焊接接头与铁碳相图状态图

焊接接头与铁碳相图状态图

焊接接头与铁碳相图状态图

铁碳合金相图分析及应用

第五章铁碳合金相图及应用 [重点掌握] 1、铁碳合金的基本组织;铁素体、奥氏体、渗碳体、珠光体、菜氏体的结构和性能特点及显微组织形貌; 2、根据相图,分析各种典型成份的铁碳合金的结晶过程; 3、铁碳合金的成份、组织与性能之间的关系。 铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。 铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图,相图中的组元只有Fe和Fe3C。 第一节铁碳合金基本相 一、铁素体 1.δ相高温铁素体:C固溶到δ-Fe中,形成δ相。 2.α相铁素体(用F表示):C固溶到α-Fe中,形成α相。 F强度、硬度低、塑性好(室温:C%=0.0008%,727度:C%=0.0218%)二、奥氏体 γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形 三、渗碳体

Fe3C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物, 渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。 渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。 第二节 Fe-Fe3C相图分析 一、相图中的点、线、面 1.三条水平线和三个重要点 (1)包晶转变线HJB,J为包晶点。1495摄氏度,C%=0.09-0.53% L+δ→A (2)共晶转变线ECF, C点为共晶点。冷却到1148℃时, C点成分的L发生共晶反应:L→A(2.11%C)+Fe3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe3C三相共存。 共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号 Le表示。 (3)共析转变线PSK,S点为共析点。合金(在平衡结晶过程中冷)却到727℃时, S点成分的A发生共析反应:

铁碳合金相图 习题

铁碳合金相图 一、选择题 1. 铁素体是碳溶解在()中所形成的间隙固溶体。 A.α-Fe B.γ-Fe C.δ-Fe D.β-Fe 2.奥氏体是碳溶解在()中所形成的间隙固溶体。 A.α-Fe B.γ-Fe C.δ-Fe D.β-Fe 3.渗碳体是一种()。 A.稳定化合物 B.不稳定化合物 C.介稳定化合物 D.易转变化合物4.在Fe-Fe3C相图中,钢与铁的分界点的含碳量为()。 A.2% B.2.06% C.2.11% D.2.2% 5.莱氏体是一种()。 A.固溶体B.金属化合物 C.机械混合物 D.单相组织金属 6.在Fe-Fe3C相图中,ES线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 7.在Fe-Fe3C相图中,GS线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 8. 在Fe-Fe3C相图中,共析线也称为()。 A.A1线 B.ECF线 C.Acm线 D.PSK线 9.珠光体是一种()。 A.固溶体 B.金属化合物 C.机械混合物 D.单相组织金属

10.在铁-碳合金中,当含碳量超过()以后,钢的硬度虽然在继续增加,但强度却在明显下降。 A.0.8% B.0.9% C.1.0% D.1.1% 11.通常铸锭可由三个不同外形的晶粒区所组成,其晶粒区从表面到中心的排列顺序为()。 A.细晶粒区-柱状晶粒区-等轴晶粒区 B.细晶粒区-等轴晶粒区-柱状晶粒区 C.等轴晶粒区-细晶粒区-柱状晶粒区 D.等轴晶粒区-柱状晶粒区-细晶粒区 12.在Fe-Fe3C相图中,PSK线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 13.Fe-Fe3C相图中,共析线的温度为()。 A.724℃ B.725℃ C.726℃ D.727℃ 14.在铁碳合金中,共析钢的含碳量为()。 A.0.67% B.0.77% C.0.8% D.0.87% 二、填空题 1. 珠光体是(铁素体)和(二次渗碳体)混合在一起形成的机械混合物。 2. 碳溶解在(α-F e)中所形成的(固溶体)称为铁素体。 3. 在Fe-Fe3C相图中,共晶点的含碳量为( 4.3% ),共析点的含碳量为(0.77% )。 4. 低温莱氏体是(珠光体)和(二次渗碳体,一次渗碳体)组成的机械混合物。 5. 高温莱氏体是(奥氏体)和(共晶渗碳体)组成的机械混合物。 6. 铸锭可由三个不同外形的晶粒区所组成,即(细晶粒区),(柱状晶粒区)和心部等轴晶粒区。 7. 在Fe-Fe3C相图中,共晶转变温度是(1148 ),共析转变温度是( 727 )。 三、改正题(红色字体为改正后答案)

材料科学基础 铁碳相图补充作业题答案

铁碳相图补充作业题答案 1. 铁碳合金按Fe —Fe 3C 相图成分区域分成七类,分别是什么? 2. 分析以上七种成分合金平衡结晶过程与最终组织,并计算: (1) 工业纯铁中三次渗碳体的最大含量。 分析:在工业纯铁中,随C 含量的增加,三次渗碳体的含量也越多,当C%=0.0218% (即P 点成分的工业纯铁中)时,Fe 3C Ⅲ量达到最大值。 W Fe3C Ⅲ=008 .069.6008,00218. 0--×100%=0.33% (2) 共析钢中,α和Fe 3C 的相对含量。(Fe 3C Ⅲ量很少,一般忽略不计) W α=%100218 .069.677.069.6?--=%10069.677.069.6?-=88% W Fe3C =1-88%=12% (3)45钢(含C :0.45%)中,组织组成物和相组成物的相对含量。 分析:45钢组织组成物为:铁素体(先共析)+ 珠光体 相组成物为:铁素体(α)+ 渗碳体(Fe 3C ) 由于Fe 3C Ⅲ量很少,可以忽略不计,只考虑727℃共析转变完成之后即可。 组织组成物:?? ???=-==?==?=----%57%431Wp %57%100%43%1000218.077.00218.045.00218.077.045.077.0或αWp W 相组成物: ?????=-==?==?=----% 7%931W %7%100%93%100C 3Fe 0218.69.60218.045.030218.069.645.069.6或αo C Fe W W 注:共析钢中,室温组织为α+ P W C %↑, W P ↑,可近似根据亚共析钢的平衡组织来估算钢的含C 量。 W P =%100%1008.077.0218.077.0028.0?==?--C C C ∴ 钢的含C 量 C=0.8W P (忽略α、P 密度的差别)W P :珠光体所占的面积百分比。 (4)T10钢(1%C )中,Fe3C Ⅱ和珠光体的相对量 W Fe3C Ⅱ=%100 77.069.677.00.1?--=4% W P =1—4%=96% 注:在过共析钢中,W C ↑, Fe3C Ⅱ↑ 当 W C =2.11% Fe 3C Ⅱ达到最大值 W Fe3C Ⅱ最大=%6.22%100 77.069,677.011.2=?-- (5)共晶白口铸铁中,Fe 3C 共晶与γ共在共晶温度下的相对量。共析温度下P 与Fe 3C 的相对量。 ?????=-==?=--%48%521W %52%100C 3Fe 11.269.63.469.6共共γW

第五章 铁碳相图习题参考答案

第五章铁碳相图习题参考答案 一、解释下列名词 答:1、铁素体:碳溶入α-Fe中形成的间隙固溶体。 奥氏体:碳溶入γ-Fe中形成的间隙固溶体。 渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。 珠光体:铁素体和渗碳体组成的机械混合物。 莱氏体:由奥氏体和渗碳体组成的机械混合物。 2、Fe3CⅠ:由液相中直接析出来的渗碳体称为一次渗碳体。 Fe3CⅡ:从A中析出的Fe3C称为二次渗碳体。 Fe3CⅢ:从铁素体中析出的Fe3C称为三次渗碳体。 共析Fe3C:经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。 共晶Fe3C:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。 3、钢:含碳量大于0.00218%,小于2.11%的铁碳合金。 白口铸铁:含碳量大于2.11%的铁碳合金。 二、填空题 1、常温平衡状态下,铁碳合金基本相有铁素体(F)、渗碳体(Fe3C)等两个。 2、Fe-Fe3C相图有4个单相区,各相区的相分别是液相(L)、δ相、铁素体(F)、奥氏体(A)。 3、Fe-Fe3C 相图有三条水平线,即HJB、ECF和PSK线,它们代表的反应分别是包晶反应、共晶反应和共析反应。 4、工业纯铁的含碳量为≤0.0218%,室温平衡组织为F+ Fe3CⅢ。 5、共晶白口铁的含碳量为4.3%,室温平衡组织P占40.37%,Fe3C共晶占47.82%,Fe3CⅡ占11.81%。 6、一钢试样,在室温平衡组织中,珠光体占60%,铁素体占40%,该钢的含碳量为0.4707。 7、钢的组织特点是高温组织为奥氏体(A),具有良好的塑、韧性,因而适于热加工成形。 8、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。 三、简答题 1、为什么γ-Fe 和α- Fe 的比容不同?一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化? 答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。 2、铁素体(F),奥氏体(A),渗碳体(Fe3C),珠光体(P),莱氏体(Ld)的结构、组织形态、

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金 Post By:2009-12-6 16:33:51 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe -石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。

铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下: 由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1 394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金Post By:2009-12-6 16:33:51 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, 3 Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1 394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥

铁碳合金状态图

图3-1 渗碳体的晶体结构 第三章 铁碳合金状态图 钢和铸铁是机械工业上广泛应用的金属材料,它主要由铁和碳两种元素组成,统称为铁碳合金。铁碳合金状态图就是研究铁碳合金的成分、温度和组织之间变化关系的图解。 第一节 铁碳合金的基本组织 铁碳合金在液态时,铁和碳可以无限互溶,在固态时碳能溶解于铁的晶格中,形成间隙固溶体。当含量超过铁的溶解度时,多余的碳与铁形成化合物(Fe 3C)。此外,还可以形成由固溶体与化合物组成机械混合物。铁碳合金的基本组织有以下五种。 一、铁素体(F) 铁素体是指碳溶于a-Fe 中而形成的间隙固溶体。碳在a-Fe 中溶解度极小,在727℃时最大溶解度为0.0218%,而在室温时只有0.008%。因此,铁素体强度、硬度较低(σb =l80~280MPa 。50~80HBS),塑性,韧性较好(δ=30%~500%、αkU =160—200J /cm 2)。 铁索体组织适于压力加工。 二、奥氏体(A) 奥氏体是指碳溶于γ-Fe 碳在γ—Fe 中而形成的间隙固溶体。溶解度较大,在1148℃时最大溶碳量为2.11%,在727℃时最大溶碳量为0.77%。因此,固溶强化效应较高,其强度、硬度较高(σb =400 MPa ,160—200HBS).而塑性、韧性也较好(δ=40%~50%)。奥氏体组织也适用于压力加工。 三、渗碳体(Fe 3C) 渗碳体是一种具有复杂晶体结构的间隙化合物,化学式近似于Fe 3C(碳化三铁)。 Fe 3C 的含碳量为6.69%,如图3—1所示。它无同素异构转变,熔点约为1227℃。其硬度极高(800HBW),塑性和韧性极低(δ≈0、αku ≈0),即硬而脆。

铁碳合金状态图

第三章铁碳合金状态图 一、填空题 1、合金是指由两种或两种以上化学元素组成的具有___________特性的物质。 2、合金中有两类基本相,分别是___________和__________。 3、铁碳合金室温时的基本组织有___________、__________、_________、珠光体和莱氏体。 4、铁碳合金状态图中,最大含碳量为__________。 5、纯铁的熔点是___________。 6、简化的铁碳合金状态图中有_________个单相区,_________个二相区。 二、单项选择题 7、组成合金最基本的、独立的物质称为() A、组元 B、合金系 C、相 D、组织 8、金属材料的组织不同,其性能() A、相同 B、不同 C、难以确定 D、与组织无关系 9、研究铁碳合金状态图时,图中最大含碳量为() A、0.77% B、2.11% C、4.3% D、6.69% 10、发生共晶转变的含碳量的范围是() A、0.77%—4.3% B、2.11%—4.3% C、2.11%—6.69% D、4.3%—6.69% 11、液态合金在平衡状态下冷却时结晶终止的温度线叫() A、液相线 B、固相线 C、共晶线 D、共析线 12、共晶转变的产物是() A、奥氏体 B、渗碳体 C、珠光体 D、莱氏体 13、珠光体是() A、铁素体与渗碳体的层片状混合物 B、铁素体与奥氏体的层片状混合物 C、奥氏体与渗碳体的层片状混合物 D、铁素体与莱氏体的层片状混合物 14、共析转变的产物是() A、奥氏体 B、渗碳体 C、珠光体 D、莱氏体 15、共析钢的含碳量为() A、Wc=0.77% B、Wc>0.77% C、Wc<0.77% D、Wc=2.11% 16、Wc<0.77%铁碳合金冷却至A3线时,将从奥氏体中析出() A、铁素体 B、渗碳体 C、珠光体 D、莱氏体 17、Wc >4.3%的铁称为() A、共晶白口铸铁 B、亚共晶白口铸铁 C、过共晶白口铸铁 D、共析白口铸铁 18、铁碳合金相图中,ACD线是() A、液相线 B、固相线 C、共晶线 D、共析线 19、铁碳合金相图中的Acm线是() A、共析转变线 B、共晶转变线 C、碳在奥氏体中的固溶线 D、铁碳合金在缓慢冷却时奥氏体转变为铁素体的开始线 20、工业上应用的碳钢,Wc一般不大于() A、0.77% B、1.3%—1.4% C、2.11%—4.3% D、6.69% 21、铁碳合金相图中,S点是() A、纯铁熔点 B、共晶点 C、共析点 D、纯铁同素异构转变点 22、钢的含碳量一般在()

铁碳合金习题答案

铁碳合金 一、填空题 1.在铁碳合金基本组织中,奥氏体、铁素体和渗碳体属 于单相组织。 珠光体和莱氏体属于两相组织。 2.根据溶质原子在溶剂晶格中的分布情况,固溶体有二种基本类型, 它们是置换固溶体和间隙固溶体。 3.根据溶质在溶剂中的溶解情况,置换固溶体可分为无限固溶体 和有限固溶体两种。 4.铁素体与渗碳体的机械混合物称为珠光体,渗碳体与铁素体 片状相间的组织又称为片状珠光体,在铁素体基体上分布着0

颗粒状渗碳体的组织又称为粒状珠光体。 5.不同晶体结构的相,机械地混合在一起的组织,叫做固态机械 混合物,铁碳合金中,这样的组织有珠光体和莱氏体。 6.在铁碳合金基本组织中,铁素体和奥氏体属于固溶体; 渗碳体属于化合物;珠光体和莱氏体属于机械混合物。 7.分别填写下列铁碳合金组织的符号: 奥氏体A;铁素体F;渗碳体C;珠光体P。 8.铁和碳形成的金属化合物(Fe3C)称为渗碳体、含碳量 为%。 9.铁素体在室温时,对碳的溶解度是%,在727℃时溶解度 是%。 1

10.奥氏体对碳的溶解度,在727℃时溶解度是%,在1148℃ 时溶解度是%。 11.含碳量小于%的铁碳合金称为钢,钢根据室温显微组织不 同,可分为以下三类: 亚共析钢钢,显微组织为铁素体+珠光体,含碳量范围~%; 共析钢钢,显微组织为珠光体,含碳量范围%; 过共析钢钢,显微组织为珠光体+渗碳体,含碳量范围~%。 12.碳在奥氏体中的溶解度随温度而变化,在1148°时溶碳量可 达%,在727°时溶碳量可达%。 2

13.人们常说的碳钢和铸铁即为铁、碳元素形成的合金。 14.20钢在650℃时的组织为铁素体+珠光体;在1000℃时的 组织为奥氏体。 15.下图所示Fe—Fe3C状态图各区的组织,分别是:○1奥氏体, ○2奥氏体+渗碳体(二次渗碳体),○3铁素体+奥氏体,○4铁素体,○5铁素体+珠光体,○6珠光体,○7珠光体+渗碳体(二次渗碳体)。 3

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金 发布日期:[08-03-10 14:26:26] 浏览人次:[5779 ] www.mapeng.net 马棚网 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe 和C 能够形成Fe 3C, Fe 2C 和FeC 等多种稳定化合物。所以,Fe-C 相图可以划分成Fe-Fe 3C, Fe 3C-Fe 2C, Fe 2C-FeC 和FeC-C 四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe 3C 部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过 化合物Fe 3C 称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe 和C ,C 原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe 3C 和Fe-石墨双重相图(图1)。Fe-Fe 3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe 3C 相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe 3C 。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe 是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。

铁碳相图和铁碳合金

铁碳相图和铁碳合金(一) 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。 化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组 织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2)碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。

铁碳状态图

图3-1 渗碳体的晶体结构 第三章 铁碳合金状态图 钢和铸铁是机械工业上广泛应用的金属材料,它主要由铁和碳两种元素组成,统称为铁碳合金。铁碳合金状态图就是研究铁碳合金的成分、温度和组织之间变化关系的图解。 第一节 铁碳合金的基本组织 铁碳合金在液态时,铁和碳可以无限互溶,在固态时碳能溶解于铁的晶格中,形成间隙固溶体。当含量超过铁的溶解度时,多余的碳与铁形成化合物(Fe 3C)。此外,还可以形成由固溶体与化合物组成机械混合物。铁碳合金的基本组织有以下五种。 一、铁素体(F) 铁素体是指碳溶于a-Fe 中而形成的间隙固溶体。碳在a-Fe 中溶解度极小,在727℃时最大溶解度为0.0218%,而在室温时只有0.008%。因此,铁素体强度、硬度较低(σb =l80~280MPa 。50~80HBS),塑性,韧性较好(δ=30%~500%、αkU =160—200J /cm 2)。 铁索体组织适于压力加工。 二、奥氏体(A) 奥氏体是指碳溶于γ-Fe 碳在γ—Fe 中而形成的 间隙固溶体。溶解度较大,在1148℃时最大溶碳量为 2.11%,在727℃时最大溶碳量为0.77%。因此,固 溶强化效应较高,其强度、硬度较高(σb =400 MPa , 160—200HBS).而塑性、韧性也较好(δ=40%~50%)。 奥氏体组织也适用于压力加工。 三、渗碳体(Fe 3C) 渗碳体是一种具有复杂晶体结构的间隙化合物,化学式近似于Fe 3C(碳化三铁)。 Fe 3C 的含碳量为6.69%,如图3—1所示。它无同素异构转变,熔点约为1227℃。其硬度极高(800HBW),塑性和韧性极低(δ≈0、αku ≈0),即硬而脆。

铁碳相图习题参考答案

第五章铁碳相图 习题参考答案 一、解释下列名词 答:1、铁素体:碳溶入α-Fe中形成的间隙固溶体。 奥氏体:碳溶入γ-Fe中形成的间隙固溶体。 渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。 珠光体:铁素体和渗碳体组成的机械混合物。 莱氏体:由奥氏体和渗碳体组成的机械混合物。 2、Fe3CⅠ:由液相中直接析出来的渗碳体称为一次渗碳体。 Fe3CⅡ:从A中析出的Fe3C称为二次渗碳体。 Fe3CⅢ:从铁素体中析出的Fe3C称为三次渗碳体。 共析Fe3C :经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。 共晶Fe3C:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。 3、钢:含碳量大于%,小于%的铁碳合金。 白口铸铁:含碳量大于%的铁碳合金。 二、填空题 1、常温平衡状态下,铁碳合金基本相有铁素体(F)、渗碳体(Fe3C)等两个。 2、Fe-Fe3C相图有4个单相区,各相区的相分别是液相(L)、δ相、铁素体(F)、奥氏体(A)。 3、Fe-Fe3C 相图有三条水平线,即HJB、ECF和PSK线,它们代表的反应分别是包晶反应、共晶反应和共析反应。 4、工业纯铁的含碳量为≤%,室温平衡组织为F+ Fe3CⅢ。 5、共晶白口铁的含碳量为%,室温平衡组织P占%,Fe3C共晶占%,Fe3CⅡ占%。 6、一钢试样,在室温平衡组织中,珠光体占60%,铁素体占40%,该钢的含碳量为。 7、钢的组织特点是高温组织为奥氏体(A),具有良好的塑、韧性,因而适于热加工成形。 8、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。 三、简答题 1、为什么γ-Fe 和α- Fe 的比容不同一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化 答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。

铁碳相图习题与思考题剖析

习题与思考题剖析 【例题】 用铅锑合金制成的轴瓦,要求其组织为在共晶体上分布有5%Sb 作硬质点,试求该合金的成分及硬度(已知条件:纯铅的硬度为3HBS ,纯锑的硬度约为30HBS )。 1. 分析 Pb-Sb 二元合金相图如题图1所示。由题意可知,在共晶体基体上分布有5%Sb 作硬质点,即指该合金的组织为95%的共晶体组织+5%Sb 硬质点所组成,那么即可判断该合金一定是过共晶成分。 那么,如何利用杠杆定律求出该合金组织的相对百分含量呢?由于杠杆定律仅适用于两相区,那么必须使所求的组织与相应的两相区相对应。由题图1所示的相图可以看出,只有影线所示的两相区中的两相才有可能与所求的组织近似对应,即共晶体与液相对应(因为,在共晶线上一定成分的液相全部转变为共晶体组织),硬质点与先共晶相相对应。 那么,又如何来求硬度呢?这就要联想到相图与性能之间的对应关系,即硬度与成分对应为直线关系(如题图2所示),这样就可利用题目所给的已知条件,求出该合金的算术平均值来。 题图 1 PB – SB 二元合金相图 题图 2 化学成分与硬度之间的关系 2. 解答 设该合金的成分为X%Sb ,则根据杠杆定律: W Sb =2 .111002.11--X =5 , X=15.6 或 X X --= 1002.11955 ,X=15.6 该合金的硬度为: 3+7)330(1006.15 =-?HBS 或 先求出铅和锑这两个相的相对百分含量,即 W Pb =100100 6.15100 ?-%=84.4% ,W Sb =15.6% 所以,该合金的硬度为: 3×84.4%+30×15.6%=7HBS 3. 常见错误剖析 (1)对于题目所叙“要求其组织为在共晶体基体上分布有5% Sb作硬质点”这句话不

铁碳相图和铁碳合金

铁碳相图和铁碳合金

铁碳相图和铁碳合金(一) 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。 化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组 织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。

铁碳相图复习题

铁碳相图复习题 解释下列名词 答:1、铁素体:碳溶入α-Fe中形成的间隙固溶体。 奥氏体:碳溶入γ-Fe中形成的间隙固溶体。 渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。 珠光体:铁素体和渗碳体组成的机械混合物。 莱氏体:由奥氏体和渗碳体组成的机械混合物。 2、Fe3CⅠ:由液相中直接析出来的渗碳体称为一次渗碳体。 Fe3CⅡ:从A中析出的Fe3C称为二次渗碳体。 Fe3CⅢ:从铁素体中析出的Fe3C称为三次渗碳体。 共析Fe3C :经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。 共晶Fe3C:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。 3、钢:含碳量大于0.00218%,小于2.11%的铁碳合金。 白口铸铁:含碳量大于2.11%的铁碳合金。 二、填空题 1、常温平衡状态下,铁碳合金基本相有铁素体(F)、渗碳体(Fe3C)等两个。 2、Fe-Fe3C相图有4个单相区,各相区的相分别是液相(L)、δ相、铁素体(F)、奥氏体(A)。 3、Fe-Fe3C 相图有三条水平线,即HJB、ECF和PSK线,它们代表的反应分别是包晶反应、共晶反应和共析反应。 4、工业纯铁的含碳量为≤0.0218%,室温平衡组织为F+ Fe3CⅢ。 5、共晶白口铁的含碳量为4.3%,室温平衡组织P占40.37%,Fe3C共晶占47.82%,Fe3CⅡ占11.81%。 6、一钢试样,在室温平衡组织中,珠光体占60%,铁素体占40%,该钢的含碳量为0.4707。 7、钢的组织特点是高温组织为奥氏体(A),具有良好的塑、韧性,因而适于热加工成形。 8、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。 三、简答题 1、为什么γ-Fe 和α- Fe 的比容不同?一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化? 答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。 2、铁素体(F),奥氏体(A),渗碳体(Fe3C),珠光体(P),莱氏体(Ld)的结构、组织形态、

铁碳合金状态图教案

邻水县职业中学2015学年度下期 机械加工专业公开课教案 授课时间: 2015年11月5日上午第二节 授课班级:春招15级机械三班 授课内容:铁碳合金状态图 授课教师: 文杰 教学手段:课堂讲授,学生理解 教学目的:1、了解简化的Fe-Fe3C状态图特征线。 2、了解含碳量对铁碳合金性能影响。 重点:Fe-Fe3C状态图特征线。 难点: Fe-Fe3C状态图特征线。 授课形式:新课 所用学时:1学时 使用教材:高等教育版《机械基础》 复习引入 合金状态图就是用热分析法测得不同浓度的铁碳合金的冷却曲线,然后将其冷却曲线上各结晶温度转变点描绘在温度-成分坐标上,以得到铁碳合金金相组织、温度及合金成分间的关系。铁碳合金状态图除用于钢和铸铁的组织转变的研究,作为选择材料的依据外,还可作为制定铸造、锻造、焊接和热处理等工艺规范的重要工具,它将为学习本课程的其他部分奠定必要的基础。 教学过程 一、如图下图所示铁碳合金状态图。(抽学生回答组织符号名称) 1、铁素体:是溶解在a-Fe中形成的间隙固溶体。 2、渗碳体:是铁与碳形成的稳定化合物。 3、奥氏体:是碳溶解在r-Fe中形成的间隙固溶体。 4、珠光体:是铁素体和渗碳体组成的共析体。

5、莱氏体:是由奥氏体和渗碳体组成的共晶体。 二、铁碳合金状态图分析 1、各特性点的含义在铁碳合金状态图中用字母标出的点都表示一定的特性(成分和温度),所以称为特性点。各主要特性点的含义列于 点名温度含碳量含义 A点:1538℃0% 纯铁的熔点 C点:1148℃% 生铁的共晶点 D点:1227℃% 渗碳体的熔点 E点:1148℃% 碳在奥氏体中的最大溶解度 G点:912℃0% 纯铁的同素异构转变点 S点:727℃% 共析点 2、各主要线的含义 (1)ACD线——液相线,即液体合金冷却到此线时开始结晶,在此线以上的区域为液相。 (2)AECF线——固相线,即合金冷却到此线时金属液全部结晶为固相,在此线以下的区域为固相。 (3)GS线——铁素体析出开始线,通常用A3来表示。 (4)ES线——二次渗碳体析出开始线,通常用A cm来表示。在1148℃时奥氏体中溶碳量达到%,而在727℃时仅为%,所以含碳量大于%的奥氏体冷却到此线时,多余的碳以渗碳体的形式从奥氏体中析出。这种从奥氏体中析出的渗碳体称为二次渗碳体,用Fe3C II表示。在显微镜下观察时,Fe3C II呈网状,故又称网状Fe3C II。 (5)ECF线——共晶线,即含碳量在%~%的铁碳合金,当冷却到此线时(1148℃),都将发生共晶反应,从液相中同时结晶出两种不同的固相,如生成的共晶混合物称为莱氏体. (6)PSK线——共折线,即含碳量在%~%的铁碳合金,当冷却到此线时(727℃),都将发生共析反应,从一种固相同时转变为两种不同的固相,如形成的共析混合物称为珠光体。这条线通常用A1来表示。 (7) GP线:0<Wc<%的铁碳合金,缓冷时,由奥氏体中析出铁素体的终止线 (8)PQ线:碳在铁素体中溶解度曲线,在727℃时,Wc=%,溶碳量最大,在600℃时,Wc=%。 3、铁碳合金相图中的这几条线把相图分成了几个区域,称为相区。对每一个相区来说,不论温度怎么变,成分怎么变,只要在这个相区内,其组织种类就不会变,但相的成分和相对量可能变化。(单相区,双相区,三相区(课祥)). 4.钢含碳量小于%为工业纯铁,含碳量在%~%的铁碳合金,称为钢。它在高温时都要生成奥氏体。根据室温组织不同,将钢分为3种: 共析钢:%C; 亚共析钢:<%C; 过共析钢:>%C。 (3)白口铸铁%~%C的铁碳合金,称为白口铸铁。它在液相结晶时都将发生共晶反应,生成莱氏体。根据室温组织不同,将铁也分为3种: 共晶白口铸铁:%C; 亚共晶白口铸铁:<%C; 过共晶白口铸铁:>%C。 4、钢在结晶过程中的组织转变 (1)共析钢图中合金I是共析钢,含碳量为%。其冷却过程的组织转变为:L→L+A→A→P。室温平衡组织全部为珠光体。

铁碳合金相图分析

第四章铁碳合金 第一节铁碳合金的相结构与性能 一、纯铁的同素异晶转变 δ-Fe→γ-Fe→α-Fe 体心面心体心 同素异晶转变——固态下,一种元素的晶体结构 随温度发生变化的现象。 特点: ? 是形核与长大的过程(重结晶) ? 将导致体积变化(产生内应力) ? 通过热处理改变其组织、结构→ 性能 二、铁碳合金的基本相 基本相定义力学性能溶碳量 铁素体F 碳在α-Fe中的间隙固溶体强度,硬度低,塑性,韧性好最大0.0218% 奥氏体A 碳在γ-Fe中的间隙固溶体硬度低,塑性好最大2.11% 渗碳体Fe3C Fe与C的金属化合物硬而脆800HBW,δ↑=αk=09.69% 第二节铁碳合金相图 一、相图分析 两组元:Fe、Fe3C 上半部分图形(二元共晶相图) 共晶转变: 1148℃727℃ L4.3 → A2.11+ Fe3C → P + Fe3C莱氏体Ld Ld′ 2、下半部分图形(共析相图) 两个基本相:F、Fe3C 共析转变: 727℃ A0.77→ F0.0218 + Fe3C 珠光体P 二、典型合金结晶过程 分类:

三条重要的特性曲线 ① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线. ② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线. ③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值0.0218%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于0.001%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ. 工业纯铁(<0.0218%C) 钢(0.0218-2.11%C)——亚共析钢、共析钢(0.77%C)、过共析钢 白口铸铁(2.11-6.69%C)——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁 L → L+A → A → P(F+Fe3C) L → L+A → A → A+F → P+F L → L+A → A → A+ Fe3CⅡ→ P+ Fe3CⅡ 4、共晶白口铸铁L → Ld(A+Fe3C) → Ld(A+Fe3C+ Fe3CⅡ) → Ld′(P+Fe3C+ Fe3CⅡ) 5、亚共晶白口铸铁L → Ld(A+Fe3C) + A → Ld+A+ Fe3CⅡ→ Ld′+P+ Fe3CⅡ 6、过共晶白口铸铁L → Ld(A+Fe3C) + Fe3C → Ld + Fe3C→ Ld′+ Fe3C

相关文档
最新文档