八年级(上)培优讲义:第2讲 三角形的初步知识(2)

八年级(上)培优讲义:第2讲 三角形的初步知识(2)
八年级(上)培优讲义:第2讲 三角形的初步知识(2)

第2讲 三角形的初步认识

(全等三角形、三角形全等的判定) 一、知识建构 1. 概念:

(1)全等图形: 的图形称为全等图形。 (2)全等三角形: 叫做全等三角形。

2.两个全等三角形重合时, 的顶点叫对应顶点,互相重合的边叫做 , 叫做对应角。

3.全等符号:“ ”,

如图,△ABC 与△DCE 全等,(其中,A 和D ,B 和E 对应) 记做: 读做: 对应边: ; 对应角: . 4. 全等三角形的性质: .

几何语言:如图:∵△ABC ≌△DBC ,

∴AB = ,AC = ,BD = ,

∠A = ,∠ABC = ,∠ACB = ,

5.三角形全等判定

(1)有三边对应相等的两个三角形全等(简写成“边边边”或“SSS ”) 符号语言:在△ABC 和△DEF 中

若????

???=

==AC BC DE

AB

则△ABC ≌△DEF ( )

三角形稳定性:当三角形的三条边长确定时,三角形的 、 完全确定,这个性质叫做三角形稳定性。

(2)有一个角和 的两边对应相等的两个三角形全等(简写成“边角边”或“SAS ”)。

B

A

C

D

符号语言:如图:在△ABC 和'

''C B A ?中:

??

???=∠=∠=(已知)(已知)已知)‘

’‘C B A ABC B A AB ('

'

∴△ABC ≌△'

'

'

C B A ?(SAS )

(3)有两个角和 对应相等的两个三角形全等(简写成“角边角”或“ASA ”).

符号语言:如图:在△ABC 和△A ′B ′C ′中:

??

???==∠=∠)()已知(’

‘’

‘’C

B B

C C B A ABC ∴△ABC ≌△A ′B ′C ′(ASA ) 二、 例题精讲

例1. 如图,已知OA =OB ,OC =OD ,AD 和BC 相交于点E ,则图中全等三角形有几对?说明理由.

例2:已知∠BAC ,用直尺和圆规作∠BAC 的平分线AD ,并说出该作法正确的理由。

C

C'

A

B C

C'

B'O

A

B

D

C

E

例3.(1)如图,△ABC中,BC=10cm,AB的中垂线交于BC于D,AC的中垂线交BC于E,则△ADE的周长是______.

(2)如图, △ABC中,DE垂直平分AC,AE=2.5cm, △ABD的周长是9cm,则△ABC的周长是_______.

m,分别是线段AB、AC的垂直平分线,且相交于点O,请说O分别到A、

(3)如图。直线n

B、C的距离相等的理由。

例4.如图,已知△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,

DE⊥AB于E,且AB=6,则△DEB的周长为多少?并请说明理由。

变式:已知△ABC中,BE⊥AD于E,CF⊥AD于F,且BE=CF,那么BD与DC相等吗?

三、 基础演练

1. 如图已知AC 与BD 相交于点O ,AO =CO ,BO =DO ,则AB =CD 请说明理由.

解:在△AOB 和△COD 中

(BO DO(AO CO ==?????

已知)(对顶角相等已知) ∴△AOB ≌△COD ( ) ∴AB =DC ( )

2.如图,四边形ABCD 是一防洪堤坝的横截面,AE ⊥CD ,BF ⊥CD ,且AE =BF ,∠D =∠C ,问AD 与BC 是否相等?说明你的理由。 解:在△ADE 和△BCF 中, ∠D =∠C ( )

∠AED =∠ =Rt ∠ (垂直的意义) AE =BF ( ) ∴△ADE ≌△BCF ( ) ∴AD =BC ( )

3.如图,点C 、D 在BE 上,BC =DE ,∠B =∠E ,∠ADB =∠FCE ,则AB 与EF 相等吗?请说明理由。

解:∵BC =DE (已知)

∴BC + = DE + , 即:BD = CE 在△ABD 和△FEC 中, ∠B =∠E ( ) BD = CE

∠ADB =∠FCE ( ) ∴△ABD ≌△FEC ( ) ∴AB =EF ( )

A B

D

C

O

C

4.如图,已在AB =AC ,AD =AE , ∠1=∠2,试说明ΔABD ≌ΔACE 的理由. 解:∵∠1=∠2( ) ∴∠1+∠ =∠2+∠

即:∠BAD =∠CAE 在△BAD 和△CAE 中 AB =AC ( ) ∠BAD =∠CAE

AD =AE ( ) ∴△BAD ≌△CAE ( )

5.如图∠B =∠DEF ,AB =DE ,要证明△ABC ≌△DEF ,

(1)若以“ASA ”为依据,需添加的条件是 ; (2)若以“SAS ”为依据,需添加的条件是 .

6.如图.在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出—个正确的结沦,并说明理由。 ①AB =DE ;②AC =DF ;③∠ABC =∠DEF ;④BE =CF .(填写序号即可) 已知: ; 结沦:

; 理由:

B

C

A E

C

D

7.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE,试说明:△ABC≌△ADE的理由。

8.如图,AD、EF、BC交于O点,且AO=OD,BO=OC,EO=OF,试说明:△AEB≌△DFC.

四、直击中考

1.(2013毕节)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为() A.30°B.60°C.90°D.45°

2.(2012聊城) 将一副三角板按如图所示摆放,图中∠α的度数是() A.75°B.90°C.105°D.120°

3.(2013安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添

加下列一个条件后,仍无法判定△ADF≌△CBE的是()

A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC

4.(2013玉林)如图,AB=AE,∠1=∠2,∠C=∠D.

求证:△ABC≌△AED.

5.(2013珠海)如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.

6.(2013聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.

五、 能力拓展

1. 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和

正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .求证:PQ ∥AE

2. 在△ABC 中,AB=AC ,点E,F 分别在AB,AC 上,AE=AF ,BF 与CE 相交于点P , 求证:PB=PC ,并请直接写出图中其他相等的线段。

A

B

C

E D

O P

Q

B

六、挑战竞赛

1.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

2.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

2.已知:如图,在△ABC中,D是BC的中点,ED⊥DF.求证:BE+CF>EF.

解三角形讲义

一、正弦定理 1、在ABC ?中: 2R sinC c sinB b sinA a ===(R 为△ABC 的外接圆半径) 。它的变式有:①a=2RsinA ,b=2RsinB ,c=2RsinC ;②; ,R c C R B R a A 2sin 2b sin 2sin ===③a :b :c=sinA :sinB :sinC 。 推论1:△ABC 的面积为:S △ABC =21absinC=21bcsinA=2 1 casinB (证明:由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC = C ab sin 2 1 ) 。 推论2:在△ABC 中,有bcosC+ccosB=a 。(证明:因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a);还有两个式子为:acosC+ccosA=b ,bcosA+acosB=c 。 2、利用正弦定理,可以解决以下两类有关三角形的问题 ①已知两角和任意一边,求其他两边和一角; ②已知两边和其中一边对角,求另一边的对角,进而求出其他的边和角。 例1 △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知a=2,?=45B ,分别求出下 式中角A 的值。①b= 2 1 ;②b=1;③b=332;④b=2;⑤b=2。【答①无解;②A=?90;③A=??12060或; ④A=?45;⑤A=?30。】 例2 在△ABC 中,已知AB=1,?=50C ,当B= 时,BC 的长取最大值。【答:?40】 3、推导并记住:42675cos 15sin -= = ,4 2 615cos 75sin +== 。 例3 在锐角△ABC 中,若C=2B ,则 b c 的范围是( ) A 、(0,2) B 、)2,2( C 、)3,2( D 、)3,1( 【答:C 】 例4 在△ABC 中,c=3,C=?60,求a+b 的最大值。 【答:23】 例5 在等腰△ABC 中,已知 2 1 sinB sinA =,BC=3,则△ABC 的周长为 。 【答:15】 4、角平分线定理:在△ABC 中,AD 平分∠BAC ,则AC AB DC BD = 。 例6 已知△ABC 的三条边分别是3、4、6,则它较大的锐角的平分线分三角形所成的两个三角形的面积比为( ) A 、1:1 B 、1:2 C 、1:4 D 、3:4 【答:B 】 练习1 △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 。若x a =,2=b ,?=45B ,且此三角形有两解,则x 的取值范围为 ( ) A 、)22,2( B 、22 C 、),2(+∞ D 、]22,2( 【答:A 】

解三角形培优

2021届高三培优(平面向量) 1.已知O 为△ABC 的外心,若2 AO BC BC ?=,则△ABC 为( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 不能确定 2.如图,在△ABC 中,2AN NC =,P 是BN 上一点,若 1 3 AP t AB AC =+,则实数t 的值为( ) A. 16 B. 23 C. 1 2 D. 34 3.已知O 是△ABC 内一点,230OA OB OC ++=,2AB AC ?=-,且2 3 BAC π∠=,则 OBC ?的面积为( ) A. 3 3 B. 3 C. 3 2 D. 3 4.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 5.已知a ,b 是单位向量,且a ·b=0.若向量c 满足|c-a-b|=1,则|c|的最大值为( ). A.√2-1 B.√2 C.√2+1 D.√2+2 6.已知向量a ,b 的夹角为4 π ,2a ||=,||2b =,c 与a b -共线,则||b c -的最小值为( ) A. 2 B. 1 C. 3 D. 2 7.若函数2()2cos 2sin f x x x a =-++在[,]63ππ -上的最小值为12,则f (x )在[,]63 ππ -上的最大值为( ) A. 4 B. 5 C. 3 32 + D. 5 32 + 8.已知函数()sin 26f x x π?? =- ?? ? ,若方程()2 3 f x = 的解为12,x x (120x x π<<<),则()21sin x x -=( )

相似三角形培优拔高题(精编文档).doc

【最新整理,下载后即可编辑】 第一讲 相似三角形 1、已知432z y x ==,且1032=+-z y x ,则z y x ++= 。 2、已知△ABC 中,AB=AC,∠BAC=120°,求AB:BC 的值。 3、若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB=10, 23==BQ AQ BP AP ,求线段PQ 的长。 4、若55432+==+c b a ,且2132=+-c b a ,试求a:b:c 。 5、△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC 。若△ABC 的边长为4,AE=2,则BD 的长 为 。 6、点D,E 分别在△ABC 的边AB ,AC 上,DE ∥BC ,点G 在边BC 上,AG 交DE 于点H ,点O 是线段AG 的中点,若 13=DB AD ,则 =OH AO

7、在正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点E ,连接DE ,取DE 的中点Q ,连接PQ ,求证: PQ=PC. 8、四边形ABCD 与四边形A 1B 1C 1D 1相似,相似比为2:3,四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2相似,相似比为5:4,则四边形ABCD 与四边形A 2B 2C 2D 2相似且相似比为 。 9、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿 AE 将△ABE 向上折叠,使B 点落在AD 上的F 处。若 四边形EFDC 与矩形ABCD 相似,则AD= 10、已知∠1=∠2=∠3,求证:△ABC ∽△ADE 11、点C 、D 在线段AB 上,△PCD 是等边三角形

著名机构初中数学培优讲义中考复习.解直角三角形.第11讲(通用讲).教师版

内容 基本要求 略高要求 较高要求 勾股定理及逆定理 已知直角三角形两边长,求第三条边 会用勾股定理解决简单问题;会用勾股定理的逆定理判定三角形是否为直角三角形 会运用勾股定理解决有关的实际问 题。 解直角三角形 知道解直角三角形的含义 会解直角三角形;能根据问题的需要添加辅助线构造直角三角形;会解由两个特殊直角三角形构成的组合图形的问题 能综合运用直角三角形的性质解决有关问题 锐角三角函数 了解锐角三角函数(正弦、余弦、 正切、余切),知道特殊角的三 角函数值 由某个角的一个三角函数值,会求这个角其余两个三角函数值;会求含有特殊角的三角函数值的计算 能用三角函数解决与直角三角形有关的简单问题 模块一、勾股定理 1.勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三 角形中两直角边的平方和等于斜边的平方。 注:勾——最短的边、股——较长的直角边、 弦——斜边。 C A B c b a 2.勾股定理的证明: (1)方法一:将四个全等的直角三角形拼成如图所示的正方形: 知识点睛 中考要求 解直角三角形

如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。即 222 在中如果那么是直角三角形。 ABC AC BC AB ABC ?+=? ,, 4.勾股数: 满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5;5、12、13;7、24、25;8、15、17。 模块二、解直角三角形 一、解直角三角形的概念 根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系 如图,直角三角形的边角关系可以从以下几个方面加以归纳:

高中数学竞赛_解三角形【讲义】

第七章 解三角形 一、基础知识 在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长, 2 c b a p ++= 为半周长。 1.正弦定理:C c B b A a sin sin sin ===2R (R 为△AB C 外接圆半径)。 推论1:△ABC 的面积为S △ABC =.sin 2 1 sin 21sin 21B ca A bc C ab == 推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足 ) sin(sin a b a a -= θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义, BC 边上的高为bsinC ,所以S △ABC =C ab sin 2 1 ;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理B b A a sin sin =, 所以) sin() sin(sin sin A a A a --= θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]= 2 1 -[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。 2.余弦定理:a 2=b 2+c 2 -2bccosA bc a c b A 2cos 2 22-+=?,下面用余弦定理证明几个常用的结论。 (1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq q p q c p b -++ (1) 【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π, 所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得 qc 2 +pb 2 =(p+q)AD 2 +pq(p+q),即AD 2 =.22pq q p q c p b -++ 注:在(1)式中,若p=q ,则为中线长公式.2 222 22a c b AD -+= (2)海伦公式:因为412 =? ABC S b 2c 2 sin 2 A=4 1b 2c 2 (1-cos 2 A)= 4 1 b 2 c 2 16 14)(12 22222=??????-+-c b a c b [(b+c)2-a 2 ][a 2 -(b-c) 2 ]=p(p-a)(p-b)(p-c). 这里 .2 c b a p ++= 所以S △ABC =).)()((c p b p a p p --- 二、方法与例题

三角形培优训练100题集锦

E D F C B A 三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围. 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

浙教版2020学年《解直角三角形》培优提升特训(Word版无答案)

解直角三角形同步复习与提升 一、选择题 1. 如图,在平面直角坐标系中,点A 的坐标为(4,3),则cos α的值是( ) A. 34 B.43 C.35 D.45 2. 如图,△ABC 内接于半径为5的⊙O 中,圆心O 到弦BC 的距离为3,则∠A 的正切值为( ) A. 35 B.45 C.34 D.43 3. 已知抛物线y=-x 2-2x+3与x 轴交于A ,B 两点,将这条抛物线的顶点记为点C ,连接AC ,则tan ∠CAB 的值为( ) A.12 B.55 C.25 5 D.2 4.如图,在四边形ABCD 中,点E 、F 分别是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC=( ) A.34 B.43 C.35 D.45 5.如图,在等腰直角三角形ABC 中,∠C=90°,AC=6,D 是AC 上一点,若tan ∠DBA=1 5 ,则AD 等于( ) A. 2 B.2 C.1 D.2 2 6.如图,在菱形ABCD 中,DE ⊥AB ,cosA=3 5 ,BE=2,则tan ∠DBE 的值是( ) A.12 B.2 C.52 D.55

7.如图,在△ABC 中,若∠B=30°,sinC=3 5 ,AC=10,则AB=( ) A.12 B.14 C.1 6 D.20

8. 如图,△ACB 中,∠ACB=RT ∠,已知∠B=α,∠ADC=β,AB=a ,则BD 的长可以表示( ) A. a·(cosα-cosβ) B.a tanβ-tanα C.acosa -a ·sinαtanβ D.a ·cos α-asin α·a ·tan β 9. 因为cos60°=12 ,cos240°=- 1 2 ,所以cos240°=cos(180°+60°)=- cos60°;由此猜 想、推理:当α为锐角时有cos (180°+α)= - cosα,由此可知:cos210°=( ) A. -12 B.- 22 C..- 3 2 D. 3 10. 如图,在平面直角坐标系中,AB=35,连结AB 并延长至C ,连结OC ,若满足OC 2=BC ·AC ,tanα=2,则点C 的坐标为( ) A. (-2,4) B.(-3,6) C.(-53,103 ) D.(- 263,283 ) 二、填空题 11. 在△ABC 中,若|sinA-3 2 |+|cosB - 12 |=0,则∠C= ° 12. 若3tan(α+10°)=1,则锐角α= ° 13. 如图,在△ABC 和△DEF 中,∠B=40,∠E=140°,AB=EF=5,BC=DE=8,则两个三角形面积的大小关系为:S △ABC S △DEF .(填“>”,或“=”,“<”) 14. 已知:实常数a ,b ,c ,d 同时满足下列两个等式:①asinθ+bcosθ-c=0;①acosθ-bsinθ+d=0(其中θ为任意角),则a 、b 、c 、d 之间的关系式是: 15. 如图 ,△ABC 中,AD ⊥BC 于D ,CE 平分∠ACB ,∠AEC=45°,若AC=2,tan ∠ACB=34,则AB 的长为 .

最全面的解三角形讲义

解三角形 【高考会这样考】 1.考查正、余弦定理的推导过程. 2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法. 4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题. 基础梳理 1.正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变 形为: (1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2 =b 2 +c 2 -2bc cos_A ,b 2 =a 2 +c 2 -2ac cos_B ,c 2 =a 2 +b 2 -2ab cos_C .余弦定 理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2(a +b +c )·r (R 是三角形外接 圆半径,r 是三角形内切圆的半径),并可由此计算R ,r . 4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则 A 为锐角 A 为钝角或直角 图形 关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的 个数 无解 一解 两解 一解 一解 无解 5.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.

2020届高考数学专题七解三角形精准培优专练理

培优点七 解三角形 例1:ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos 2sin a C c A b A +=,则A 的值 为() A . 5π6 B . π6 C . 2π3 D . π6或5π6 【答案】D 【解析】由cos cos 2sin a C c A b A +=,结合正弦定理可得sin cos sin cos 2sin sin A C C A B A +=. 即sin()2sin sin A C B A +=,故sin 2sin sin B B A =. 又sin 0B ≠,可得1sin 2A = ,故π6 A =或5π 6.故选D . 例2:在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若1bc =,2cos 0b c A +=,则当角B 取得最大值时,ABC △的周长为() A .2 B .2+C .3 D .3 【答案】A 【解析】由已知2cos 0b c A +=,得222 202b c a b c bc +-+? =,整理得2222b a c =-. 二、余弦定理的运用 一、正弦定理的运用

由余弦定理,得222223cos 24a c b a c B ac ac +-+==≥= a =时等号成立, 此时角B 取得最大值,将a =,代入2 2 2 2b a c =-,可得b c =. 又1bc =,所以1b c == ,a =ABC △ 的周长为2+.故选A . 例3:在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若2 b a c =,且sin C B =, 则ABC △的最小内角的余弦值为() A . B C D . 34 【答案】C 【解析】由sin C B =及正弦定理,得c =. 又2 b a c =,所以b = ,所以2c a =,所以A 为ABC △的最小内角. 由余弦定理,知222222cos 28b c a A bc +-=== ,故选C . 一、选择题 1.在平面四边形ABCD 中,90D ∠=?,120BAD ∠=?,1AD =,2AC =,3AB =, 对点增分集训 三、正弦定理与余弦定理的综合

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

华师大版2020九年级数学上册第24章解直角三角形自主学习培优测试卷A卷(附答案详解)

华师大版2020九年级数学上册第24章解直角三角形自主学习培优测试卷A 卷(附答案详解) 1.如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的余弦值是( ) A .12 B .1 C .55 D .255 2. 在Rt △ABC 中,∠C =90°,若AB =10,sinA = 35,则斜边上的高等于( ) A .5 B .4.8 C .4.6 D .4 3.如图,在Rt ABC ?中,90C =∠, 如果5AC =,13AB =,那么cos A 的值为( ) A .513 B .1213 C .125 D .512 4.如图,小明要测量河内小岛 B 到河边公路 l 的距离,在 A 点测得∠BAD=30°,在 C 点测得∠BCD=60°,又测得 AC=60米,则小岛 B 到公路 l 的距离为( ) A .30 米 B .30 米 C .40 米 D .(30+ )米 5.若斜坡的坡比为1:,则斜坡的坡角等于( ) A .30° B .45° C .50° D .60° 6.如图,矩形ABCD 的对角线交于点O ,已知,,AB m BAC a =∠=∠则下列结论错.误. 的是( ) A .BDC α∠=∠ B .tan B C m a =? C .2sin m AO α= D .cos m BD a = 7.如图所示,△ABC 为直角三角形,∠ACB=90°,CD ⊥AB ,与∠1互余的角有( )

A.∠B B.∠A C.∠BCD和∠A D.∠BCD 8.如图,在△ABC中,∠C=90°.若AB=3,BC=2,则sin A的值为() A.2 3 B. 5 3 C. 25 5 D.5 2 9.计算式子:﹣32+6cos45°﹣8+|2﹣3|的结果为() A.﹣6+62B.﹣12 C.﹣12﹣2D.﹣6 10.小刚在距某电信塔10 m的地面上(人和塔底在同一水平面上),测得塔顶的仰角是60°,则塔高() A.10m B.5m C.10m D.20 m 11.在Rt△ABC中,∠ACB=90°,AB=3,BC=1,那么∠A的正弦值是_____. 12.在△ABC中,若|cos A 1 2 -|+(1-tan B)2=0,则△ABC的形状是________________. 13.如图,直线OA与x轴的夹角为α,与双曲线 2 y x =(x>0)交于点A(1,m),则tana 的值为________. 14.如图,点、、为正方形网格纸中的3个格点,则的值是________. 15.如图①,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若直角三角形一个锐角为30°,将各三角形较短的直角边分别向外延长一倍,得到图②所示的“数学风车”设AB=a,则图中阴影部分面积为_____(用含a的代数式表示)

人教版高二数学必修5解三角形测试卷培优提高题(含答案解析)

高中数学必修5第一章单元测试题 一 选择题:(共12小题,每题5分,共60分,四个选项中只有一个符合要求) 1.在ABC ?中,若b 2 + c 2 = a 2 + bc , 则A =( ) A .30? B .45? C .60? D .120? 2.在ABC ?中,若20sin A sin B cosC -=,则ABC ?必定是 ( ) A 、钝角三角形 B 、等腰三角形 C 、直角三角形 D 、锐角三角形 3.在△ABC 中,已知5cos 13A =,3 sin 5 B =,则cos C 的值为( ) A 、1665 B 、5665 C 、1665或5665 D 、16 65- 4.不解三角形,确定下列判断中正确的是 ( ) A. 30,14,7===A b a ,有两解 B. 150,25,30===A b a ,有一解 C. 45,9,6===A b a ,有两解 D. 60,10,9===A c b ,无解 5.飞机沿水平方向飞行,在A 处测得正前下方地面目标C 的俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的距离为 A .5000米 B . 米 C .4000米 D . 6.已知ABC △ 中,a = b =60B = ,那么角A 等于 A .135 B .90 C .45 D .45 或135 7.在△ABC 中,60A ∠=?,2AB =,且△ABC 的面积ABC S ?=,则边BC 的长为( ) A B .3 C D .7 8.已知△ABC 中,2cos c b A =,则△ABC 一定是 A 、等边三角形 B 、等腰三角形 C 、直角三角形 D 、等腰直角三角形 9.在△ABC 中,角C B A ,,的对边分别为,,a b c ,若22241c b a + =,则c B a c o s 的值为( ) A.41 B. 45 C. 85 D.8 3 10.设△ABC 的内角A,B,C 所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C 等于( ) (A) π3 错误!未找到引用源。(B) 2π3 错误!未找到引用源。 (C)错误!未

初三相似三角形的判定培优同步讲义

初三相似三角形的判定培优同步讲义 学科教师辅导讲义 体系搭建 一、知识框架 二、知识概念 (一)相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形. 1、相似三角形是相似多边形中的一种; 2、应结合相似多边形的性质来理解相似三角形; 3、相似三角形应满足形状一样,但大小可以不同; 4、母子型:已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 5、斜交型: 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。 (有“反 A 共 角型”、“反 A 共角共边型”、 “蝶型”)b5E2RGbCAP 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂 直型”) 考点 1:三角形相似判定方法的运用 例 1、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点 D ,则图中相似三角形共有( ) A .1 对 B .2 对 C .3 对 D .4 对 p1EanqFDPw 例 2、如图,下列条件不能判定△ADB ∽△ABC 的是( ) A .∠ABD=∠ACB B .∠ADB=∠ABCDXDiTa9E3d C .AB 2 =AD?AC D .= 典例分析 A B C D A B C D E 12 A

A B B C C D D E E 124 1 2 E C B D A B C D E A E
( )
A D C B 例 3、已知:在梯形 ABCD 中,AD∥BC,∠ABC=90°,BC=2AD,E 是 BC 的中点,连接 AE、 AC.RTCrpUDGiT (1)点 F 是 DC 上一点,连接 EF,交 AC 于点 O(如图 1),求证:△AOE∽△COF; (2)若点 F 是 DC 的中点,连接 BD,交 AE 与点 G(如图 2),求证:四边形 EFDG 是菱形. 例 4、如图,在△ABC 中,AB=AC=1,BC=,在 AC 边上截取 AD=BC,连接 BD. (1)通过计算,判断 AD2 与 AC?CD 的大小关系; (2)求∠ABD 的度数. 考点 2:网格图中相似三角形的判定 例 1、下列四个三角形中,与图中的三角形相似的是() A.B.C.D. 实战演练 课堂狙击 1、下列命题中,是真命题的为() A.锐角三角形都相似

相似三角形及解直角三角形测试题

解直角三角形复习练习4 九年级数学培优试题 2.如图,△ABC中,AB=12,AC=15,为AB上一点,且,在AC上取一点,使以A、D、E 为顶点的三角形和△ABC相似,则AE等于 ( ) A. B.10 C.或10 D.以上答案都不对 3、(2013o宿迁)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是() A. B. C. D. (第3题图) 4.(2009泰安图18)如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线CM将△CMA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为。 A.6 B.3 C.4 D.5 6.(2013o连云港)在Rt△ABC中,∠C=90°,若sinA=,则cosA的值为() A. B. C. D. 7.(2013o荆门)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE= . (第7题图) 9. 如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC 面积的,那么点B′的坐标是( ) A.(3,2) B.(-2,-3) C.(2,3)或(-2,-3) D.(3,2)或(-3,-2) 二、填空题。 10.、如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD 交于G,若AE=4,EG=3,则EF= 。

11.(2013o十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为米. 12.(2013o荆州)如图,在高度是21米的小山A处没得建筑物CD顶部C处的仰角为30°,底部D处的俯角为何45°,则这个建筑物的高度CD= 米(结果可保留根号) 14.(2014?云南昆明,)如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E 处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是 cm 15、如图,已知是三个全等的等腰三角形,底边BC,CE,EG在同一条直线上,且AB=,BC=1,则BF=__________。 16.求值: +2sin30°-tan60°+cot450 17. 计算: 18. 计算: 19. 计算: + 20、如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:≈1.41,≈1.73). 21、已知:如图,正方形ABCD中,E为BD上一点,AE的延长线交CD于点F,交BC的延长线于点G,连结EC。(1)求证:△ECF∽△EGC;(2)若EF=,FG=,求AE的长。 23.(2014年山东泰安)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=; (2)若AB⊥AC,AE:EC=1:2,F是BC中点, 求证:四边形ABFD是菱形.

解三角形完整讲义

正余弦定理知识要点: 1、正弦定理:或变形: 2、余弦定理:或 3、解斜三角形的常规思维方法是: (1 )已知两角和一边(如A、B C),由A+B+C = n求C,由正弦定理求a、b; (2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = n求另一角; (3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = n求C, 再由正弦定理或余弦定理求c边,要注意解可能有多种情况; (4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = n求角C。 4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式? 5、解三角形问题可能出现一解、两解或无解的情况,这时应结合三角形中大边对大角定理及几何作图来帮助理解”。 6、已知三角形两边a,b,这两边夹角C,则S = 1/2 * absinC 7、三角学中的射影定理:在△ ABC中,,… &两内角与其正弦值:在△ ABC中,,… 【例题】在锐角三角形ABC中,有(B ) A. cosA>sinB 且cosB>sinA B. cosAsinB 且cosBsinA 9、三角形内切圆的半径:,特别地, 正弦定理 专题:公式的直接应用 1、已知中,,,,那么角等于() A. B. C. D. 2、在厶AB(中, a=, b =, B= 45°贝U A 等于(C ) A. 30 ° B. 60 ° C. 60 或120 ° D 30 或150 3、的内角的对边分别为,若,则等于() A. B. 2 C. D. 4、已知△ AB(中,,,则a等于(B ) A. B. C. D. 5、在△ AB(中, = 10 , B=60° ,C=4则等于(B ) A. B. C. D. 6、已知的内角,,所对的边分别为,,,若,,则等于.() 7、△ AB(中,,,,则最短边的边长等于(A ) A . B. C . D . & △ AB(中,,的平分线把三角形面积分成两部分,则( C ) A . B . C . D . 9、在△ AB(中,证明:。 证明: 由正弦定理得: 专题:两边之和 1、在厶AB(中, A= 60 ° B= 45 则a = (,)

相似三角形的综合应用(培优提高)

相似三角形的应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算. 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【知识回顾】 一、相似三角形的性质 (1)对应边的比相等,对应角相等. (2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方...... . (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 二、相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等. 【典型例题】 例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少? 例2:阅读以下文字并解答问题: 在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高 A B C Q M D N P E

度.在同一时刻的阳光下,他们分别做了以下工作: 小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米. 小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米. 小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m . (1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图). (3)请选择丙树的高度为( ) A 、6.5米 B 、5.75米 C 、6.05米 D 、7.25米 (4)你能计算出丁树的高度吗?试试看. 【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度. 图1 图2 图3 图4

解直角三角形(培优)

解直角三角形 1.(2015·湖南省衡阳市,第12题3分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔?? 顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为( ).?? ? A. B.51 C.D.101 2.(2015?浙江滨州,第12题3分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为( )?? A.逐渐变小? B.逐渐变大 C.时大时小? D.保持不变 3.如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为( )? ? (3题) (4题) A.(11﹣2)米B.(11﹣2)米 C.(11﹣2)米?D.(11﹣4)米

4.(2015?山东日照 ,第10题4分)如图,在直角?BAD 中,延长斜边BD 到点C,使DC =BD ,连接A C,若tanB =,则t an?CA D的值( )??? A.? B.? C .??D . 5.湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB 底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD 的高度为1米,则桥塔AB 的高度约为( ) ?? (6题) A.34米?B.?38米?C . 45米?D .?50米 6.如图,斜面AC的坡度(CD 与AD 的比)为1:2,A C=米,坡顶有一旗杆BC ,旗杆 顶端B 点与A 点有一条彩带相连,若AB =10米,则旗杆BC 的高度为( ) ?? A .5米 B.6米 C . 8米 D . 米? 二.填空题? 1. 如图,菱形ABCD 的边长为15,si n?BAC =,则对角线AC 的长为 . ? (1题) (2题) (3题) (5题)

必修5 解三角形复习讲义

解三角形复习 【知识梳理】 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 3.解决以下两类问题: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =;(唯一解) ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 (一解或两解) 4、三角形面积公式:111sin sin sin 222 C S bc ab C ac ?AB = A == B . 5.余弦定理: 形式一:A cos bc 2c b a 222?-+=,B cos ac 2c a b 222?-+=,C cos ab 2b a c 222?-+= 形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab 2c b a C cos 222-+=,(角到边的转换) 6.解决以下两类问题: 1)、已知三边,求三个角;(唯一解) 2)、已知两边和它们的夹角,求第三边和其他两个角;(唯一解)

相关文档
最新文档