反应开始时,由于CO2转化率和甲醇选择性都随着温度的升高而增加,所以,甲醇产率随着温度的升高而增大,240℃时甲醇产率最高;反应温度高于240℃时,甲醇选择性的下降趋势明显大于CO2转化率的升高趋势,而甲醇产率是CO2转化率与甲醇选择性之乘积,所以,甲醇产率降低。

2.3反应压力对催化剂性能的影响

实验中分别考察了1.0MPa、0.8MPa和0.6MPa 3个不同反应压力对催化剂性能的影响,见表2。

从表2中数据可以看出,在反应温度240℃、空速2400h-1、V(H2)/V(CO2)=2.6/1的条件下,反应压力越高,越有利于提高CO2的转化率,从而提高目的产物甲醇的选择性和产率。CO2加氢合成甲醇反应是体积减小的反应,增大反应压力,有利于反应向着体积减小的方向移动,所以,压力越大就越有利于合成甲醇反应的进行,因此应采用较高的反应压力。

2.4反应空速对催化剂性能的影响

在反应压力1.0MPa,温度240℃,V(H2)/V(CO2)= 2.6/1的条件下,研究了2000h-1、2400h-1、2800h-1和3200h-14个不同反应空速对CO2转化率、甲醇选择性及甲醇产率的影响,结果如图3所示。

从图3中曲线变化可以看出,反应空速由2000h-1增大至2400h-1时,CO2转化率、甲醇选择性及甲醇产率均增加,反应空速为2400h-1时,CO2转化率、甲醇选择性及甲醇产率达到最大值。反应空速由2400h-1增大至2800h-1,甲醇选择性显著降低,但反应空速由2800h-1增大至3200h-1,甲醇选择性缓慢提高但不显著。反应空速在2400~3200h-1之间,随着反应空速的增大,CO2转化率、甲醇产率均降低,因为在反应管装填催化剂量一定的情况下,反应空速增大,反应停留时间减小,所以,CO2转化率下降;同时,由于甲醇选择性降低,因此,甲醇产率也下降。

3结论

采用并流共沉淀法制备的CuO-ZnO-Al2O3催化剂上低压CO2加氢合成甲醇反应性能优于反加共沉淀法和正加共沉淀法。在这种催化剂作用下,反应原料气V(H2)/V(CO2)=2.6/1,反应温度240℃,反应空速2400h-1时,CO2加氢合成甲醇反应性能最优,CO2转化率9.0%,甲醇选择性14.1%,甲醇产率1.3%。

参考文献

[1]刘志坚,廖建军,谭经品,等.二氧化碳加氢合成甲醇的

CuO-ZnO催化剂制备(Ⅰ):制备方法[J].石油炼制与化工,2000,31(9):58-61.

[2]Arena F,Barbera K,Italiano G,et al.Synthesis,character-

ization and activity pattern of Cu-ZnO/ZrO2catalysts in the hydrogenation of carbon dioxide to methanol[J].J Catal, 2007,249:185-194.

[3]Sloczynski J,Grabowski R,Olszewski P,et al.Effect of

metal oxide additives on the activity and stability of Cu/ ZnO/ZrO2catalysts in the synthesis of methanol from CO2 and H2[J].Appl Catal A,2006,310:127-137.

[4]李桂英,胡常伟.Fe助剂对CuO/Al2O3催化剂上CO2+H2

合成甲醇影响的研究[J].天然气化工,2005,30(3):13-

16.

[5]阴秀丽,常杰,汪俊锋,等.Cu/Zn/Al/Mn催化剂上CO/

CO2加氢合成甲醇特性研究[J].燃料化学学报,2004, 32(4):492-497.

[6]Sun K P,Lu W W,Wang M,et al.Low-temperature syn-

thesis of DME from CO2/H2over Pd-modified CuO-ZnO-Al2O3-ZrO2/HZSM-5catalysts[J].Catal Commun,2004,5: 367-370.

表2不同反应压力对催化剂性能的影响

Table2Effect of reaction pressure on catalyst perfor-mance

压力/MPa

1.0

0.8

0.6CO2转化率/%

9.0

1.7

1.5

甲醇选择性/%

14.1

4.0

3.4

甲醇产率/%

1.3

0.07

0.05

反应条件:T=240℃,GHSV=2400h-1,V(H2)/V(CO2)=2.6/1

图3空速对CO2转化率及甲醇选择性和产率的影响Fig.3Effect of space velocity on CO2conversion and the selectivity and yield of methanol

天然气化工

2009年第34卷

[7]张建祥,赵彦巧,陈吉祥,等.二氧化碳加氢直接合成二甲醚催化剂的研究(Ⅰ):沉淀剂对催化剂结构和性能的影响[J].燃料化学学报,2003,31(5):444-448.

[8]于英民,费金华,张一平,等.功能化MCM -41固载的钌基催化剂上二氧化碳加氢合成甲酸[J].燃料化学学报,

2006,34(6):700-705.[9]

刘志坚,廖建军,谭经品,等.二氧化碳加氢合成甲醇的

CuO -ZnO 催化剂制备Ⅱ.制备规律[J].石油炼制与化工,2000,31(12):37-40.

[10]国海光,沈强,姚洪,等.沉淀方法对铜基甲醇合成催化

剂性能影响的研究[J].浙江化工,2004,35(1):18-19.

[11]郭宪吉,陈炳义,鲍改玲,等.不同制备方式的铜基甲醇

合成催化剂的性质和结构研究[J].天然气化工,2003,28

(2):9-12.

Study on the synthesis of methanol by low pressure hydrogenation of carbon dioxide over

CuO -ZnO -Al 2O 3catalyst

ZHAO Yun -peng ,JIA Li -hua ,XIN Gang ,ZHAO Bo

(College of Chemistry and Chemical Engineering,Qiqihar University,Qiqihar 161006,China)

Abstract :CuO -ZnO -Al 2O 3catalysts were prepared by co -precipitation methods,and the effects of the ways of co -precipitation on catalyst performances were studied.Parallel flow coprecipitation was found to be the best way to prepare the catalyst.The effects of reaction temperature,pressure and feed gas space velocity on the catalytic performances of the catalysts for the synthesis of methanol by carbon dioxide hydrogenation were investigated.For the feed gas with a H 2/CO 2volume ratio of 2.6,the optimum reaction parame -ters were determined as follows:temperature of 240℃,pressure of 1.0MPa,and feed gas space velocity of 2400h -1.Under the opti -mized conditions,the conversion of carbon dioxide and the selectivity to methanol were 9.0%and 14.1%,respectively.

Key words :carbon dioxide ;catalytic hydrogenation ;methanol ;co -precipitation ;CuO -ZnO -Al 2O 3catalyst

(上接第6页)

[2]

Jeong B,Bae Y H,Lee D S,et al .Biodegradable block copolymers as injectable drug -delivery systems[J].Nature,1997,388(6645):860-862.

[3]Mano J F.Structural evolution of the amorphous phase during crystallization of poly(l -lactic acid):A synchrotron wide -angle X -ray scattering study[J].J Non -Cryst Solids,2007,353(26):2567.

[4]

朱久进,王远亮,罗彦凤,等.稀土复合氧化物催化合成丙交酯的研究[J].分子催化,2003,17(6):430.

[5]Jung S M,Grange P.Characterization and reactivity of pure TiO 2-SO 42-SCR catalyst:influence of SO 42-content [J].Catal Today,2000,59(3-4),305.

[6]

Yamaguchi Y,Arimura T.Method for purification of lac -tide[P].US:5502215,1996.

Study on synthesis of D,L -lactide catalyzed by solid superacid SO 42-/CeO 2

FENG Xue -feng 1,2,JIN Wei -gen 1,2,YANG Chuo 1,2,CHEN Chang -lin 1,2

(1.Key Laboratory of Nuclear Resources and Environment (East China Institute of Technology),Ministry of Education,Nanchang 330013,China;2.College of Chemistry Biology and Materials Science,East China Institute of Technology,Fuzhou 344000,China)

Abstract:Solid superacid SO 42-/CeO 2catalysts were prepared and the effects of preparation conditions on their catalytic perfor -mances for the synthesis of D,L -lactide from lactic acid were studied.The catalyst prepared by impregnating the mesoporous CeO 2in 1mol ·L -1H 2SO 4with dodecylamine as surfactant for 24h and then calcining at 500℃for 5h showed high acid strength and good activity,and with this catalyst,the yield of D,L -lactide was up to 62.3%under the optimized reaction conditions:mass ratio of cata -lyst to lactic acid 1:100,dehydrating at 60℃~130℃for 1.5h under decreased pressure to form lactic oligomer and then decomposing the oligomer at 150℃~210℃to collect D,L -lactide for 90min.

Key words:D,L -lactide;solid superacid;lactic acid

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

10

甲醇合成催化剂生产工艺

甲醇合成催化剂生产工艺 甲醇合成催化剂分两期进行生产,甲醇合成催化剂每批生产周期(从物料加入到得到产品)为24小时,每批产品为500kg,一期年生产批数为2000批,总计为1000吨。一期甲醇合成催化剂以电解铜、电解锌、碱式碳酸铜、碱式碳酸锌、碳酸氢钠、硝酸、氧化铝、石墨为原料,经备料、反应、过滤、烘干、焙烧、成型得到产品。 (1)备料 ①化铜 先将电解铜和水加入5m3化铜罐中,再加入95%硝酸,化铜罐内设有冷却水盘管,用冷却水控制反应温度为60~70℃,铜和硝酸反应生成硝酸铜。该工序涉及反应方程式如下: 3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO↑+4H2O ②化锌 先将电解锌和水加入5m3化锌罐中,再加入95%硝酸,化锌罐内设有冷却水盘管,用冷却水控制反应温度为60~70℃,锌和硝酸反应生成硝酸锌。该工序涉及反应方程式如下: 3Zn + 8HNO3 = 3Zn(NO3)2 + 2NO↑+4H2O 将上述制备好的硝酸铜和硝酸锌溶液打入15m3混合液罐中进行混合,混合均匀后打入计量罐用作反应工序原料。 备料过程会有含氮氧化物废气产生,送二级低温水+二级尿素水溶液吸收系统处理。 (2)反应 先向12m3反应罐加入一定量水,再夹套内通入蒸汽升温至60~65℃,开启搅拌器,然后加入碳酸氢钠。保持罐内温度为60℃~65℃,将制备的硝酸铜、硝酸锌混合液经过计量后匀速加入反应罐中,硝酸铜、硝酸锌与碳酸氢钠发生反应生成碱式碳酸铜、碱式碳酸锌沉淀,碱式碳酸铜、碱式碳酸锌为难溶性物质,溶解度均小于0.01g/100g 水。该工序涉及反应方程式如下:

2Cu(NO3)2 + 4NaHCO3 = Cu2(OH)2CO3↓+4NaNO3 + H2O + 3CO2↑ 2Zn(NO3)2 + 4NaHCO3 = Zn2(OH)2CO3↓+4NaNO3 + H2O + 3CO2↑ 反应结束后,将称量好的碱式碳酸铜、碱式碳酸锌、氧化铝依次放入反应罐中,继续搅拌20~30分钟,然后静止沉降得到反应浆液。 (3)过滤 将制得反应浆液加入板框压滤机进行过滤,滤饼用水进行洗涤,洗涤水回用于反应工序补水,含有硝酸钠的滤液送硝酸钠浓缩装置进行处理,洗涤后滤饼送烘干工序。 (4)烘干 将过滤得到的滤饼放入托盘,然后送入烘干机进行烘干,烘干机内设有蒸汽盘管,烘干控制温度为120~150℃,烘干后物料送焙烧工序。 (5)焙烧 甲醇合成催化剂物料焙烧采用燃气回转炉,炉体分升温段、恒温段和冷却段三段,内部分为物料通道和燃气通道,以天然气为燃料,采用间接加热方式。 将烘干好的物料送入回转炉中进行焙烧,焙烧控制温度为400~550℃,焙烧结束后得到焙烧料送成型工序。该工序涉及反应方程式如下: Cu2(OH)2CO3 = 2CuO + H2O + CO2↑ Zn2(OH)2CO3 = 2ZnO + H2O + CO2↑ 物料焙烧过程会有含尘废气产生,由布袋除尘器回收粉尘后通过15m排气筒排放。回转炉以天然气为燃料,烟气由15m烟囱排放。 (6)成型 先将焙烧好的物料放入3m3双锥混合机,再加入10kg石墨、8kg 水,混合均匀后将物料送入ZP-25压片机中进行压片成型,成型结束后得到产品甲醇合成催化剂,包装后入库存放待售。 甲醇合成催化剂生产工艺流程简图如下:

甲醇合成铜基催化剂催化活性及失活研

甲醇合成铜基催化剂催化活性及失活研究 1引言 甲醇是一种极其重要的化工原料,主要用于生产一系列化工产品,还可用作潜在的车用醇醚燃料电池的燃料等。随着甲醇制烯烃等技术进步及下游产品的开发,特别是甲醇燃料电池的开发和应用,合成甲醇的研究越来越受到广泛重视。 目前,甲醇的工业生产主要是采用CO/CO2催化加氢技术,所以甲醇合成催化剂的研发是甲醇合成工业的基石。甲醇工业的发展很大程度上取决于催化剂的研制及其性能改进。在甲醇生产中,很多工业指标和操作条件都是由催化剂的性质决定的。随着甲醇工业的快速发展,对甲醇合成催化剂的研究开发提出了更高的要求。 2 甲醇合成催化剂 在甲醇合成过程中,催化剂的重要性显而易见,目前工业上使用的甲醇合成催化剂一般可分为锌铬催化剂和铜基催化剂两类。国外比较有名的研究和生产甲醇合成催化剂公司主要有英国ICI公司、德国BASF公司、德国SudChemie公司和丹麦TopsΦe公司等,国内研究铜基催化剂的院所主要有南化集团研究院、西南化工研究设计院,西北化工研究院及齐鲁石化研究院等[1]。 锌铬(ZnO/Cr2O3)催化剂由德国BASF公司于1923年首先开发研制成功。操作温度必须在590 K~670 K,操作压力必须为25 MPa~35MPa,锌铬催化剂的特点是:耐热性能好、对硫不敏感,机械强度高,使用寿命长,使用范围宽,操作控制容易,但是其活性低、 选择性低、产品中杂质复杂,精馏困难。 铜基催化剂由英国ICI公司和德国Lurgi公司先后研制成功,操作温度为210℃~300℃,压力为5MPa~10MPa,比传统的合成工艺温度低得多,对甲醇反应平衡有利。其特点是:活性好,单程转化率为7%~8%;选择性高,大于99%,易得到高纯度的精甲醇;耐高温性差,对合成原料气中杂质比较敏感。目前工业上甲醇的合成主要使用铜基催化剂。 近年来,新型催化剂的研制也在一直进行,新型催化剂的研制方向在于提高活性,改善热稳定性及延长催化剂使用寿命等,如钯系、钼系及低温液相催化剂,但这些催化剂因活性不理想或对甲醇的选择性较差,还只停留在研究阶段未实现工业化。对铜基催化剂的改进研究主要集中在两个方面[2],一是添加除铜锌铝以外的其他组分,另一方面是改进催化剂的制备方法和工艺。 3 铜基催化剂的催化原理

合成气制备甲醇原理与工艺

合成气制备甲醇原理与工艺 简要概述 班级:xxxxxxxxxxxxxxxxxxxxx 专业:化学工程与工艺 姓名:xxxxx 学号:201473020108 指导教师:xxxxx

一、甲醇的认识 1.物理性质 无色透明液体,易挥发,略带醇香气味;易吸收水分、CO2和H2S,与水无限互溶;溶解性能优于乙醇;不能与脂肪烃互溶,能溶解多种无机盐磺化钠、氯化钙、最简单的饱和脂肪醇。 2.化学性质 3.甲醇的用途 (1)有机化工原料 甲醇是仅次于三烯和三苯的重要基础有机化工原料 (2)有机燃料 (1)、甲醇汽油混合燃料;(2)、合成醇燃料;(3)、与异丁烯合成甲基叔丁基醚(MTBE)、高辛烷值无铅汽油添加剂;(4)、与甲基叔戊基醚(TAME)合成汽油含氧添加剂

4.甲醇的生产原料 甲醇合成的原料气成分主要是CO 、 CO2、 H2 及少量的N2 和CH4。主要有煤炭、焦炭、天然气、重油、石脑油、焦炉煤气、乙炔尾气等。 天然气是生产甲醇、合成氨的清洁原料,具有投资少、能耗低、污染小等优势,世界甲醇生产有90%以上是以天然气为原料,煤仅占 2%。 二、合成气制甲醇的原理 1.合成气的制备 a.煤与空气中的氧气在煤气化炉内制得高 CO 含量的粗煤气; b.经高温变换将 CO 变换为 H2 来实现甲醇合成时所需的氢碳比; c.经净化工序将多余的 CO2 和硫化物脱除后即是甲醇合成气。 说明: 由于煤制甲醇碳多氢少,必需从合成池的放气中回收氢来降低煤耗和能耗,回收的氢气与净化后的合成气配得生产甲醇所需的合成气, 即( H2-CO2) /( CO+CO2)=2.00~2.05。 2.反应机理 主反应 OH CH H CO 322→+ △H 298=-90.8kJ/mol CO 2 存在时 O H OH CH H CO 23222+→+ △H 298=-49.5kJ/mol 副反应 O H OCH CH H CO 233242+→+ O H CH H CO 2423+→+ O H OH H C H CO 2942384+→+ O H CO H CO 222+→+ 增大压力、低温有利于反应进行,但同时也有利于副反应进行,故通过加入催化剂,提高反应的选择性,抑制副反应的发生。 3. 影响合成气制甲醇的主要因素 (1)合成甲醇的工业催化剂

甲醇合成工艺

甲醇合成工艺 当今甲醇的生产主要采用低压法和中压法这两种,很少采用高压法,目前高压法的发展已处于停滞的状态,主要以低压法为主。用中压法和低压法这两种工艺生产出来的甲醇约占世界甲醇总产量的一半以上。 1. 低压合成工艺(5.0- 8. 0MP a) 是20世纪50年代后期发展起来的一种甲醇合成技术。低压法主要采用CuO- ZnO- Al2 O3- V2O5 催化剂,其活性较高,能耗低,反应温度最佳,一般反应温度在(240- 265)℃,在压力较低的的条件下即可获得较高的甲醇产率。并且其选择性好,减少了很多副反应的发生,降低了原料的损耗,并且提高了甲醇的质量。除此之外,由于压力要求较高,可以有效的减少动力的消耗,使工艺设备的制造更加容易。这一方法被英国ICI公司在1966 年研究使用成功,从而打断了甲醇合成高压法的垄断制度。这一制度的应用,在很大程度上提高了甲醇的产量,为日后甲醇的高产带来了合适的方法。 2. 中压合成工艺(9.8- 12. 0MP a) 随着社会的不断发展,甲醇的需求越来越大,如果继续采用低压法就要改造工艺管道,使工艺管道变得更大,设备也就变得更大,这样就浪费了空间和成本,因此在低压的基础上适当的加大压力,即发展为中压法。中压法采用的催化剂和低压法的相 同,都为C uO- ZnO- Al2O3 - V2O5催化剂,因此反应温度与低压法大致相同,由于压力的提高使动能的消耗也增加了。齐鲁石化公司第二化肥厂引进了联邦德国公司的中压甲醇合成装置。使得该公司的日产量有了很大程度的提高。 3. 高压合成工艺(30- 32 MP a) 是比较原始的一种方法,采用ZnO- C r 2O3 催化剂,其活性远不如铜系催化剂,反应温度在(350- 400)℃。随着科学技术的发展,高压法也开始逐步采用活性相对较高的铜系催化剂,以改善合成的条件。高压法虽然存在了70 多年,但由于材质苛刻,投资高,能耗物高,反应温度高,且生成的粗甲醇中杂志含量较多不易提纯,所以其发展前景不可观,目前处于停滞状态。

_甲醇合成催化剂使用效果的影响因素及对策

第31卷第3期2010年6月 化学工业与工程技术 J o ur nal o f Chemical I ndus tr y&Engineering V ol.31N o.3 Jun.,2010 收稿日期:2010-03-28 作者简介:薛守标(1970-),男,回族,江苏高邮人,本科,工程 师,现从事新材料研发工作。 E-mail:xueshoubiao@https://www.360docs.net/doc/d013474301.html, 甲醇合成催化剂使用效果的影响因素及对策 薛守标 (南化集团研究院,江苏南京 210048) 摘要:介绍了甲醇合成催化剂的制造及使用过程,探讨了催化剂的失活方式及其机理,提出防止或 消除这些因素、延长甲醇合成催化剂寿命的方法。 关键词:甲醇合成;催化剂;使用;对策 中图分类号:T Q426 文献标识码:A 文章编号:1006-7906(2010)03-0050-05 Affecting factors and countermeasures of the application effect of methanol synthesis catalyst XU E S houb iao (Research Institute o f Na njing Chemical Industrial G ro up,N anjing210048,China) A bstract:T he manufacture and a pplica tion pr ocess of methano l synthesis catalyst are presented,and the deactiva tion ma n-ner s and mechanisms are discussed.T he co untermeasures fo r preventing o r removing the affecting f ac to rs and pro lo ng ing the li-fetime of methano l synthesis ca taly st a re put fo rw ard. Key words:M etha no l synthesis;Cataly st;A pplicatio n;Co unter measure s 自20世纪60年代英国ICI公司成功推出合成 甲醇的铜基催化剂以来,甲醇工业得到迅速发展。 目前,全世界75%以上的甲醇合成采用中低压法, 普遍采用英国ICI工艺和德国Lurgi工艺[1]。近年 来,国内低压合成甲醇催化剂的研究和制造水平取 得巨大进步,但综合性能特别是核心指标催化剂的 3.4 分离单元的定期作业 压力离心机/压力过滤机是分离PT酸的关键设备,因此需对压力离心机的母液管定期碱洗,将压力离心机/压力过滤机定期切出隔离碱泡,以清除在母液管或设备内件上产生的闪蒸积料,从而保证产品中PT酸的含量正常。 实际生产中还发现,同样工况下,压力过滤机去除PT酸的效果也明显优于压力离心机,见表4。 表4 离心机与压力过滤机的分离效果 项目3台离心机4台离心机压力过滤机PT酸/(mg·kg-1)135121115 4 结 语 通过对氧化TA料品质的控制,精制单元可根据产品质量及平均粒径的趋势,及时进行TA料的掺混、氢分压的调整、定期作业等有效手段,使全年因PT酸含量超标返料加工的一次不合格率降至0.01%。 主要措施有:(1)生产过程中,若过程控制异常,工艺人员应及时将产品切至中间疑似料仓,以免污染合格料仓,待加样分析合格后再送往大料仓;(2)产品质量跟踪过程中,若产品PT酸超过内控指标,工艺人员需加样分析,以确保过程控制中产品质量合格。 参考文献: [1] 张卓绝,王振新,徐欣荣.P T A产品中P T酸的控制 [J].聚酯工业,2002,15,(3):30-34. [2] 徐根东.影响P T A产品中P T酸含量的因素分析[J]. 合成技术及应用,2006,21,(2):52-54. [3] 孙静珉.聚脂工艺[M].北京:化学工业出版社,1985.

甲醇合成的工艺方法介绍

甲醇合成的工艺方法介绍 自1923年开始工业化生产以来,甲醇合成的原料路线经历了很大变化。20世纪50年代以前多以煤和焦碳为原料;50年代以后,以天然气为原料的甲醇生产流程被广泛应用;进入60 年代以来,以重油为原料的甲醇装置有所发展。对于我国,从资源背景来看,煤炭储量远大于石油、天然气储量,随着世界石油资源的紧缺、油价的上涨和我国大力发展煤炭洁净利用技术的背景下,在很长一段时间内煤是我国甲醇生产最重要的原料。下面简要介绍一下甲醇生产的各种方法。按生产原料不同可将甲醇合成方法分为合成气(CO+H2方法和其他原料方法。 一、合成气(CO+H2生产甲醇的方法 以一氧化碳和氢气为原料合成甲醇工艺过程有多种。其发展的历程与新催化剂的应用,以及净化技术的进展是分不开的。甲醇合成是可逆的强放热反应,受热力学和动力学控制,通常在单程反应器中,CO和CO2的单程转化率达不到100%,反应器出口气体中,甲醇含量仅为6~12%,未反应的CO、CO2和H2需与甲醇分离,然后被压缩到反应器中进入一步合成。为了保证反应器出口气体中有较高的甲醇含量,一般采用较高的反应压力。根据采用的压力不同可分为高压法、中压法和低压法三种方法。 1、高压法 即用一氧化碳和氢在高温(340~420℃高压(30.0~50.0MPa下使用锌-铬氧化物作催化剂合成甲醇。用此法生产甲醇已有八十多年的历史,这是八十年代以前世界各国生产甲醇的主要方法。但高压法生产压力过高、动力消耗大,设备复杂、产品质量较差。其工艺流程如图所示。 经压缩后的合成气在活性炭吸附器1中脱除五羰基碳后,同循环气一起送入管式反应器2中,在温度为350℃和压力为30.4MPa下,一氧化碳和氢气通过催化剂层反应生成粗甲醇。含粗甲醇的气体经冷却器冷却后,迅速送入粗甲醇分离器3中分离,未反应的一氧化碳与氢经压缩机压缩循环回管式反应器2。冷凝后的粗甲醇经粗

甲醇合成催化剂知识

甲醇合成催化剂知识 d i4 X+ }1 z! j0 v1 铜基催化剂的催化原理 + W7 b1 C1 Y9 W4 M1 h) o9 F0 t8 j* c: D q, |6 O 目前,低压甲醇合成铜基催化剂主要组分是 CuO、ZnO和Al2O3,三组分在催化剂中的比例随着生产厂家的不同而不同。一般来说, CuO的质量分数在40% ~80%, ZnO的质量分数在10% ~30%, Al2O3的质量分数在5% ~10%。铜基催化剂在合成甲醇时, CuO、ZnO、Al2O3三组分的作用各不相同。CO和H2在催化剂上的吸附性质与催化剂的活性有非常密切的关系。在铜基催化剂表面对CO的吸附速率很高,而H2的吸附则比CO 慢得多。ZnO是很好的氢化剂,可使H2被吸附和活化, 但对CO几乎没有化学吸附,因此可提高铜基催化剂的转化率。纯铜对甲醇合成是没有活性的,H2和CO合成甲醇的反应是在一系列活性中心上进行的,而这种活性中心存在于被还原的Cu-CuO界面上。在催化剂中加入少量 Al2O3的首要功能就是阻止一部分氧化铜还原。当催化剂被还原后,开始进行反应时,合成气中的H2 和CO都是还原剂,有使氧化铜进一步还原的趋势。 这种过度的还原,使得活性中心存在的界面越来越小,催化剂活性也越来越低。从合成的整个过程来看,随着还原表面向催化剂的内层深入,未还原的核心越来越小,作为被还原的Cu-CuO界面的核心表面积也越来越小,催化剂的活性降低,合成反应速率随之降

低。研究认为,Al2O3在催化剂中作为结构助剂起阻碍铜颗粒烧结的作用, CuO/ZnO/Al2O3催化剂的活性远高于双功能催化剂 CuO/ZnO的活性。q7 h- G8 n9 ]$ B5 m- Q: ?& ]/ D2 铜基催化剂助剂6 j8 } x5 L! ?0 V1 l1 K4 H$ Q! m% g\5 K8 e) C+ g5 A) E! ~ 铜基催化剂助剂的研究是甲醇合成催化剂研究的一个重要课题。铜基催化剂耐热强度较低,使用时间过长或操作温度过高都会造成铜的晶体长大使催化剂失去活性。其热稳定性差,很容易发生硫、氯中毒,使用寿命短等缺点,一般通过加入其他助剂得以改善,由此形成具有工业价值的新一代铜基催化剂。 $ P3 d }9 z x* |/ t2 bf, Z6 f) K& R2 y( U q: b1 B) t3 @ 锌就是铜基催化剂的最好助剂,很少量的锌就能使铜基催化剂的活性提高。加入Al2O3,可以使催化剂铜晶体尺寸减小,活性提高。若在CuO ZnO/Al2O3催化剂中再加入Cr,则会表现出良好的助催化作用。在催化剂组成中增添硼、铬、锰、钒及稀土元素等,对合成甲醇具有显著的促进作用。据报道,在铜基催化剂的基础上添加钒、锆等,可以提高合成甲醇的催化活性及催化剂的耐热性能。、 k* {7 a% M V3 铜基催化剂的失活 % v+ F, O2 ~ R8 Q8 催化剂的烧结和热失活是指由高温引起的催化剂结构和性能的变化。高温除了引起催化剂的烧结外,还会引起催化剂化学组成和相组成的变化5 a8 _5 K4 r#

合成气生产甲醇工艺流程

编号:No.20 课题:合成气生产甲醇工艺流程 授课内容:合成气制甲醇工艺流程 知识目标: ? 了解合成气制甲醇过程对原料的要求 ?掌握合成气制甲醇原则工艺流程 能力目标: ?分析和判断合成气组成对反应过程及产品的影响 ?对比高压法与低压法制甲醇的优缺点 思考与练习: ?合成气制甲醇工艺流程有哪些部分构成? ?对比高压法与低压法制甲醇的优缺点 ?合成气生产甲醇对原料有哪些要求?如何满足?

授课班级: 授课时间: 四、生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个 工序,见图5-1。 图5-1 甲醇生产流程图 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石 油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(出—CO2)/(CO+CO2)=2.1 左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其 含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有 少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则 在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 净化有两个方面: 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即 使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法 一般有湿法和干法两种。脱硫工序在整个制甲醇工艺流程中的位置,要根据原料气的制备方 法而定。如以管式炉蒸汽转化的方法,因硫对转化用镍催化剂也有严重的毒害作用,脱硫工

甲醇合成催化剂分类

甲醇合成催化剂分类 (1)锌铬催化剂 锌铬(ZnO/Cr2O3)催化剂是一种高压固体催化剂,由德国BASF公 司于1923年首先开发研制成功。锌铬催化剂的活性较低,为了获得较高的催化活性,操作温度必须在590 K-670 K。为了获取较高的转化率,操作压力必须为25 MPa-35 MPa,因此被称为高压催化剂。锌铬 催化剂的特点是: a)耐热性能好,能忍受温差在100℃以上的过热过程; b)对硫不敏感; c)机械强度高; d)使用寿命长,使用范围宽,操 作控制容易; d)与铜基催化剂相比较, 其活性低、选择性低、精馏困难(产品中杂质复杂)。由于在这类催化剂中Cr2O3的质量分数高达10%, 故成为铬的重要污染源之一。铬对人体是有毒的, 目前该类催化剂已逐步被淘汰[1]。 (2)铜基催化剂 铜基催化剂是一种低温低压甲醇合成催化剂, 其主要组分为 CuO/ZnO/Al2O3(Cu-Zn-Al),由英国 ICI公司和德国Lurgi公司先后研制成功。低(中) 压法铜基催化剂的操作温度为210℃-300℃,压力 为5MPa-10MPa,比传统的合成工艺温度低得多,对甲醇反应平衡有利。其特点是: a)活性好,单程转化率为7% -8%; b)选择性高,大于99%,其杂质只有微量的甲烷、二甲醚、甲酸甲酯,易得到高纯度的精 甲醇; c)耐高温性差,对硫敏感。目前工业上甲醇的合成主要使用铜 基催化剂。

(3)钯系催化剂 由于铜基催化剂的选择性可达99%以上,所以新型催化剂的研制方向在于进一步提高催化剂的活性、改善催化剂的热稳定性以及延长催化剂的使用寿命。新型催化剂的研究大都基于过渡金属、贵重金属等,但与传统(或常规)催化剂相比较,其活性并不理想。例如,以贵重金属钯为主催化组分的催化剂,其活性提高幅度不大,有些催化剂的 选择性反而降低。 (4)钼系催化剂 铜基催化剂是甲醇合成工业中的重要催化剂, 但是由于原料气中存在少量的H2S、CS2、Cl2等,极易导致催化剂中毒,因此耐硫催化剂的研制越来越引起人们的兴趣。天津大学Zhang Jiyan研制出MoS2/K2CO3/MgO-SiO2含硫甲醇合成催化剂,温度为533K,压力为8.1MPa,空速3000 h-1,φ(H2)∶φ(CO)=1.42,含硫质量浓度为1350 mg/L,CO的转化率为36.1%,甲醇的选择性为53.2%。该催化剂虽然单程转化率较高,但选择性只有50%,副产物后处理复杂,距工业化应用还有较大差距。

铜基甲醇催化剂失活因素及解决措施研究进展

2019年第44卷天然气化工—C1化学与化工 甲醇合成反应是一类非常重要的反应,因为甲醇不仅是一种能源载体,更重要的是,甲醇通过MTG、MTO、MTH等过程[1鄄3]转化为高附加值产品越来越受到研究者们的关注。自1923年德国BASF公司第一次实现甲醇工业化以来,用于合成甲醇的催化剂主要分为两类,一类是铜基催化剂,另一类是贵金属催化剂[4,5]。由于贵金属催化剂费用高、污染大等问题,目前甲醇合成反应中使用最普遍的是铜基催化剂。 自从铜基催化剂应用在甲醇合成以来就得到大家的广泛关注,这是由于其较高的活性和选择性。但不幸的是,如果催化剂没有非常好的稳定性,那么其工业应用就会受到很大的阻碍,因此铜基催化剂的稳定性是目前研究的热点。据有关文献报道[6,7],铜基催化剂起始活性的的三分之一在前1000h内会丢失。因此,为了提高催化剂的稳定性,理解催化剂的失活原因是非常必要的。本文对铜基甲醇合成催化剂的失活原因及其提高稳定性的措施进行了综述。 1甲醇合成铜基催化剂失活研究 1.1烧结失活 据文献[8]报道,烧结是催化剂失活的主要原因之一。烧结对催化剂有着非常不利的影响,它能够导致催化剂结构和性能上的变化。首先,烧结会导致可利用的有效活性金属比表面减少,其次,烧结也会导致反应中一些特定的活性位消失,因为较小的粒子包含更多的活性位[9]。目前,据文献报道催化剂的烧结失活机制主要被分为两大类,一种是迁移与团聚,它涉及到两个粒子之间的相互迁移而后长大成一个粒子,另一种是Ostwald熟化,它涉及到较大的粒子将会越来越大,而较小的粒子将会在原位置消失[10,11]。甲醇反应过程中经常伴随着铜粒子烧结现象的发生,这会导致催化剂快速的失活,当然这种烧结现象也被很多研究者观察到。 在早期,有研究者总结了金属的热稳定性,发现金属铜的热稳定性仅仅高于金属银,因此相比于其他类型催化剂,铜基催化剂更容易烧结长大[12]。Sun等[13]专门研究了甲醇合成中Cu/ZnO/Al2O3催化剂的失活,发现在不同转化率下,催化剂的失活程度是和反应气中CO浓度相关,尤其在CO/H2条件下催化剂失活尤为严重,并且活性的丢失是与Cu 表面积丢失成正相关,这表明铜粒子烧结是失活的主要原因。Zhai等[14]研究了浆态床中铜基甲醇合成催化剂的失活行为,选择商业铜基催化剂作为研究对象,为了得到反应后不同程度失活催化剂样品,在同一反应条件下进行不同时长的评价反应。通过XRD、TEM、SEM鄄EDS等表征对反应前后催化剂进行表征,结果发现在反应过程中催化剂的组成没有明显的变化,而铜粒子随着反应时间的加长,烧结程度越来越严重,催化剂活性也越来越低,这表明烧结是催化剂失活的主要原因。此外,Twigg等[12]对铜基催化剂在不同反应中失活行为进行了比较,它 铜基甲醇催化剂失活因素及解决措施研究进展 喻健,任所才,刘斌,陈阔,班红艳,李聪明,李忠(太原理工大学煤化工研究所,煤科学与技术教育部和山西省重点实验室,山西太原030024) 摘要:铜基催化剂是甲醇合成反应中最为普遍使用的催化剂。介绍了铜基催化剂失活原因,包括烧结失活、中毒失活等,结果发现烧结是铜基催化剂失活的主要原因,这是由于催化剂的烧结容易诱导活性中心铜粒子团聚长大而导致有效活性位急剧减少,从而导致催化剂稳定性急剧下降。此外,还介绍了提高催化剂稳定性目前提出的主要解决办法,主要包括加入助剂、形成合金、优化金属与载体之间相互作用、最大化粒子间距离、限域作用等。 关键词:铜基催化剂;甲醇合成;失活;解决方法 中图分类号:O643.3;TQ426;TQ223.121文献标志码:A文章编号:1001鄄9219(2019)01鄄118鄄05 收稿日期:2018鄄04鄄07;基金项目:国家自然科学基金资助项 目(21676176);山西省自然科学基金项目(201601D011016); 大连化物所催化基础国家重点实验室开放基金(N鄄15鄄05); 作者简介:喻健(1989鄄),男,硕士生,Email:153990014@163. com;*通讯作者:李聪明(1974鄄),男,教授,硕导,电话0351鄄 6018526,Email:licongming0523@https://www.360docs.net/doc/d013474301.html,。 118

甲醇合成工段

甲醇合成工段 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇。1. 工艺路线:典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序。 煤与焦炭是制造甲醇粗原料气的主要固体燃料。用煤和焦炭制甲醇的工艺路线包括燃料的气化、气体的脱硫、变换、脱碳及甲醇合成与精制。用蒸汽与氧气(或空气、富氧空气)对煤、焦炭进行热加工称为固体燃料气化,气化所得可燃性气体通称煤气是制造甲醇的初始原料气,气化的主要设备是煤气发生炉,按煤在炉中的运动方式,气化方法可分为固定床气化法、流化床气化法和气流床气化法。国内用煤与焦炭制甲醇的煤气化——般都沿用固定床间歇气化法,煤气炉沿用UCJ炉。在国外对于煤的气化,目前已工业化的煤气化炉有柯柏斯-托切克(Koppers-Totzek)、鲁奇(Lurge)及温克勒(Winkler)三种。还有第二、第三代煤气化炉的炉型主要有德士古(Texaco)及谢尔-柯柏斯(Shell-Koppers)等。用煤和焦炭制得的粗原料气组分中氢碳比太低,故在气体脱硫后要经过变换工序。使过量的一氧化碳变换为氢气和二氧化碳,再经脱碳工序将过量的二氧化碳除去。原料气经过压缩、甲醇合成与精馏精制后制得甲醇。 甲醇生产中所使用的多种催化剂,如天然气与石脑油蒸气转化催化剂、甲醇合成催化剂都易受硫化物毒害而失去活性,必须将硫化物除净。气体脱硫方法可分为两类,一类是干法脱硫,一类是湿法脱硫。干法脱硫设备简单,但由于反应速率较慢,设备比较庞大。湿法脱硫可分为物理吸收法、化学吸收法与直接氧化法三类。 粗甲醇中存在水分、高级醇、醚、酮等杂质,需要精制。精制过程包括精馏与化学处理。化学处理主要用碱破坏在精馏过程中难以分离的杂质,并调节pH。精馏主要是除去易挥发组分,如二甲醚、以及难以挥发的组分,如乙醇高级醇、水等。

合成甲醇催化剂的研究进展

化学反应工程论文合成甲醇催化剂的研究进展

摘要:了解甲醇工业的发展现状及前景。从催化剂组成、种类、各组分功能及失活方式对甲醇催化剂进行探究,同时探索甲醇合成的新方法和新工艺,并对甲醇合成催化剂的动力学研究进行总结。 关键词:甲醇合成、催化剂种类、失活、三相床、生物质秸秆、动力学 1.1甲醇工业发展现状 能源问题已经成为制约我国国民经济发展的战略问题。从国家安全角度看,能源资源的稳定供应始终是一个国家特别是依赖进口的国家关注的重点,是国家安全的核心内容。随着中国工业化、城市化进程的加快以及居民消费结构的升级,石油、天然气等清洁高效能源在未来中国能源消费结构中将会占据越来越重要的地位。目前中国石油消费严重依赖进口,石油资源已经和国家安全紧密联系起来,并成为中国能源安全战略的核心o 在我国能源探明储量中,煤炭占94%,石油占5.4%,天然气占0.6%,这种“富煤贫油少气”的能源结构特点,决定了我国能源生产与消费以煤为主的格局将长期占主导地位。国民经济的持续发展,对能源产品尤其是清洁能源的需求持续增长。结合我国以煤为主的能源结构现状,大力发展煤基能源化工成为我国解决能源问题的主要途径。以煤气化为核心的多联产系统则是针对我国面临的能源需求增长、液体燃料短缺、环境污染严重等一系列问题,提出的一条解决我国能源领域可持续发展的重要途径煤经气化后成为合成气,净化以后可用于生产化工原料、液体燃料(合成油、甲醇、二甲醚)和电力。多联产系统所生产的液体燃料,尤其是甲醇和二甲醚可作为煤基车用替代燃料,可以部分缓解我国石油的短缺。同时,甲醇还可以用来生产烯烃和丙烯,以煤化工产品“替代”一部分传统的石油化工产品,对减少石油的消耗量具有重要意义。 甲醇是一种重要的化工原料,又是一种潜在的车用燃料和燃料电池的燃料,因此合成甲醇的研究和探索在国际上一直受到重视。特别是近年来,随着能源危机的出现、C1化学的兴起,作为C1化学重要物质的甲醇,它的应用得到不断的开发,用量猛增,甲醇工业得到了迅猛发展,在世界基础有机化工原料中,甲醇用量仅次于乙烯、丙烯和苯,居第四位。 1.2甲醇发展前景

合成甲醇催化剂研究进展

化学反应工程论文 合成甲醇催化剂的研究进展 摘要:了解甲醇工业的发展现状及前景。从催化剂组成、种类、各组分功能及失活方式对甲醇催化剂进行探究,同时探索甲醇合成的新方法和新工艺,并对甲醇合成催化剂的动力学研究进行总结。 关键词:甲醇合成、催化剂种类、失活、三相床、生物质秸秆、动力学 1.1甲醇工业发展现状 能源问题已经成为制约我国国民经济发展的战略问题。从国家安全角度看,能源资源的稳定供应始终是一个国家特别是依赖进口的国家关注的重点,是国家安全的核心内容。随着中国工业化、城市化进程的加快以及居民消费结构的升级,石油、天然气等清洁高效能源在未来中国能源消费结构中将会占据越来越重要的地位。目前中国石油消费严重依赖进口,石油资源已经和国家安全紧密联系起来,并成为中国能源安全战略的核心o 在我国能源探明储量中,煤炭占94%,石油占5.4%,天然气占0.6%,这种“富煤贫油少气”的能源结构特点,决定了我国能源生产与消费以煤为主的格局将长期占主导地位。国民经济的持续发展,对能源产品尤其是清洁能源的需求持续增长。结合我国以煤为主的能源结构现状,大力发展煤基能源化工成为我国解决能源问题的主要途径。以煤气化为核心的多联产系统则是针对我国面临的能源需求增长、液体燃料短缺、环境污染严重等一系列问题,提出的一条解决我国能源领域可持续发展的重要途径煤经气化后成为合成气,净化以后可用于生产化工原料、液体燃料(合成油、甲醇、二甲醚)和电力。多联产系统所生产的液体燃料,尤其是甲醇和二甲醚可作为煤基车用替代燃料,可以部分缓解我国石油的短缺。同时,甲醇还可以用来生产烯烃和丙烯,以煤化工产品“替代”一部分传统的石油化工产品,对减少石油的消耗量具有重要意义。 甲醇是一种重要的化工原料,又是一种潜在的车用燃料和燃料电池的燃料,因此合成甲醇的研究和探索在国际上一直受到重视。特别是近年来,随着能源危机的出现、C1化学的兴起,作为C1化学重要物质的甲醇,它的应用得到不断的开发,用量猛增,甲醇工业得到了迅猛发展,在世界基础有机化工原料中,甲醇用量仅次于乙烯、丙烯和苯,居第四位。 1.2甲醇发展前景 甲醇作为一种基础化工原料,在化工、医药、轻纺等领域有着广泛的用途。主要用于制造甲醛、氯甲烷、醋酸、甲胺、甲基丙烯酸甲酯、甲酸甲酯(MF)、二甲醚(DME)、碳酸二甲酯(DMC)、对苯二甲酸二甲酯(DMT)、甲基叔丁基醚(MTBE)等一系列有机化工产品。随着甲醇深加工产品的不断增加和化学应用领域的不断开拓,甲醇在许多领域有着广阔的应用前景:

甲醇合成催化剂反应机理及应用1

甲醇合成催化剂的反应机理及应用 新疆广汇新能源有限公司新疆哈密839000 杨林君 摘要:本文介绍了甲醇合成反应的机理,合成催化剂的制备;对XNC-98催化剂的使用情况做了介绍。 关键词:甲醇合成催化剂 甲醇是重要的有机化工原料,碳一化学的母体,广泛用于生产塑料、纤维、橡胶、染料、香料、医药和农药等,还是重要的有机溶剂。甲醇在发达国家其产量仅次于乙烯、丙烯和苯,居第四位。甲醇用作汽车发动机燃料,所谓甲醇汽油,今后随着石油不断开采资源日渐减少,直至枯竭,特别在我国少油多煤的资源下,甲醇用作汽车燃料将达亿吨/年以上,跃升化工产品的首位。研究开发应用推广近代甲醇合成工艺与合成塔技术和建设大型化生产装置,成为我国甲醇工业大发展的必由之路[1]。 随着甲醇工业的发展,以低压法铜基催化剂为代表的甲醇合成技术得到了很大的发展。国内近年来在合成催化剂的反应机理、性能及应用等方面研究不断深入,开发出具有世界先进水平的合成催化剂。 一甲醇合成反应的机理 甲醇合成反应机理与活性中心的研究一直是甲醇合成反应过程的研究重点,其对高效催化剂的开发、实验现象本质特征的解释和反应结果的预测都具有重要意义。一个合理的甲醇合成反应历程能够为反应条件的优化以及催化剂制备过程等催化体系的改进提供理论依据,为工业化生产提供理论支撑。按合成甲醇直接碳源的不同,将机理划分为以下3种:CO与CO2共同作为直接碳源机理、CO作为直接碳源机理以及CO2作为直接碳源机理[2]。 1.1 CO直接作为碳源机理 长期已来,在铜基催化剂上加氢合成甲醇的碳源问题都是研究者争论的焦点问题。Herman 等研究了CO/H2体系在Cu/ZnO/Al2O3催化剂上的反应,认为反应的活性中心是Cu+,H2的解离吸附发生在ZnO上,并提出以下反应机理: CO+*(Cu2O)→CO*(Cu2O) H2+2*(ZnO)→2H*(ZnO) CO*(Cu2O)+H*(ZnO)→HCO*(Cu2O)+*(ZnO) H*(ZnO)+HCO*(Cu2O)→CH2O*(Cu2O)+*(ZnO) 2H*(ZnO)+CH2O*(Cu2O)→CH3OH*(Cu2O)+2*(ZnO) CH3OH*(Cu2O)→CH3OH+*(Cu2O) 式中:*指催化剂的活性吸附位。 1.2 CO2直接作为碳源机理 Graeme等[3]研究了Cu/ZnO/SiO2催化剂上CO2加氢合成甲醇反应机理,认为CO2在反应中首先与吸附在Cu上的表面氧负离子反应生成碳酸根离子,碳酸根离子再通过加氢脱氧反应生成甲酸盐,其中甲酸盐加氢生成甲氧基的反应为反应的控速步骤。反应机理见图1:

甲醇合成原理方法与工艺

甲醇合成原理方法与工艺 图1煤制甲醇流程示意图 煤气经过脱硫、变换,酸性气体脱除等工序后,原料气中的硫化物含量小于0.1mg/m3。进入合成气压缩机,经压缩后的工艺气体进入合成塔,在催化剂作用下合成粗甲醇,并利用其反应热副产3.9MPa中压蒸汽,降温减压后饱和蒸汽送入低压蒸汽管网,同时将粗甲醇送至精馏系统。 一、甲醇合成反应机理 自CO加氢合成甲醇工业化以来,有关合成反应机理一直在不断探索和研究之中。早期认为合成甲醇是通过CO在催化剂表面吸附生成中间产物而合成的,即CO是合成甲醇的原料。但20世纪70年代以后,通过同位素示踪研究,证实合成甲醇中的原子来源于CO2,所以认为CO2是合成甲醇的起始原料。为此,分别提出了CO和CO2合成甲醇的机理反应。但时至今日,有关合成机理尚无定论,有待进一步研究。 为了阐明甲醇合成反应的模式,1987年朱炳辰等对我国C301型铜基催化剂,分别对仅含有CO或CO2或同时含有CO和CO2三种原料气进行了甲醇合成动力学实验测定,三种情况下均可生成甲

醇,试验说明:在一定条件下,CO和CO2均可在铜基催化剂表面加氢生成甲醇。因此基于化学吸附的CO连续加氢而生成甲醇的反应机理被人们普遍接受。 对甲醇合成而言,无论是锌铬催化剂还是铜基催化剂,其多相(非匀相)催化过程均按下列过程进行: ①扩散——气体自气相扩散到气体一催化剂界面; ②吸附——各种气体组分在催化剂活性表面上进行化学吸附; ③表面吸附——化学吸附的气体,按照不同的动力学假说进行反应形成产物; ④解析——反应产物的脱附; ⑤扩散——反应产物自气体一催化剂界面扩散到气相中去。 甲醇合成反应的速率,是上述五个过程中的每一个过程进行速率的总和,但全过程的速率取决于最慢步骤的完成速率。研究证实,过程①与⑤进行得非常迅速,过程②与④的进行速率较快,而过程③分子在催化剂活性界面的反应速率最慢,因此,整个反应过程的速率取决于表面反应的进行速率。 提高压力、升高温度均可使甲醇合成反应速率加快,但从热力学角度分析,由于CO、C02和H2合成甲醇的反应是强放热的体积 缩小反应,提高压力、降低温度有利于化学平衡向生成甲醇的方向移动,同时也有利于抑制副反应的进行。 二、甲醇合成的主要反应 (1)甲醇合成主要反应 CH3OH CO+2H CO2CH3OH+H2O 同时CO2和H2发生逆变换反应 CO 2CO+H2O

甲醇合成催化剂还原方案

合成塔催化剂还原及合成塔导气方案 编写: 校核: 审核: 审定: 批准: 合成车间 二○○一年七月十日

合成塔催化剂还原及合成塔导气方案 1 概述 铜基催化剂必须经过还原后才具有活性。还原反应是一个强放热反应,反应式如下所示: CuO + H 2 ==== Cu + H 2 O + 86.7KJ/mol 因此,在还原过程中应特别注意控制催化剂床层温度,防止催化剂过热发 生铜晶粒烧结而损害催化剂活性。还原操作是开车过程中很重要的一个操作环节。每炉催化剂活性的高低,除与催化剂自身的生产质量和装填质量有关外,很大程度上还取决于催化剂还原质量的好坏,它将对装置的生产能力产生长远的影响。因此,必须严格、细致、认真地按此方案进行还原操作。 催化剂在还原过程中出水量约为催化剂重量的18×10-2~20×10-2,其中物理水3×10-2~5×10-2,化学水13×10-2~15×10-2。 2 编写依据 2.2《甲醇合成操作规程》指导说明书 2.4甲醇合成和合成气压缩机最终PID 3 还原前的准备工作 3.1催化剂装填完毕后,应用清洁的空气(或氮气)将催化剂粉末从合成塔中吹除干净。 3.2公用工程准备就绪。 3.3循环气压缩机、合成气压缩机均已调试合格,并且氮气状况下运行正常。 3.4合成系统气密性试验合格。 3.5合成系统的电器、仪器、仪表已调试合格,仪表已校准(合成塔进出口温度、压力及合成回路中各流量显示仪表必须严格校准)。 3.6合成塔配氢管道已接好,外卖的氫气瓶已运至现场,具备稳定提供还原气H 2 的条件。 3.7化验室分析工作准备就绪。选择好分析取样点,确保能及时、准确地分 析合成塔进出口的H 2 浓度。

甲醇工艺流程

甲醇的工艺流程 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇.典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序. 天然气、石脑油、重油、煤及其加工产品(焦炭、焦炉煤气)、乙炔尾气等均可作为生产甲醇合成气的原料.天然气与石脑油的蒸气转化需在结构复杂造价很高的转化炉中进行.转化炉设置有辐射室与对流室,在高温,催化剂存在下进行烃类蒸气转化反应.重油部分氧化需在高温气化炉中进行.以固体燃料为原料时,可用间歇气化或连续气化制水煤气.间歇气化法以空气、蒸汽为气化剂,将吹风、制气阶段分开进行,连续气化以氧气、蒸汽为气化剂,过程连续进行. 甲醇生产中所使用的多种催化剂,如天然气与石脑油蒸气转化催化剂、甲醇合成催化剂都易受硫化物毒害而失去活性,必须将硫化物除净.气体脱硫方法可分为两类,一类是干法脱硫,一类是湿法脱硫.干法脱硫设备简单,但由于反应速率较慢,设备比较庞大.湿法脱硫可分为物理吸收法、化学吸收法与直接氧化法三类. 甲醇的合成是在高温、高压、催化剂存在下进行的,是典型的复合气-固相催化反应过程.随着甲醇合成催化剂技术的不断发展,目前总的趋势是由高压向低、中压发展. 粗甲醇中存在水分、高级醇、醚、酮等杂质,需要精制.精制过程包括精馏与化学处理.化学处理主要用碱破坏在精馏过程中难以分离

的杂质,并调节PH.精馏主要是除去易挥发组分,如二甲醚、以及难以挥发的组分,如乙醇高级醇、水等. 甲醇生产的总流程长,工艺复杂,根据不同原料与不同的净化方法可以演变为多种生产流程. 下面简述高压法、中压法、低压法三种方法及区别 高压法 高压工艺流程一般指的是使用锌铬催化剂,在 300—400℃,30MPa高温高压下合成甲醇的过程.自从1923年第一次用这种方法合成甲醇成功后,差不多有50年的时间,世界上合成甲醇生产都沿用这种方法,仅在设计上有某些细节不同,例如甲醇合成塔内移热的方法有冷管型连续换热式和冷激型多段换热式两大类,反应气体流动的方式有轴向和径向或者二者兼有的混合型式,有副产蒸汽和不副产蒸汽的流程等.近几年来,我国开发了25-27MPa压力下在铜基催化剂上合成甲醇的技术,出口气体中甲醇含量4%左右,反应温度230-290℃. 中压法 中压法是在低压法研究基础上进一步发展起来的,由于低压法操作压力低,导致设备体积相当庞大,不利于甲醇生产的大型化.因此发展了压力为10MPa左右的甲醇合成中压法.它能更有效地降低建厂费用和甲醇生产成本.例如ICI公司研究成功了51-2型铜基催化剂,

相关文档
最新文档