试求图示梁的自振频率和主振型

试求图示梁的自振频率和主振型
试求图示梁的自振频率和主振型

10-18 试求图示梁的自振频率和主振型。

1

1图M 2

解: EI l 485311=δ,EI l 7687322=δ,EI

l 643

12-=δ 设21ωλ=

()()()242

121222112222111222111m m m m m m δδδδδδδλ--+±+=

EI ml 3110667.0=λ,EI ml 3

200661.0=λ 频率为

32

23112998.121,0618.31ml EI ml EI ====λωλω 第一主振型为1602

.0112

111122111-=--=ωδδm m Y Y 第二主振型为11602.01

2211122212=--=ωδδm m Y Y

简支梁固有频率及振型函数

简支梁横向振动的固有频率及振型函数的推导 一.等截面细直梁的横向振动 取梁未变形是的轴线方向为X 轴(向右为正),取对称面内与x 轴垂直的方向为y 轴(向上为正)。梁在横向振动时,其挠曲线随时间而变化,可表示为 y=y(x,t) (1) 除了理想弹性体与微幅振动的假设外,我们还假设梁的长度与截面高度之比是相当大的(大于10)。故可以采用材料力学中的梁弯曲的简化理论。根据这一理论,在我们采用的坐标系中,梁挠曲线的微分方程可以表示为: 22y EI M x ?=? (2) 其中,E 是弹性模量,I 是截面惯性矩,EI 为梁的弯曲刚度,M 代表x 截面处的弯矩。挂怒弯矩的正负,规定为左截面上顺时针方向为正,右截面逆时针方向为正。关于剪力Q 的正负,规定为左截面向上为正,右截面向下为正。至于分布载荷集度q 的正向则规定与y 轴相同。在这些规定下,有: M Q Q q x x ??==??, (3) 于是,对方程(2)求偏导,可得: 222222(EI )(EI )y M y Q Q q x x x x x x ??????====??????, (4) 考虑到等截面细直梁的EI 是常量,就有:

3434y y EI Q EI q x x ??==??, (5) 方程(5)就是在等截面梁在集度为q 的分部李作用下的挠曲微分方程。 应用达朗贝尔原理,在梁上加以分布得惯性力,其集度为 22 y q t ρ?=-? (6) 其中ρ代表梁单位长度的质量。假设阻尼的影响可以忽略不计,那么梁在自由振动中的载荷就仅仅是分布的惯性力。将式(6)代入(5),即得到等截面梁自由弯曲振动微分方程: 4242y y EI x t ρ??=--?? (7) 其中2 /a EI ρ=。 为求解上述偏微分方程(7),采用分离变量法。假设方程的解为: y(x,t)=X(x)Y(t) (8) 将式(8)代入(7),得: 22424 1Y a d X Y t X dx ?=-? (9)

模态振型固有频率基本理论

模态分析技术发展到今天已趋成熟,特别是线性模态理论(通常所说的模态分析均是指线性模态分析)方面的研究已日臻完善,但在工程应用方面还有不少工作可做。首先是如何提高模态分析的精度,扩大应用范围。增加模态分析的信息量是提高分析精度的关键,单靠增加传感器的测点数目很难实现,目前提出的一种激光扫描方法是大大增加测点数的有效办法,测点数目的增加随之而来的是增大数据采集与分析系统的容量及提高分析处理速度,在测试方法、数据采集与分析方面还有不少研究工作可做。对复杂结构空间模态的测量分析、频响函数的耦合、高频模态检测、抗噪声干扰……等等方面的研究尚需进一步开展。模态分析当前的一个重要发展趋势是由线性向非线性问题方向发展。非线性模态的概念早在1960年就由Rosenberg提出,虽有不少学者对非线性模态理论进行了研究,但由于非线性问题本身的复杂性及当时工程实践中的非线性问题并示引起重视,非线性模态分析的发展受到限制。近年来在工程中的非线性问题日益突出,因此非线性模态分析亦日益受到人们的重视。最近已逐步形成了所谓非线性模态动力学。关于非线性模态的正交性、解耦性、稳定性、模态的分叉、渗透等问题是当前研究的重点。在非线性建模理论与参数辨识方面的研究工作亦是当今研究的热点。非线性系统物理参数的识别、载荷识别方面的研究亦已开始。展望未来,模态分析与试验技术仍将以新的速度,新的内容向前发展。 模态振型是一个相对量,通常是一个列向量,二维以上的系统其模态振型不是一个数。一个数对应单模态,其数值无意义。某模态频率下的模态振型反映了在该模态频率下各自由度的相对位移的比值。如果系统的初始位移恰好等于模态频率下的模态振型(或与之成比例),则此时系统的自由响应中只会出现该模态频率。感谢欧阳中华教授的指点,我现在觉得自己当初确实对模态振型概念不清楚。模态振型是系统固有的振动形态,线性响应是振型线性叠加的结果,但振型之间是独立不耦合的。振型是个相对量,所以就有了多种振型归一划的方法。振型是个很重要的固有特征,正如楼上所说用于验证固有频率。 我觉得振型在判别你计算固有频率正确性是非常有用的,比如,通过有限元计算得到了模型的前十阶固有频率,试验模态分析也得到了低阶的固有频率,假设计算的某阶固有频率与试验的某阶固有频率非常接近,但是并不能马上说明他们是同一阶的,需要通过振型来判断。 其他的不知道,但是之所以引入模态的概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来。从能量角度说,这样各个振型之间就没有能量的交换。 从数学上看,对响应函数级数展开后,其中的各项构成各阶模态,而级数展开形

二维梁的固有频率和振型

一、综合实验题目和要求 题目:求一二维梁的固有振型和频率。 要求:用有限元理论,求一二维梁的固有振型和频率: (1) 用二维梁有限元对梁进行分析数值计算求出其主振型向量和频率; (2) 求出其理论精确解,精确主振型向量和频率; (3) 将理论结果和计算结果进行比较。 二、程序流程图

三、实验结果 1.前六阶振型 同一有限元数不同阶数比较(以有限元20为例)如下图所示:

00.10.20.30.40.50.60.70.80.9 一阶 -0.8 -0.6-0.4-0.200.20.40.60.81 二阶 -0.8 -0.6-0.4-0.200.20.40.60.81 三阶

-0.8 -0.6-0.4-0.200.20.40.60.8 四阶 -0.8 -0.6-0.4-0.200.20.40.60.81 五阶 -0.8 -0.6-0.4-0.200.20.40.60.81 六阶 四、实验分析

对于二维梁有限元的划分(以下只对二维梁而言),要根据需求精度进行合理划分,既兼顾精度,同时也兼顾计算量(随着计算精度的提高,单元数量增加,相应计算量也会增加,计算时间也会增加),经过试验随着单元数量增加,其计算精度也不段提高,当将梁分到七单元时,通过计算得到的主振型和频率和理论值吻合的非常好。当梁取一单元时(elementno=1),由于梁总体只有两自由度,故只能得出前两阶主振型;当梁取二单元时(elementno=2),由于梁总体有四自由度,故只能得出前四阶主振型;对于梁取三单元(elementno=3)以及三单元以上(elementno>3)时,梁总体有六自由度以及更高自由度,这里只画出前六阶主振型图。下六图是在elementno=20的情况下,通过计算,画出前六阶的主振型图(其中红线部分为理论主振型图,绿色五角星是计算在梁各单元节点处的振型,数量取决于梁单元划分的数目)。 五、源程序清单 clear all close all %各参数的设置 rou=2.7e3; %密度 A=1e-3;%横截面积 E=72e9; %弹性模量 L=1; %梁长 I=8.3333e-009;%截面惯性矩 elementno=input('输入有限元的数量:'); %有限元的数量 rodno=elementno+1;%节点数 alldimension=rodno*2; l=L/elementno; %单元刚度矩阵 ke=E*I/l^3*[12 -6*l -12 -6*l; -6*l 4*l^2 6*l 2*l^2; -12 6*l 12 6*l; -6*l 2*l^2 6*l 4*l^2]; %单元质量矩阵

某机翼结构的固有频率和振型分析

Open Journal of Acoustics and Vibration 声学与振动, 2019, 7(1), 12-19 Published Online March 2019 in Hans. https://www.360docs.net/doc/d816360296.html,/journal/ojav https://https://www.360docs.net/doc/d816360296.html,/10.12677/ojav.2019.71002 Analysis for Natural Frequency and Mode Shape of Wing Structure Liang Chen, Jinwu Wu, Hanqing Li College of Aero Engineering, Nanchang Hangkong University, Nanchang Jiangxi Received: Feb. 10th, 2019; accepted: Feb. 22nd, 2019; published: Mar. 1st, 2019 Abstract In this electronic document, the FEM is used to simulate and analyze the natural frequency and vi-bration mode of a certain UAV composite wing. By using the non-contact laser vibrometer equip-ment, in order to eliminate the influence of boundary conditions on the vibration characteristics of the wing structure, the vibration characteristics of the wing are measured by free boundary conditions, and the first 4 natural frequencies and vibrations of the composite wing are obtained. At the same time, the finite element simulation results are compared. The calculation results show that the simulation results are basically consistent with the experimental results. Keywords Wing Structure, Experimental Analysis, Natural Frequency, Mode Shape 某机翼结构的固有频率和振型分析 陈亮,吴锦武,李汉青 南昌航空大学飞行器工程学院,江西南昌 收稿日期:2019年2月10日;录用日期:2019年2月22日;发布日期:2019年3月1日 摘要 本文采用有限元和试验对某一无人机复合材料机翼的固有频率和振型进行仿真和实验分析。通过利用非接触式激光测振仪设备,为了消除边界条件对机翼结构振动特性的影响,采用自由边界条件进行了机翼振动特性测量,获得了复合材料机翼的前4阶固有频率和振型。同时对比了有限元仿真结果。计算结果表明,仿真结果与试验测试结果基本一致。

模态振型固有频率基本理论

模态振型是一个相对量,通常是一个列向量,二维以上地系统其模态振型不是一个数.一个数对应单模态,其数值无意义.某模态频率下地模态振型反映了在该模态频率下各自由度地相对位移地比值.如果系统地初始位移恰好等于模态频率下地模态振型(或与之成比例),则此时系统地自由响应中只会出现该模态频率. 感谢欧阳中华教授地指点,我现在觉得自己当初确实对模态振型概念不清楚.模态振型是系统固有地振动形态,线性响应是振型线性叠加地结果,但振型之间是独立不耦合地.振型是个相对量,所以就有了多种振型归一划地方法.振型是个很重要地固有特征,正如楼上所说用于验证固有频率. 文档来自于网络搜索 我觉得振型在判别你计算固有频率正确性是非常有用地,比如,通过有限元计算得到了模型地前十阶固有频率,试验模态分析也得到了低阶地固有频率,假设计算地某阶固有频率与试验地某阶固有频率非常接近,但是并不能马上说明他们是同一阶地,需要通过振型来判断. 文档来自于网络搜索 其他地不知道,但是之所以引入模态地概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来. 从能量角度说,这样各个振型之间就没有能量地交换. 文档来自于网络搜索 从数学上看,对响应函数级数展开后,其中地各项构成各阶模态,而级数展开形式本身要求各个基函数是相互正交地,也就是说:其实是把响应函数放到了一个函数空间里,各个展开项系数相当于这个响应在此函数空间里地坐标.文档来自于网络搜索 因为个自由度以上地系统往往都有耦合现象,例如方程*^^*中地、不同时为对角阵.但是从求解地角度来说,我们又希望其中地每个方程都是独立地,那样我们就可以像求解单自由度系统一样求解.我们就想能否选到合适地坐标系,使得运动完全不耦合,即系统质量矩阵和刚度矩阵同时为对角矩阵,称这样地坐标系为主坐标系,而模态坐标正是我们要寻找地主坐标.固有振型地正交性是指(以自由度为例),第一阶固有振动引起地作用力在第二阶固有振动上所做地功为零,即两种固有振动间无弹性势能地交换.同时也可证明振型地各阶导数间也是正交地. 文档来自于网络搜索 就像不同地坐标系下,对同一运动系统地表述会很不一样,表述同一运动系统地振型模态也可以有很多物理量地坐标系,当然其中很多都是很复杂地,对解决实际问题是没有实际意义和帮助地,只有那个特殊地正交状态地模态坐标,才是最简单最有用地坐标,因为它能把系统解耦,,这个特殊地坐标称之为主坐标,对应主振型,这个状态可以把方程解开,把问题解决掉,,文档来自于网络搜索 各阶模态是互相正交是为了解耦,使问题最简化.类似向量地分解,比方说,一个平面内力向量地分解方式有很多种,但采用直角正交分解最方便. 文档来自于网络搜索 主要从以后地解方程组时候要解耦考虑吧 模态正交,具体表现在模态振型存在正交,请注意“存在”,而这种正交是线性系统模态地基本特性,准确地说是固有特性,正因为存在这种正交特性,带来了运算时地广义坐标下地耦合矩阵变为模态坐标中.文档来自于网络搜索 地解耦,计算变得简单. 注:(对上段话地个人理解:线性系统具有正交特性,人们利用线性系统地正交特性,对线性模态进行解耦,使问题简化.)文档来自于网络搜索 .任一阶主振型地惯性力在另一阶主振型作为虚位移上所做地虚功之和为零 .任一阶主振型地惯性力只在各自地振型上做功,在另外地主振型上不做功 这是正交相应地物理解释,是模态振型正交地物理形式,所以不能用物理含义去证明其相应地数学表达. 上面模态正交地数学和物理形式和概念有解释清楚了,那么,为什么会正交呢?

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

悬臂梁各阶固有频率及主振形的测定试验

实验五 悬臂梁各阶固有频率及主振形的测定试验 一、实验目的 1、用共振法确定悬臂梁横向振动时的各阶固有频率。 2、熟悉和了解悬臂梁振动的规律和特点。 3、观察和测试悬臂梁振动的各阶主振型。分析各阶固有频率及其主振型的实测值与理论计算值的误差。 二、基本原理 悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析模型称为欧拉-伯努利梁。 运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程 1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。 梁各阶固有园频率为 A EI i i n 2 ρβω= (5-2) 对应i 阶固有频率的主振型函数为 ) ,3,2,1() sin (sin cos cos )( =-++- -=i x x sh L L sh L L ch x x ch x X i i i i i i i i i ββββββββ (5-3) 对于(5-1)式中的β,不能用解析法求解,用数值计算方法求得的一阶至四阶固有园频率和主振型的结果列于表5-1。 各阶固有园频率之比 1f ﹕1f ﹕1f ﹕1f ﹕… = 1﹕6.269﹕17.56﹕34.41﹕… (5-4) y A B x h L b 图5-1 悬臂梁振动模型 表(5-1)给出了悬臂梁自由振动时i =1~4阶固有园频率及其相应主振型函数。除了悬臂梁固定端点边界位移始终为零外,对于二阶以上主振型而言,梁上还存在一些点在振动过程中位移始终为零的振型节点。i 阶振型节点个数等于i -1,即振型节点个数比其振型的阶数小1。 实验测试对象为矩形截面悬臂梁(见图5-2所示)。在实验测试时,给梁体施加一个大小适当的激扰作用力,其频率正好等于梁体的某阶固有频率,则梁体便会产生共振,这时梁体变形即为该阶固有频率所对应的主振型,其它各阶振型的影响很小可忽略不计。用共振法确定悬臂梁的各阶固有频率及振型,我们只要连续调节激扰力,当悬臂梁出现某阶主振型且振动幅值最大即悬臂梁产生共振时,这时激扰力的频率就可以认为是悬臂梁的这一阶振动的固有频率。在工程实践中,最重要是确定振动系统最低的几阶固有频率及其主振型。本实验主要运用共振法测定悬臂梁一、二、三、四阶固有频率及其相应的主振型。

4.2多自由度系统的固有频率与主振型

4.2 多自由度系统的固有频率与主振型 一、固有频率和主振型 上节导出了多自由度系统的自由振动微分方程: 以及 考虑到系统的主振动是简谐振动,可设它为: (4-10) 将它分别代入(4-5)与(4-7)式,可得如下主振型方程 (4-11)以及 (4-12)如果引入系统矩阵的概念,可以将式(4-11)与(4-12)化成具有相同的形式,对(4-11)式两端乘以,可得 (4-13)这时,设系统矩阵为 (4-14)且令,则主振型方程(4-11)可化为 (4-15) 再设另一个形式的系统矩阵为 (4-16)且令,则主振型方程(4-12)可化为 (4-17)这样,主振型方程(4-15)与(4-17)就有着相同的形式。 注意到系统的刚度矩阵与柔度矩阵之间存在着互逆关系,即有

或 利用矩阵乘积的求逆公式,可知上述两种系统矩阵之间有着互逆关系: 还应该指出,尽管系统的刚度矩阵、柔度矩阵以及质量矩阵一般都是对称矩阵,但是其系统矩阵和一般已不再是对称矩阵。 现在来看系统固有频率与主振型问题。鉴于方程(4-15)与(4-17)属于同一形式,故只需讨论其中之一。 方程(4-15)可改写为 (4-18) 它有非零解的条件为 (4-19) (4-19)式称为系统的频率方程或特征方程。对它展开的结果,可得一个关于的次代数方程: (4-20) 它的个根成为系统的特征根,亦称矩阵的特征值。特征值与系统固有频率之间有如下关系: (4-21) 一般说来,次代数方程的个根,可以是单根,也可以是重根;可以是实数,也可以是复数。但是,在我们所考虑的情形中,由于系统质量矩阵是正定的实对称阵,刚度矩阵是正定的或半正定的,故所有特征值都是实数,并且是正数或零。事实上,由正定与半正定的条件,对于任何非零的,有 (4-22) 现对系统主振型方程 两端前乘以,得 考虑到条件式(4-22),自然就得出上述结论。 通常,刚度矩阵为正定(或半正定)的系统,称为正定系统(或半正定系统)。所以,上述结论可改述为:正定系统的特征值都是正的,而半正定系统的特征值是正数或零。

双简支梁固有频率及振型测量

《振动测试实验》实验报告? 南京航空航天大学 机械结构力学及控制国家重点实验室 二○一一年 ?注:实验报告完成后请以附件形式发送至:wt78@https://www.360docs.net/doc/d816360296.html, 邮件主题请写明:《振动测试实验报告》,姓名,学号,分班号(三班或四班)

一、实验目的 ?测量双简支梁的固有频率和振型。 ?理解多自由度系统振型的物理概念。 ?掌握多自由度系统固有频率和振型的简单测量方法。 二、实验原理图 简支梁固有频率和振型测试原理图 三、实验过程 1、将功率放大器“输出调节”旋至最小,“信号选择”置“外接”。打开各设备电源。 2、进入“双简支梁固有频率与振型测量”实验操作界面,使信号发生器的输出频率约为 30Hz,输出电压约为 1V 。调节功率放的“输出调节”,逐渐增大其输出功率直至质量块有明显的振动(观察并用手触摸)。 3、将信号发生器输出频率由低向高逐步调节,同时观察李萨育图形。当李萨育图为稳定的正椭圆时,信号发生器的频率读数即为第一阶固有频率。继续将

信号发生器的频率向高逐步调节,测出第二阶、第三阶固有频率。 4、再将信号发生器调到第一阶固有频率值,保持功率放大器的输出功率恒定(即:不再改变信号发生器的输出电压和功率放大器的输出功率),保持“参考”传感器的位置不变。将“测量”传感器从双简支梁的右端等距跑点,依次记下“测量”传感器在各个位置时的测量点与参考点传感器输出电压之比(即“测量点/参考点”的显示值)及其正负号。将其归一化即可得到第一阶振型,填“振型数据”表格。点击“振型图”或“振型动画”检验振型数据。 四、实验数据与分析 1、列出固有频率。 双简支梁的3个阶段的固有频率分别为: 一阶: 36.7Hz 二阶: 136.5Hz 三阶: 326.6Hz 一阶振型图

学习模态分析要掌握的的知识

模态分析中的几个基本概念 一、模态定义:物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示。 模态分析一般是在振动领域应用,每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性: 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型; 二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。 一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。 二、模态分析:模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。 有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。 实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。 一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。 三、振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 四、模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT及振型文件Jobnmae.MODE中,输出内容中也可以包含缩减

简支梁振动系统动态特性综合测试方法

目录 一、设计题目 (1) 二、设计任务 (1) 三、所需器材 (1) 四、动态特性测量 (1) 1.振动系统固有频率的测量 (1) 2.测量并验证位移、速度、加速度之间的关系 (3) 3.系统强迫振动固有频率和阻尼的测量 (6) 4.系统自由衰减振动及固有频率和阻尼比的测量 (6) 5.主动隔振的测量 (9) 6.被动隔振的测量 (13) 7.复式动力吸振器吸振实验 (18) 五、心得体会 (21) 六、参考文献 (21)

一、设计题目 简支梁振动系统动态特性综合测试方法。 二、设计任务 1.振动系统固有频率的测量。 2.测量并验证位移、速度、加速度之间的关系。 3.系统强迫振动固有频率和阻尼的测量。 4.系统自由衰减振动及固有频率和阻尼比的测量。 5.主动隔振的测量。 6.被动隔振的测量。 7.复式动力吸振器吸振实验。 三、所需器材 振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。 四、动态特性测量 1.振动系统固有频率的测量 (1)实验装置框图:见(图1-1) (2)实验原理: 对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。 (图1-1实验装置图) (3)实验方法: ①安装仪器 把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。 ②开机 打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。 ③测量 打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

简支梁自振频率测量(正弦扫频法)实验报告

实验2简支梁自振频率测量(正弦扫频法) 一、实验目的 以简支梁为例,了解和掌握机械振动系统幅频特性曲线的测量方法以如何由幅频特性曲线得到系统的固有频率,了解常用简单振动测试仪器的使用方法。 二、实验内容及原理 简支梁系统在周期干扰力作用下,以干扰力的频率作受迫振动。振幅随着振动频率的改变而变化。由此,通过改变干扰力(激振力)的频率,以其为横坐标,以振幅B为纵坐标,得到的曲线即为幅频特性曲线。 依据共振法测试简支梁的一阶、二阶固有频率,原理同实验三。用跳沙法观察简支梁一阶、二阶振型。 测试简支梁的振型,根据简支梁的长度,划分若干个单元格,依次标号。将信号发生器的频率调整到一阶固有频率处,观察简支梁的振动情况,在该频率下,分别测试每个单元的振幅。依据测得的振幅,通过归一化,绘出简支梁的一阶振型。 三、实验仪器及设备 机械振动综合实验装置(安装简支梁)1套 激振器及功率放大器1套 加速度传感器1只 电荷放大器1台

信号发生器1台 数据采集仪1台 信号分析软件1套 计算机1台 四、实验方法及步骤 1.将激振器通过顶杆连接到简支梁上(注意确保顶杆与激振器的中心线在一直线上),激振点位于简支梁中心偏左50mm处(已有安装螺孔),将信号发生器输出端连接到功率放大器的输入端,并将功率放大器与激振器相连接。 2.用双面胶纸(或传感器磁座)将加速度传感器粘贴在简支梁上(中心偏左50mm)并与电荷放大器连接,将电荷放大器输出端分别与数据采集仪输入端连接。 3.将信号发生器和功率放大器的幅值旋钮调至最小,打开所有仪器电源。设置信号发生器输出频率为10Hz,调节信号发生器的幅值旋钮使其输出电压为2V。调节功率放大器的幅值旋钮,逐渐增大其输出功率直至简支梁有明显的振动(用眼观察或用手触摸)。 4.将信号发生器输出频率由低向高逐步调节,观察简支梁的振动情况,若振动过大则减小功率放大器的输出功率。 5.保持功率放大器的输出功率恒定,将信号发生器的频率重新由抵向高逐步调节,记录调整频率的变化情况,采集各个调整频率下响应信号振动幅值对应的电压数据。 五、实验数据整理与分析

机械振动--盘轴扭振系统固有频率和主振型的计算

机械振动大作业 (盘轴扭振系统固有频率和主振型的计算) 学院:航空航天工程学部 班级:04040203班 姓名:李根 学号:2010040402093 2013年5月12号

盘轴扭振系统固有频率和主振型的计算 一:简化简化分析 分析该系统为非约束性盘轴扭振系统,并简化分析分析: :1.忽略轴的质量; 2.轴的刚度对盘的影响不做考虑; 3.将圆盘的质量集中于圆盘中心,不考虑圆盘厚度对系统的影响;4.系统为线弹性系统,盘为刚体。 对于非约束系统,其只存在刚度矩阵,不存在柔度矩阵,即不能对刚度矩阵求逆。 二:条件 圆盘: 1.几何尺寸:直径10.4d m =,厚度0.02h m =; 2.材料:杨氏模量112210(/)E N m =×,剪切模量1027.6910(/) G N m =×密度37800(/) kg m ρ=轴: 1.几何尺寸:直径20.04d m =,0.1a m =2.材料:杨氏模量112210(/)E N m =×,剪切模量1027.6910(/) G N m =×密度37800(/) kg m ρ=三(1):矩阵迭代法 1.1.概 概述(1):系统主振型方程为{}[]{}21A M K A ω???=??,引入动力矩阵[][]1 D M K ???=??。任

取一个经过归一化的假设阵型{}0A ,用动力矩阵[]D 前乘它,并对通过乘法运算新得到的阵型矢量进行归一化,则得:{}110[]{}D A a A =,式中1a 为新振型矢量归一化后的系数。 (2)若{}10{}A A ≠,从1{}A 开始,重复上述步骤得:{}121[]{}D A a A =,式中2a 为新振型矢量归一化后的系数。 (3):若{}21{}A A ≠,继续重复上述步骤,进过K 次矩阵乘法运算后,得到 {}1[]{}k k k D A a A ?=,在规定的有效位数内,{}1{}k k A A ?=时停止运算,此时的{}1k A ?即 为系统第一阶主振型(1){}A 的近似值,即:{}(1)1{}k A A ?≈,而这时的系数k a 即是系统第一阶固有频率平方倒数的近似值,即:211/k a ω≈。 该方法的精确度不依赖于假设阵型,假设阵型的好坏只影响迭代的次数。即使假设的固有频率域一阶主振型相差很远,经过充分的迭代运算,仍可求得足够精确的基频值。 求得第一阶主振型以后,利用主振型的正交性来清除掉假设阵型中的分量,然后再进行迭代求解可以是结果收敛于第二阶主振型。同理,如果我们在假设阵型中清除掉所有前s 阶这阵型分量,那么迭代的结果将得到第s+1阶固有频率及主振型。 引进清型矩阵:[]()j 1 {}{}[][]j T s j j A A M Q I M ==?∑()。由于实际计算中舍入误差的存在,每次迭 代后,所得的主振型中还包含前面几阶的主振型分量,因此每次计算前都要进行清型才能保证最后收敛的主振型。 2.2.计算程序 计算程序clc clear n=8; d1=0.4;%圆盘直径d1=0.4d2=0.04;%轴直径d2=0.04a=0.1;%轴几何尺寸 den=7800;%密度(轴和圆盘)G=7.69e+10;%剪切模量h=0.02;%圆盘厚度 J1=0.5*pi*den*h*(d1/2)^4;%转动惯量

固体力学作业薄板的振动的固有频率与振型

固体力学作业 薄板的振动的固有频率与振型 1、 问题 矩形薄板的参数如下 33150,100,5,210,0.3,7.9310/a mm b mm h mm E GPa v kg m ρ======? 求矩形薄板在 (1) 四边简支(2)四边固支 条件下的固有频率和振型 2、薄板振动微分方程 薄板是满足一定假设的理想力学模型,一般根据实际的尺寸和受力特点来将某个实际问题简化为薄板模型,如厚度要比长、宽的尺寸小得的结构就可以采用薄板模型。薄板在上下表面之间存在一个对称平面,此平面称为中面,且假定: (1)板的材料由各向同性弹性材料组成; (2)振动时薄板的挠度要比它的厚度要小; (3)自由面上的应力为零; (4)原来与中面正交的横截面在变形后始终保持正交,即薄板在变形前中面的法线在变形后仍为中面的法线。 为了建立应力、应变和位移之间的关系,取空间直角坐标Oxyz ,且坐标原点及xOy 坐标面皆放在板变形前的中面位置上,如图 1所示。设板上任意一点a 的位置,将由变形前的坐标x 、y 、z 来确定。 图 1 薄板模型 根据假定(2),板的横向变形和面内变形u 、v 是相互独立的。为此,其弯曲变形可由中面上各点的横向位移(,,)w x y t 所决定。根据假定(4),剪切应变分量为零。由薄板经典理论,可以求得板上任意一点(,,)a x y z 沿,,x y z 三个方向的位移分量,,a a a u v w 的表达式分别为

() a a a w u z x w v z y w w ?=-??=-?=+ 高阶小量 (1.1) 根据应变与位移的几何关系可以求出各点的三个主要是应变分量为 22 22 22a x a y a a xy u w z x x v w z y y u v w z y x x y εεγ??==-????==-?????=+=-???? (1.2) 胡克定律,从而获得相对应的三个主要应力分量为: 2222 222222222()()11()()111x x y y y x xy xy E Ez w w x y E Ez w w y x Ez w G x y σεμεμμμσεμεμμμτγμ??=+=-+--????=+=-+--???==- +?? (1.3) 现画薄板微元的受力图如图 2所示。 图 2所示中x xy x y yx y M M Q M M Q 、和、、和分别为OB 面、OC 面上所受到的单位长度的弯矩、扭矩和横切剪力。弯矩和扭矩都用沿其轴的双剪头表示。M x 、M y 是由正应力σx 、 σx 引起的合力矩。扭矩是由剪切力τxy 引起的合力矩。 图 2 薄板应力示意图 p (x ,y ,t )=P (x ,y )f (t )为具有变量分离形式的外载荷集度,沿z 轴方向。应用动静法计算时, 沿z 轴负方向有一虚加惯性力22w h dxdy t ρ??,根据0z F =∑,0y M =∑,0y M =∑则 有

Ansys_第13例弦的横向振动转子的固有频率分析

第13例有预应力模态分析实例—弦的横向振动本例介绍了利用ANSYS进行有预应力模态分析的方法、步骤和过程,并使用解析解对有限元分析结果进行了验证。有预应力模态分析分为两大步骤:首先进行结构静应力分析,并把静应力作为预应力施加在模型上;其次进行模态分析。 13.1概述 有预应力模态分析用于计算有预应力结构的固有频率和振型,例如,对高速旋转的锯片的分析。除了首先要进行静力学分析把预应力施加到结构上外,有预应力模态分析的过程与普通的模态分析基本一致。 (1)建模并进行静力学分析。当进行静力学分析时,预应力效果选项必须打开(PSTRES,ON),关于集中质量的设置( LUMPM)必须与随后进行的有预应力模态分析一致。静力学分析过程与普通的静力学分析完全一致。 (2)重新进入Solution,进行模态分析。同样,预应力效果选项也必须打开(PSTRES,ON)。另外,静力学分析中所生成的文件Jobname.EMAT和Jobname.ESAV 必须都存在。 (3)扩展模态后在后处理器中查看它们。 13.2问题描述及解析解 图13-1所示为一被紧的琴弦,已知琴弦的横截面面积A=10-6m2,长度L=1m,琴弦材料密度ρ=7800 kg/m3,紧力T=2000 N,计算其固有频率。根据振动学理论,琴弦的固有频率计算过程如下:

琴弦单位长度的质量 γ=ρA =7800×10?6=7.8×10?3kg/m 波速 α=√T γ=√2000 7.8×10?3 =506.4m/s 琴弦的第i 阶固有频率 ?i = ia 2L =i ×506.42×1 =253.2iHz (i =1,2,… 按式(13-1)计算出琴弦的前10阶频率,如表13-1所示。 13.3分析步骤 13.3.1 改变任务名 拾取菜单Utility Menu →File →Change Jobname ,弹出如图13-2所示的对话框,在“[/FILNAM]”文本框中输入EXAMPLE13,单击“OK ”按钮。 图13-2 改变任务名对话框 13.3.2选择单元类型 拾取菜单Main Menu →Preprocessor →Element Type →Add/Edit/Delete ,弹出如图13-3所示的对话框,单击“Add …”按钮,弹出如图13-4所示的对话框,

简支梁固有频率分析

简支梁固有频率分析 假设有一钢制简支梁,密度为7800Kg/m 3弹性模量E 为210MPa ,泊松比μ 为0.3,长度L 为10m,横截面为一个1m*1m 的正方形。 对应于i 大于等于2的各个特征值可取为: 梁的固有频率相应的为: 各个振形函数为: 利用Ansys 对盖梁进行有限元分析,采用单元类型为Beam,得到的固有频率表为: ***** INDEX OF DA TA SETS ON RESULTS FILE ***** SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE 1 23.43 2 1 1 1 2 92.60 3 1 2 2 3 129.72 1 3 3 4 204.33 1 4 4 5 353.89 1 5 5 6 389.30 1 6 6 7 535.71 1 7 7 8 649.26 1 8 8 9 744.02 1 9 9 10 909.86 1 10 10 Λ,4,3,2,21=??? ? ?+≈i i l i πβΛ ,2,1,/2 ==i EI i i ρβω)sin (cos )(x x sh x x ch x X i i i i i i ββγββ-+-=

而通过理论计算所得的10阶固有频率为(取f i=ωi/2π):1阶23.528 2阶94.113 3阶211.755 4阶376.454 5阶588.209 6阶847.021 7阶1152.889 8阶1505.815 9阶1905.780 10阶2352.836 Ansys做出的10阶振形曲线前五阶为: 1阶:

梁的振动实验报告

《机械振动学》实验报告 实验名称梁的振动实验 专业航空宇航推进理论与工程 姓名刘超 学号 SJ1602006 南京航空航天大学 Nanjing University of Aeronautics and Astronautics 2017年01月06日

1实验目的 改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。对比理论计算结果与实际测量结果。正确理解边界条件对振动特性的影响。 2实验内容 对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。 3实验原理 3.1 固有频率的测定 悬臂梁作为连续体的固有振动,其固有频率为: ()1,2,.......r r l r ωλ==其中, 其一、二、三、四阶时, 1.87514.69417.854810.9955.....r l λ=、、、 简支梁的固有频率为: ()1,2,.......r r l r ωλ==其中 其一、二、三、四阶时, 4.73007.853210.995614.1372.....r l λ=、、、 其中E 为材料的弹性模量,I 为梁截面的最小惯性矩,ρ为材料密度,A 为梁截面积,l 为梁的长度。 试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm. 材料参数: 45#钢,弹性模量E =210 (GPa), 密度ρ=7800 (Kg/m 3) 横截面积:A =4.33*10-4 (m 2), 截面惯性矩:J =3 12 bh =2.82*10-9(m 4) 则梁的各阶固有频率即可计算出。

3.2、实验简图 图1 悬臂梁实验简图 图2简支梁实验简图

两端悬挂梁各阶固有频率及主振形的测定试验

两端悬挂梁各阶固有频率及主振形的测定试验 一、实验目的 1、用共振法确定两端悬挂梁横向振动时的前五阶固有频率; 2、熟悉和了解两端悬挂梁振动的规律和特点; 3、观察和测试两端悬挂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。 二、仪器和设备 两端悬挂支座;脉冲锤1个;圆形截面钢梁标准件一个;加速度传感器一个;LMS振动噪声测试系统。 三、实验基本原理 实验基本同悬臂梁实验 四、实验结果记录 前五阶固有频率表 阶数固有频率(Hz) 1 8.4735 2 54.6935 3 152.1624 4 295.9601 5 490.4713

实验测得前5阶振型图如下: 1阶振型图 2阶振型图 3阶振型图

4阶振型图 5阶振型图 五、ANSYS有限元模拟仿真结果 5.1前五阶固有频率仿真数据

5.2前五阶振型仿真图 1阶振型仿真图 2阶振型仿真图 3阶振型仿真图

4阶振型仿真图 5阶振型仿真图 六、结果误差分析 悬臂梁理论计算固有频率理论值、有限元仿真值与实测值表 梁几何尺寸 梁长 L=1m 梁直径D=12mm 固有频率(Hz ) 1f 2f 3f 4f 5f 实验值 8.4735 54.6935 152.1624 295.9601 490.4713 有限元仿真值 0 53.884 148.43 290.69 479.87 结论:由以上表可以看梁一阶频率的实验值和仿真值完全不同,并且仿真值为0,其余四阶的数值比较接近,推测出现此结果的原因是:

(1)有限元仿真中梁为无约束梁,其六个自由度均未约束,因此会出现前六个仿真值均接近0的情况,即悬挂梁不存在一阶振型。 (2)由于悬挂梁的六个自由度都未约束,实际震动中会将能量分散到整个空间,因此难以测得悬挂梁的一阶固有频率。

相关文档
最新文档