一步法合成二甲基丙烯酸锌1

一步法合成二甲基丙烯酸锌1
一步法合成二甲基丙烯酸锌1

丙烯酸树脂的合成

实验一溶剂型丙烯酸酯的合成实验(演示实验) 一、实验目的 了解涂料用热塑性丙烯酸酯树脂的合成方法。 二、实验原理 涂料用丙烯酸酯树脂的合成,可采用溶液聚合,乳胶聚合,本体聚合和悬浮聚合及非水分散聚合,其中以前两种方法最常用。 溶剂型丙烯酸酯树脂可分为热塑性和热固性两大类。热塑性丙烯酸酯树脂涂料的成膜主要是通过溶剂的挥发,分子链相互缠绕形成的。因此,漆膜的性能主要取决于单体的选择,分子量大小和分布及共聚物组成的均匀性。漆膜的性能如光泽,硬度,柔韧性,附着力,耐腐蚀性,耐候性和耐磨性等都与上述因素有关。漆用热塑性丙烯酸酯树脂的分子量一般在30000-130000之间,共聚物组成的均一性主要是通过分批逐步增量投入反应速度快的单体来实现的。漆膜的硬度,柔韧性等机械性能又与其玻璃化转变温度(T g)有直接的关系,共聚物的T g可由Fox 公式近似计算。 对于溶剂型清漆的配方设计,溶剂的选择极为重要,良溶剂使体系的粘度降低,固含量增加,树脂及其涂料的成膜性能好,不良溶剂则相反。选择溶剂时主要取决于溶剂的成本,对树脂的溶解能力,挥发速度,可燃性和毒性等。成膜物质可以由一种或多种热塑性丙烯酸酯树脂组成,也可以与其他成膜物质合用来改进其性能,混溶性好而常用的有硝酸纤维素,醋酸丁酸纤维素,乙基纤维素,氯乙烯-醋酸乙烯树脂以及过氧乙烯树脂等,它们在配方中的比例,可根据产品技术要求选择。 热塑性丙烯酸酯清漆表现了丙烯酸酯树脂的特点,具有较好的色泽,耐大气,保光,保色等性能,在金属,建筑,塑料,电子和木材等的保护和装饰上起着越来越重要的作用。 三、实验仪器和试剂 电动搅拌机,电动热套,四口烧瓶(250ml),球形冷凝管,温度计,涂-4

聚氨酯丙烯酸酯的合成及应用

聚 氨 酯 丙 烯 酸 酯 的 合 成 及 应 用 姓名:樊荣 学号:2009296015 专业:化学 化学化工学院

聚氨酯丙烯酸酯的合成及应用 樊荣 2009296014 化学 (山西大学化学化工学院山西太原030006) 摘要:聚氨酯丙烯酸酯(PUA)体系综合了聚氨酯树脂和丙烯酸酯树脂各自的优点,使得该体系具有耐溶剂性,耐低温性,耐磨性,耐热冲击性,柔韧性和良好的粘结性,成为目前研究比较活跃的体系。本文就对近年来聚氨酯丙烯酸酯的一些合成方法、性能研究及在各个领域中的应用景做一个简单的综述。 关键字:聚氨酯丙烯酸酯合成性能应用前景 Synthesis of polyurethane acrylate and its application Fan rong 2009296014 chemical (Chemistry and Chemical Engineering of Shanxi University, Taiyuan, Shanxi 030006) Abstract: polyurethane acrylate (PUA) system integrated polyurethane resin and acrylic resin and their respective advantages, so that the system is solvent resistance, low temperature resistance, wear resistance, thermal shock resistance, flexibility and good adhesion, becomes the present study comparing active system. The article in recent years polyurethane acrylate some synthetic methods, properties and applications in various fields of king to do a simple review. Keywords: acrylate polyurethane ,synthesis ,properties , potential applications 前言 聚氨酯丙烯酸酯(PUA)的分子中含有丙烯酸官能团和氨基甲酸酯键,固化后的胶黏剂具有聚氨酯的高耐磨性、粘附力、柔韧性、高剥离强度和优良的耐低温性能以及聚丙烯酸酯卓越的光学性能和耐候性,是一种综合性能优良的辐射固化材料。该体系涂料已经广泛应用于金属、木材、塑料涂层,油墨印刷,织物印花,光纤涂层等方面.目前,PUA已成为防水涂料领域应用非常重要的一大类低聚物,鉴于PUA固化速度较慢、价格相对较高,在常规涂料配方中较少以PUA为主体低聚物,往往作为辅助性功能树脂使用,大多数情况下,配方中使用PUA主要是为了增加涂层的柔韧性、降低应力收缩、改善附着力。但是由于PUA树脂优异的性能,对PUA的研究也日益增多,聚氨酯丙烯酸酯也逐步向跟其他类型的树脂共聚形成杂化体系,向水性体系发展,特别是水性体系因直接采用水稀释降低粘度,使制成的涂料更加环保和健康,减少了活性单体的使用,在很大程度上弥补了PUA树脂价格贵的不足,可以扩大PUA树脂的应用范围,同时减少甚至不使用单体,有效地降低了防水涂料的收缩,减少固化时的内应力,增加涂料的附着力和提高涂膜的柔韧。

MSDS危险化学品安全技术说明书——32072--2-甲基丙烯醛

化学品安全技术说明书 第一部分化学品及企业标识 化学品中文名:2-甲基丙烯醛;异丁烯醛 化学品英文名:2-methylacrolein;methacrolein 企业名称: 生产企业地址: 邮编: 传真: 企业应急电话: 电子邮件地址: 技术说明书编码: 第二部分成分/组成信息 √纯品混合物 有害物成分浓度CAS No. 2-甲基丙烯醛78-85-3 第三部分危险性概述 危险性类别:第3.2类中闪点液体 侵入途径:吸入、食入、经皮吸收 健康危害:对眼、呼吸道粘膜及皮肤有强烈刺激作用。吸入可引起喉、支气管的炎症、水肿和痉挛,化学性肺炎或肺水肿。 环境危害:对环境有害。 燃爆危险:易燃,其蒸气与空气混合,能形成爆炸性混合物。容易自聚。在空气中久置后能形成有爆炸性的过氧化物。 第四部分急救措施

皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗。如有不适感,就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗10~15分钟。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮足量温水,催吐。就医。 第五部分消防措施 危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热极易燃烧爆炸。与氧化剂接触猛烈反应。受热分解产生有毒的烟气。容易自聚,聚合反应随着温 度的上升而急骤加剧。蒸气比空气重,沿地面扩散并易积存于低洼处,遇 火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。 有害燃烧产物:一氧化碳。 灭火方法:用泡沫、干粉、二氧化碳、砂土灭火。 灭火注意事项及措施:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。 尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结 束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上 撤离。用水灭火无效。 第六部分泄漏应急处理 应急行动:消除所有点火源。根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴正压自给式呼吸 器,穿防毒、防静电服。作业时使用的所有设备应接地。禁止接触或跨越 泄漏物。尽可能切断泄漏源。防止泄漏物进入水体、下水道、地下室或密 闭性空间。小量泄漏:用砂土或其它不燃材料吸收。使用洁净的无火花工 具收集吸收材料。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,减少蒸 发。喷水雾能减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用 防爆泵转移至槽车或专用收集器内。 第七部分操作处置与储存

丙烯酸酯类树脂的合成工艺进展

丙烯酸酯类树脂的合成工艺进展 1215511121 12精细化工(1)班 摘要:自1843年Joseph Redtenbacher 首先发现丙烯酸单体以来,人们一直对这类具有活性的有机化合物不断地从结构与性能上进行探讨,合成各类的丙烯酸树脂。丙烯酸树脂是由丙烯酸酯类和甲基丙烯酸酯类及其它烯属单体共聚制成的树脂,通过选用不同的树脂结构、不同的配方、生产工艺及溶剂组成,可合成不同类型、不同性能和不同应用场合的丙烯酸树脂,丙烯酸树脂根据结构和成膜机理的差异又可分为热塑性丙烯酸树脂和热固性丙烯酸树脂。丙烯酸类树脂的生产方式主要有本体聚合、悬浮聚合、乳液聚合。 关键词:丙烯酸酯类树脂,合成工艺,进展 1.丙烯酸类树脂的合成工艺 1.1丙烯酸类树脂复合材料的制备 丙烯酸类树脂复合材料是含丙烯酸类树脂的由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。互穿网络具有良好的阻尼性能而引起了各地科学家的重视,暨南大学的将笃孝【1】等人以甲基丙烯酸丁酯和聚氧硅烷为主要原料,制备了聚丙烯酸酯/聚氧硅烷互穿网络阻尼材料。并用院子力显微镜对聚丙烯酸酯/聚氧硅烷互穿网络阻尼材料的微相结构观察表明,聚丙烯酸酯/聚氧硅烷互穿网络阻尼材料的微相结构的阻尼性能,有效的互传和一定程度的微相分离,才使材料具有良好的阻尼性能。 原位插层聚合法聚合制备聚合物基无机纳米复合材料是近年来研究最多的。鲍艳【2】等人采用原位插层聚合法成功制备了PMAA/MMT和P(MMA-AL/MMT)两种纳米复合材料。所制备的两种纳米复合材料均为剥离型纳米复合材料,纳米复合材料的热性能较相应的聚合物提高了20℃左右,应用结果表明另种纳米复合材料均具有鞣制性能,其应用性能较显影聚合物有所提高。 1.2丙烯酸类树脂微球的制备 反应性凝胶是一种分子内交联,表面或者内部带有一定火星集团的大分子, 由于具有独特的结构和流变性能而广泛应用于生物医药、涂料与软了、、石油开采等方面。微凝胶最常用的制备方法是乳液聚合和溶液聚合。张静【3】等采用疏水性较强的带有长脂肪链的丙烯酸单体进行共聚,利用分散合成聚合法合成了带有不同反应性基团的丙烯酸酯类微凝胶。张静等人还发现当丙烯酸十六酯用量为30mol%~40mol%,三羟甲基丙烷三甲基丙烯酸酯的用量为5mol%时可得到平均微径为25nm左右的微凝胶颗粒。 熊圣东【4】等人通过微博辐射分散聚合制备分散聚甲基丙烯酸甲酯微球。但分散聚合物微球具有比表面积大,吸附性强,表面反应能力高等特异性。在环境保护、生物医学、胶体科学等领域都有广泛的应用。熊圣东等以乙醇/水位分散介质,在微博辐射下制得了微径为250nm~400nm的PMMA微球,其研究表明,当分散介质中乙醇的质量分数位40%~50%时能得到稳定的聚合物微球。随着聚合反应前期微博功率的增加,微球的粒径增大,粒径分布先变小后变大。随着AIBN浓度的增加,微球粒径增大,粒径分布先变窄后变宽。微球半径大小和粒径分布都岁PVP浓度的增大而减少。 1.3含氟丙烯酸类树脂的制备 氟化丙烯酸酯聚合物中的C-F键键能大(460J/mol),稳定性很高,螺旋状排列的氟原子对碳珠帘起到很好的“屏蔽保护”作用,有效地防止了碳原子和贪恋的暴露,使得氟化丙烯酸酯聚合物具有优异的耐后行,耐腐蚀性,耐化学戒指等性能。【5】

丙烯酸酯类单体的物理性质

丙烯酸酯类单体的性质 单体名称分子量沸点/℃相对密度 (d25)折射率 (n D25) 溶解度(25℃)/ (份/100份 水) 用途健康危害玻璃化温 度/℃ 丙烯酸AA 72 141.6(凝固 点:13)1.051 1.4185 ∞涂料、塑料、 纺织、皮革、 造纸、建材 健康危害:该品对皮肤、眼睛和 呼吸道有强烈刺激作用 燃爆危险:该品易燃,具腐蚀性、 强刺激性,可致人体灼伤 106 丙烯酸甲酯MA 86 80.5 0.9574 1.401 5 橡胶、医药、 皮革、造纸、 粘合剂 健康危害:高浓度接触,引起流 涎、眼及呼吸道的刺激症状,长 期接触可致皮肤损害,亦可致肺、 肝、皮肤病变。 8 丙烯酸乙酯EA 100 100 0.917 1.404 1.5 涂料、粘合 剂、助剂健康危害:对呼吸道有刺激性, 高浓度吸入引起肺水肿。有麻醉 作用。眼直接接触可致灼伤。对 皮肤有明显的刺激和致敏作用。 燃爆危险:该品易燃,具刺激性, 具致敏性。[1] -22 丙烯酸正丁酯(n-BA)128 147 0.894 1.416 0.15 有机合成中 间体 低毒,轻度刺激性-55 丙烯酸异丁酯(i-BA)128 62(6.65kpa)0.884 1.412 0.2 有机合成中 间体 健康危害:吸入、口服或经皮肤 吸收对身体有害。其蒸气或雾对 眼睛、粘膜和呼吸道有刺激作用。 中毒表现有烧灼感、咳嗽、喘息、 -17 ’.

喉炎、气短、头痛、恶心和呕吐。 丙烯酸仲丁酯128 131 0.887 1.4110 0.21 -6 丙烯酸叔丁酯128 120 0.879 1.4080 0.15 纸张涂饰剂、 丙烯酸树脂 55 丙烯酸正丙酯 PA 114 114 0.904 1.410 1.5 -25 丙烯酸环己酯CHA 154 75(1.46kpa)0.9766 1.460 丙烯酸乳液 聚合物、丙烯 酸树脂 16 丙烯酸月桂酯240 129(3.8kpa)0.881 1.4332 0.001 涂料、粘合 剂、纺织整理 剂 -17 丙烯酸-2-乙基己酯2-EHA 184 213 0.880 1.4332 0.01 用于软性聚 合物,在共聚 物中起内增 塑作用 -67 丙烯酸-2-羟基乙酯HEA 116 82(655pa) 1.138 1.427 ∞辐射固化体 系的稀释剂 和交联剂 中毒,可燃;加热分解释放刺激烟 雾 -15 丙烯酸-2-羟基 丙酯HPA 130 77(655pa) 1.057 1.445 ∞胶黏剂、涂料-7 甲基丙烯酸MAA 86 163(凝固点: 15) 1.015 1.4185 ∞涂料、绝缘材 料、粘合剂 健康危害:本品对鼻、喉有刺 激性;高浓度接触可能引起肺 部改变。对皮肤有刺激性,可 130 ’.

2-甲基丙烯醛

1、物质的理化常数 CA 国标编号: 32072 78-85-3 S: 中文名称: 2-甲基丙烯醛 英文名称: 2-Methyl propenal;Metharolein 别名: 异丁烯醛 分子 分子式: C4H6O;CH2C(CH3)CHO 70.09 量: 熔点: -81℃ 密度: 相对密度(水=1)0.85; 蒸汽压: -15℃ 溶解性: 微溶于水,易溶于乙醇、乙醚 稳定性: 稳定 外观与性 无色液体,有强烈刺激性臭味 状: 危险标记: 7(易燃液体);40(有毒品) 用于共聚物和树脂制造,是甲基丙燃酸的生产原料和 用途: 热塑性塑料单体原料 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、以皮吸收。 健康危害:对眼、呼吸道粘膜皮肤有强烈刺激作用。吸入可引起喉、支气管的炎症、水肿和痉挛,化学性肺炎或肺水肿。 二、毒理学资料及环境行为 急性毒性:LD50111mg/kg(大鼠经口),364mg/kg(兔经皮) 危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂能发生强烈反

应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源引着回燃。若遇高热,可能发生聚合反应,出现大量放热现象,引起容器破裂和爆炸事故。 燃烧(分解)产物:一氧化碳、二氧化碳。 3.现场应急监测方法: 4.实验室监测方法: 气相色谱法,参照《分析化学手册》(第四分册,色谱分析),化学工业出版社 5.环境标准: 6.应急处理处置方法: 一、泄漏应急处理 疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。建议应急处理人员戴自给式呼吸器,穿厂商特别推荐的化学防护服(完全隔离)。不要直接接触泄漏物,在确保安全情况下堵漏。喷水雾会减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用活性炭或其它惰性材料吸收,收集运至废物处理场所处置。也可以用大量水冲洗,经稀释的洗水放入废水系统。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。 二、防护措施 呼吸系统防护:可能接触其蒸气时,应该佩戴防毒面具。紧急事态抢救或逃生时,佩带自给式呼吸器。眼睛防护:戴化学安全防护眼镜。 身体防护:穿相应的工作服。 手防护:戴防化学品手套。 其它:工作现场严禁吸烟。工作毕,沐浴更衣。保持良好的卫生习惯。 三、急救措施 皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗。

丙烯酸树脂合成原理

丙烯酸树脂合成原理 丙烯酸树脂合成原理 回答 纯钢结构2009-04-28 16:26:09 共聚物树脂 碳酸酯甲基丙烯酸丙酯200 甲基丙烯酸甲酯300 苯乙烯200 丙烯酸正丁酯270 甲基丙烯酸30 甲苯500 乙酸异丁酯200 叔丁墓过氧化物10 偶氮二异丁腈5 乙酸异丁酯300 叔丁基过氧化物10 偶氮二异丁腈5 zqiaoping2009-07-05 14:56:07 以环氧树脂和聚酯树脂为主要成膜物质的热固性粉末涂料。是当前粉末涂料中应用量最大的品种。常由环氧树脂、含羧基聚酯树脂、流平剂、少量安息香消泡剂、颜料以及咪唑或氧化锌催化剂等配合而成。装饰性(耐过度烘烤、流平性、外观丰满度)好,附着力等物性优良,成本较低,明显优于纯环氧粉末涂料,但

防腐蚀性、硬度稍差。大量用于冰箱、洗衣机、电风扇、工业缝纫机等室内轻工业家电制品的涂装。 克林斯曼-01-27 09:02:32 丙烯酸树脂是由丙烯酸酯类和甲基丙烯酸酯类及其它烯属单体共聚制成的树脂,通过选用不同的树脂结构、不同的配方、生产工艺及溶剂组成,可合成不同类型、不同性能和不同应用场合的丙烯酸树脂,丙烯酸树脂根据结构和成膜机理的差异又可分为热塑性丙烯酸树脂和热固性丙烯酸树脂。 用丙烯酸酯和甲基丙烯酸酯单体共聚合成的丙烯酸树脂对光的主吸收峰处于太阳光谱范围之外,所以制得的丙烯酸树脂漆具有优异的耐光性及户外老化性能。 热塑性丙烯酸树脂在成膜过程中不发生进一步交联,因此它的相对分子量较大,具有良好的保光保色性、耐水耐化学性、干燥快、施工方便,易于施工重涂和返工,制备铝粉漆时铝粉的白度、定位性好。热塑性丙烯酸树脂在汽车、电器、机械、建筑等领域应用广泛。 热固性丙烯酸树脂是指在结构中带有一定的官能团,在制漆时通过和加入的氨基树脂、环氧树脂、聚氨酯等中的官能团反应形成网状结构,热固性树脂一般相对分子量较低。热固性丙烯酸涂料有优异的丰满度、光泽、硬度、耐溶剂性、耐侯性、在高温烘烤时不变色、不返黄。最重要的应用是和氨基树脂配合制成氨基-丙烯酸烤漆,目前在汽车、摩托车、自行车、卷钢等产品上应用十分广泛。粉末涂料用丙烯酸树脂的制备工艺 丙烯酸树脂作为涂料用树脂,其应用范围非常广,技术也很成熟。如大家所熟悉的溶剂型涂料所采用的丙烯酸树脂,通常是采用溶液聚合法制备,个别品种采用悬浮法制备。在乳胶漆中则采用由乳液聚合法制备的聚合物乳液。然而粉末涂料由于是100%的固体材料,所以要求使用固体的丙烯酸树脂,而且要求挥发物含量<1%,因此引出了采用什么方法制备粉末涂料用丙烯酸树脂的话题。 1聚合方法的选择

丙烯酸树脂的合成及其应用

丙烯酸树脂的合成及应用 以丙烯酸酯、甲基丙烯酸酯以及苯乙烯(St)等乙烯基单体为主要原料合成的共聚物称为丙烯酸酯树脂(简称AR)。该类树脂具有色浅、保色、保光、耐候、耐腐蚀和耐污染等特点,已广泛应用于汽车、飞机、机械电子、家具、建筑、皮革、木材、造纸、印染、工业塑料及日用品涂饰等领域。其主要类型有溶剂型AR、水性AR、高固体组分AR和粉末型AR等。 通过选用不同的树脂结构、不同的配方、生产工艺及溶剂组成,可合成不同类型、不同性能和不同应用领域的丙烯酸树脂,丙烯酸树脂根据结构和成膜机理的差异又可分为热塑性丙烯酸树脂和热固性丙烯酸树脂。热塑性丙烯酸树脂在成膜过程中不发生进一步交联,因此它的相对分子量较大,具有良好的保光保色性、耐水耐化学性、干燥快、施工方便,易于施工重涂和返工,制备铝粉漆时铝粉的白度、定位性好。热塑性丙烯酸树脂在汽车、电器、机械、建筑等领域应用广泛。热固性丙烯酸树脂是指在树脂结构中带有一定的官能团,在制漆时通过加入的氨基树脂、环氧树脂、聚氨酯等树脂中的官能团反应形成网状结构,热固性树脂一般相对分子量较低。热固性丙烯酸涂料有优异的丰满度、光泽、硬度、耐溶剂性、耐侯性、在高温烘烤时不变色、不返黄。最重要的应用是和氨基树脂配合制成氨基-丙烯酸烤漆,目前在汽车、摩托车、自行车、卷钢等产品上应用十分广泛。1.水溶性丙烯酸树脂 随着人类对环境及健康的日益重视,水性涂料已获得了愈来愈广泛的应用。国内工业涂料的水性化水平和工业发达国家相比存在着很大差距。水性涂料面临的主要难题是在成本可接受的前提下如何提高产品的性能,使之达到与溶剂型漆相同或接近的水平,并进一步降低VOCs的排放量。水性涂料代表着低污染涂料发展的主要方向。为了不断改善其性能,扩大其应用范围,近半个世纪以来国内外对水性涂料进行了大量的研究。 水性丙烯酸酯树脂涂料在近几十年内得以迅速发展,除了它具有水性涂料的优缺点外,还与丙烯酸酯单体的结构有密切的关系。丙烯酸酯类单体中具有的碳碳不饱和双键经聚合反应生成丙烯酸树脂,该树脂的主链为碳-碳链,有很高的光、热和化学稳定性。因此由丙烯酸酯树脂制备的涂料具有很好的耐候性、耐污

丙烯酸酯橡胶

丙烯酸酯橡胶应用 一、前言:比重1.~1.1 丙烯酸酯橡胶(英文简称ACM)是以丙烯酸酯为主单体经共聚而得的弹性体,其主链为饱和碳链,侧基为极性酯基;通常要用硫化点单体参与共聚以使其易于硫化。由于一次结构为饱和碳链和极性侧基,赋予它很好的耐热、耐老化、耐油性能。被广泛地应用于各种高温、耐油环境,如轴封、O型圈、输油管和各种垫片等。特别是汽车的曲轴、汽门阀杆、汽缸垫、排汽管的密封和液压输油管等。有汽车胶的美称。根据机械部汽车司1995年的统计,国产车使用ACM密封件件数及单耗量如下 车型 件/辆 (ACM胶料) ACM单耗① (kg/辆) CA7220 0.7 上海“桑塔那”0.2 神龙“富康”0.5 TJ7100 0.1 CA21046L 4 0.7 南京“依维柯” 4 1.5 CA1092-Ⅱ 6 0.8 “EQ1092 ” 6 0.1 “EQ1141G ”11 0.3 标致505 0.7 JN “ 1491 ”20 7 ①已采用的部分关键部件的用量(按国际标准,平均为1.0~1.5kg/辆) 随着我国汽车工业的兴起和高速发展,一方面,引进汽车生产线的元件国产化和进口原装车备件的更换都急需ACM胶作耐油密封件。另一方面,我国原有的载重汽车及乘用汽车等也需要不断提高整车质量,延长大修时间。 加之汽车向高速、节油方向发展,这就要求汽车汽缸的燃烧温度不断提高,近年来随着我国高速公路飞速发展,也要求车速提高,各运转部位密封件的温度也相应提高,许多关键部件均需采用高性能的ACM作高温耐油密封件,以保证整车水平。因此,特种合成橡胶行业和特胶制品行业都急需集中精力研制开发并工业化生产适合汽车工业需要的各类ACM胶种及其制品,否则将难以改变ACM和制品长期依赖进口的局面。 与其它耐油橡胶相比,丙烯酸酯橡胶具有性能/价格比最优的特点。它长期使用温度180℃,短期使用温度可达210℃,在各种润滑油、燃料油中膨胀率较低(<10%),汽车变速箱用ACM制品密封可连续行驶15-20万公里而不漏油;而丁腈橡胶虽能耐油性能很好,但耐老化性能和耐温性能较差,汽车用丁腈橡胶密封制品连续使用温度仅为106℃,变速箱部位密封连续行驶仅8000-10000公里即开始漏油。丙烯酸酯橡胶是性能/价格比最优并被广泛地用于高温耐油环境的特种橡胶。 二、国内外ACM发展概况及主要品牌: 有关ACM的首篇报道始见于1912年德国的Otto Rohm [1] 的专利,他曾用硫磺使聚丙烯酸酯硫化获得了橡胶状物质,但没获得实用性制品。1944年,美国农业东部地区实验室的Fisher [2、3、4、5] 等人制得了丙烯酸乙酯与2-氯乙基乙烯醚共聚物,可很容易地用硫-硬脂酸皂系硫化。1948年,美国Goodrich公司首先实现了乳聚ACM的工业化,商品名称为Hycar PA-31 [6] ,后经改进更名为Hycar-4021,Hycar-4031。1963年美国American Cyanamid公司也开发生产了ACM,商品名称为Cyanacry1。六十年代中期日本油封公司、东亚油漆公司、瑞翁公司等先后开发生产了ACM。1978年美国杜邦公司又开发并生产溶聚

丙烯酸合成

一防污涂料用丙烯酸树脂的合成研究 1 实验部分 1. 1 试剂 丙烯酸、丙烯酸酯、甲基丙烯酸酯、偶氮二异丁腈、二甲苯、正丁醇均为分析纯试剂。 1. 2 实验仪器 NICOLET AVATAR - 360型红外光谱仪;WATERS515-410凝胶渗透色谱仪;NDJ-79型 旋转粘度计;RE-5299型旋转蒸发器;DF-101恒温水浴;D-8401型多功能搅拌器。 1. 3 丙烯酸预聚物的合成 实验前将丙烯酸类单体用旋转蒸发器进行减压蒸馏,得到纯的单体。取一定量的二甲苯与正丁醇的混合物放入四口瓶中,恒温水浴加热温度达80℃时,将一定质量配比的丙烯酸、甲基丙烯酸酯、丙烯酸酯以及偶氮二异丁腈的混合物装入烧杯中,溶解后,装入滴液漏斗中,将其安装在四口瓶上,开动搅拌装置,采用间歇加料法并控制滴液漏斗的流速,滴加完毕后再保温1小时左右。 二改性丙烯酸树脂皮革涂饰剂的合成

2实验部分 2.1主要材料 单体:甲基丙烯酸甲酯(MMA)、丙烯酸乙酯(EA)、丙烯酸丁酯(BA)、丙烯酸甲酯(MA)和丙烯酸(AA)均为工业品,除去阻聚剂后冷藏备用;N-羟甲基丙烯酰胺(化学交联剂)、引发剂过硫酸铵(APS)、乳 化剂十二烷基硫酸钠(SLS)和OS-15、氨水(28%)、碳酸氢钠(SBC)为市售化学纯,直接使用;螯合交联剂CL-01为实验室自制。 2.2实验仪器 GFU55多功能材料试验机,台湾高铁科技股份有限公司;Brookfield DV-II+Pro数显黏度计,美国Brookfield工程实验室公司;LS Particle Size Analyzer粒径分析仪,美国Coulter公司;皮革拉力机,苏州拓泓电子科技有限公司。 2.3实验方法 聚合反应在一个装有搅拌器、温度计、冷凝管、N2保护及加料装置的1 L四口烧瓶中进行,反应温度由一装有控温装置的水浴控制;按照一定配方和加料工艺进行乳液聚合反应。反应结束后,降温至40℃,用氨水调整乳液pH值至7~8,过滤,出料,即为PA乳液。

丙烯酸羟丙酯在保坍剂中的合成与应用研究

丙烯酸羟丙酯在保坍剂中的合成与应用研究 陶然 北京金隅混凝土有限公司 摘要:丙烯酸羟丙酯从缓释方面上解决了混凝土保坍性能的问题,PC分子以酯键的方式“存储”了羧酸基,酯键在水泥水化过程产生的碱性条件下,能够水解成羧酸和对应的醇,新水解的羧酸可以继续对水泥浆体产生分散作用,发挥缓释羧酸的效果,从而提高保坍性能。本文以聚羧酸系减水剂的合成理论为基础,探讨了丙烯酸羟丙酯在保塌剂中的最佳合成工艺和配比,以及丙烯酸羟丙酯对混凝土性能的影响。HPA对AA取代率在20%-40%时,减水率处在较高水平上,并在30%处达到最高。HPA对AA取代率在30%-40%时,净浆1h的保持性能良好,达到250-300mm。通过正交试验获得了最佳合程工艺参数,即 n(AA):n(H2O2):n(TPEG)=3.6:0.44:1,HPA对AA取代率为40%,反应温度为60℃。在HPA对AA取代率为20%-40%时,PC分子上的羧基由占大多数,过度到羧酸基与酯基的最优组合,此时混凝土由超流态转化为和易性极佳状态,所以含气量递减。在HPA取代率在20%-50%范围内,混凝土泌水率从13.8%降至0,混凝土状态从流态迅速过度到略干状态。 关键词:丙烯酸羟丙酯(HPA);取代率;保持性能。 前言:聚羧酸系外加剂在混凝土中具有举足轻重的地位,已成为现代混凝土不可或缺的组成部分。混凝土在长时间、长距离的运输时,会产生坍落度损失的现象,影响施工及混凝土性能。此外,随着温度的升高,混凝土坍落度损失亦较大,高强混凝土高温条件下损失更加明显。外加剂公司在实际应用中通常将葡萄糖酸钠、蔗糖、柠檬酸钠等缓凝剂与减水剂进行复配,以解决混凝土坍落度损失快的问题。然而事实上这些缓凝剂的加入并不能解决混凝土坍落度损失快的问题,且缓凝剂在温度较高的环境下容易变质,影响减水剂的使用性能[1]。因此,一种良好的保坍剂对混凝土持久性起着至关重要的作用。 丙烯酸羟丙酯从缓释方面上解决了混凝土保坍性能的问题,PC分子以酯键

丙烯酸酯的乳液合成方法

丙烯酸酯的乳液合成 一、实验目的 1.了解和掌握苯丙乳液合成的基本方法和工艺路线; 2.理解乳液聚合中各组成成分的作用和乳液聚合的机理; 二、实验原理 在乳液聚合过程中,乳液的稳定性会发生变化。乳化剂的种类、用量与用法、pH值、引发剂的类型、搅拌形状与搅拌速度、加料方式、聚合工艺等都会影响到聚合物乳液的稳定性。功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因其具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,会产生絮凝作用,极易破乳。因此选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要的意义。 聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。凝聚物的生成在乳液研究和生产中具有极大的危害性,它不仅降低单体的有效利用率,增加聚合装置的停机时间和处理的费用,而且还会加大各釜和各批次间产品性能的不一致性,污染环境。 目前比较权威的用于解释聚合物乳液稳定性的理论是双电层理论和空间位阻理论。乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。 乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布、乳液粒度也有着决定性的影响。如果所选用的乳化剂不适合本乳液聚合体系,则不论怎样改变乳化剂的浓度和调节聚合工艺参数,乳液聚合仍不能平稳进行或是所得到的乳液产品缺乏实用价值。离子型乳化剂的特点是乳化效率高,可有效地降低表面张力,胶束和乳胶粒子尺寸小,机械稳定性好,但由于其离子特性对电解质比较敏感;非离子型乳化剂对电解质有较好的稳定性,但机械稳定性不好,对搅拌速度比较敏感。离子型乳化剂主要靠静电斥力使乳液稳定,而非离子型乳化剂主要靠水化,两种乳化剂复合使用时,两类乳化剂分子交替吸附在乳胶粒子表面上,既使乳胶粒间有很大的静电斥力,又在乳胶粒表面形成很厚的水化层,二者双重作用的结果可使聚合物乳液稳定性大大提高。目前乳液聚合体系多采用阴离子型与非离子型复配乳化体系,所得乳液兼有粒子尺寸小、低泡和稳定性好的特点。 引发剂对整个聚合过程起差重要的作用,不同的引发剂制得的聚合物具有不同的分子结构及性能。乳液聚合引发剂分为两类:受热分解产生自由基的引发剂(如过硫酸铵APS、过硫酸钾KPS、过硫酸钠NPS、过氧化氢等无机过氧化物);有机过氧化物和还原剂组合可构成另一类引发剂。丙烯酸酯类共聚物乳液聚合体系中的引发剂多为水性的过硫酸盐,常用的有APS、KPS及NPS等。较适宜的引发剂量为单体总量的0.2%~0.8%,当引发剂用量为0.2%~0.4%时,制备的丙烯酸酯类共聚物乳液呈蓝相、乳液粒子的粒度小,并且稳定性好。

丙烯酸酯橡胶合成及应用

丙烯酸酯橡胶合成及应用 本论文采用乳液聚合法制备丙烯酸酯橡胶(ACM),探讨了引发剂体系对聚合反应速率的影响及反应条件对凝胶形成的影响;首次采用双螺杆脱挥连续溶液聚合法制备ACM,研究了聚合主单体的组成和脱挥条件对ACM生胶性能的影响;进行了ACM硫化工艺的优化,考察了硫化剂及炭黑用量对硫化胶性能的影响;采用了表面改性白炭黑填充环氧型ACM,对比了不同改性方法的白炭黑在橡胶基体中的分散性及对其力学性能的影响;探讨了环氧型ACM对尼龙6(PA6)的改性,主要研究热性能、结晶性能及力学性能方面的改性。具体包括以下几个方面:1、乳液聚合法制备ACM:将丙烯酸丁酯(BA)与甲基丙烯酸缩水甘油酯(GMA)进行乳液共聚合以制备环氧型ACM,通过对聚合反应速度和生胶性能的研究,探讨了聚合反应的方法及工艺参数;并通过对聚合物中凝胶含量及环氧基团开环率的对比研究,探讨不同反应条件对凝胶含量的影响。实验结果表明,在反应体系中加入一定量的第二单体丙烯酸乙酯(EA),选择氧化还原复合引发体系,同时将反应温度控制在25-30℃并在饥饿状态下投料可抑制BA的分子内转移和GMA中的环氧基开环,最终可以使聚合物中凝胶含量控制在2.9%以下,达到国外同类产品的水平。 2、连续溶液聚合法制备ACM:分别采用以BA和EA为聚合主单体合成ACM,研究主单体组成和脱挥条件的变化对ACM生胶性能的影响。改变聚合主单体的组成对分子量及分布和脱挥后残留的挥发份影响不大,但随着聚合主单体组成的变化,ACM的玻璃化温度发生变化。脱挥温度和脱挥挤出机转速的变化引起ACM分子量、玻璃化转变温度和脱挥后残留的挥发份的变化,脱挥温度提高,ACM的分子量有所增加,分子量分布宽度变宽,玻璃化转变温度升高;改变脱挥挤出机转速提高,ACM的分子量略有降低,分子量分布稍有变宽,玻璃化转变温度变化不大。

实验06 丙烯酸酯的乳液合成

实验一丙烯酸酯的乳液合成 一、实验目的 1.了解和掌握苯丙乳液合成的基本方法和工艺路线; 2.理解乳液聚合中各组成成分的作用和乳液聚合的机理; 二、实验原理 在乳液聚合过程中,乳液的稳定性会发生变化。乳化剂的种类、用量与用法、pH值、引发剂的类型、搅拌形状与搅拌速度、加料方式、聚合工艺等都会影响到聚合物乳液的稳定性。功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因其具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,会产生絮凝作用,极易破乳。因此选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要的意义。 聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。凝聚物的生成在乳液研究和生产中具有极大的危害性,它不仅降低单体的有效利用率,增加聚合装置的停机时间和处理的费用,而且还会加大各釜和各批次间产品性能的不一致性,污染环境。 目前比较权威的用于解释聚合物乳液稳定性的理论是双电层理论和空间位阻理论。乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。 乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布、乳液粒度也有着决定性的影响。如果所选用的乳化剂不适合本乳液聚合体系,则不论怎样改变乳化剂的浓度和调节聚合工艺参数,乳液聚合仍不能平稳进行或是所得到的乳液产品缺乏实用价值。离子型乳化剂的特点是乳化效率高,可有效地降低表面张力,胶束和乳胶粒子尺寸小,机械稳定性好,但由于其离子特性对电解质比较敏感;非离子型乳化剂对电解质有较好的稳定性,但机械稳定性不好,对搅拌速度比较敏感。离子型乳化剂主要靠静电斥力使乳液稳定,而非离子型乳化剂主要靠水化,两种乳化剂复合使用时,两类乳化剂分子交替吸附在乳胶粒子表面上,既使乳胶粒间有很大的静电斥力,又在乳胶粒表面形成很厚的水化层,二者双重作用的结果可使聚合物乳液稳定性大大提高。目前乳液聚合体系多采用阴离子型与非离子型复配乳化体系,所得乳液兼有粒子尺寸小、低泡和稳定性好的特点。 引发剂对整个聚合过程起差重要的作用,不同的引发剂制得的聚合物具有不同的分子结构及性能。乳液聚合引发剂分为两类:受热分解产生自由基的引发剂(如过硫酸铵APS、过硫酸钾KPS、过硫酸钠NPS、过氧化氢等无机过氧化物);有机过氧化物和还原剂组合可构成另一类引发剂。丙烯酸酯类共聚物乳液聚合体系中的引发剂多为水性的过硫酸盐,常用的有APS、KPS及NPS等。较适宜的引发剂量为单体总量的0.2%~0.8%,当引发剂用量为0.2%~0.4%时,制备的丙烯酸酯类共聚物乳液呈蓝相、乳液粒子的粒度小,并且稳定性好。

丙烯酸酯

丙烯酸酯 简介 丙烯酸酯橡胶(ACM)是由丙烯酸烷基酯(CH2=CH-COOR)为主要单体,与少量带有可提供交联反应活性基团的单体共聚而成的一类弹性体。 丙烯酸酯橡胶 商品牌号很多,根据其分子结构中所含的不同交联单体,加工时硫化体系也不相同,由此可将丙烯酸酯橡胶划分为含氯多胺交联型、不含氯多胺交联型、自交联型、羧酸铵盐交联型、皂交联型等五类。此外,还有特种丙烯酸酯橡胶,如含氟型及热塑性丙烯酸酯橡胶等。 性能 丙烯酸酯橡胶的性能受其主要单体丙烯酸烷基酯中烷基碳原子数目的影响。以丙烯酸酯为基础的橡胶,耐油、耐热性较好;而以丙烯酸丁酯为基础的橡胶,因烷基碳原子数目的增多,对酯基极性基的屏蔽效应增大,因此使耐水性有所改善,同时由于屏蔽效应,减弱了橡胶分子间力,增大了内部塑性,从而使脆性温度降低,耐寒性较好。若通过上述两种单体并用,则可得到介于两者性能之间的橡胶。 特点 无论哪一种类型的丙烯酸酯橡胶,其分子结构的共同特点有两个:一是高极性;二是完全饱和性。从而使其具有优越的耐矿物油和耐高温氧化性能。其耐油性仅次于氟胶,而与一般中高丙烯晴含量的丁腈橡胶相似。而耐热性介于通用橡胶和硅、氟橡胶之间,比丁腈橡胶使用温度高出 30~60℃,最高使用温度180℃,断续和短时间使用可达200℃,在150℃热空气老化数年性能无明显变化。此外,最重要的是其对含有硫、氯、磷等极压剂的极压型润滑油十分稳定,使用温度可达150℃,间断使用温度可更高些。而带有双键的丁腈橡胶在含有极压剂的油中,当温度超过110℃时,即发生显著硬化与变脆。丙烯酸酯橡胶还具有优良的抗臭氧性、气密性、耐屈挠和耐裂口增长性,以及抗紫外线变色性等。 缺点

丙烯酸与丙烯酸酯的区别

丙烯酸与丙烯酸酯的区别 2009-3-8 10:57 提问者:萧映雪浏览次数:1311次 丙烯酸胶粘剂与丙烯酸酯胶粘剂是不一样的么,我在写东西,用的是丙烯酸胶粘剂,但是查到的资料的都是丙烯酸酯方面的,请问我要是在写的时候直接就把丙烯酸酯胶粘剂当成丙烯酸胶粘剂的资料来用,可以吗 请教高分子的高手,在下学的是无机 拜托! 问题补充: 工业上常用丙烯酸来做什么呢,为什么我查到的资料都是关于丙烯酸酯的? 丙烯酸也是常用是胶粘剂的吧,我要写关于胶粘剂的方面的东西~ 我来帮他解答 2009-3-9 13:41 满意回答 我是学有机化学的,也是应用丙烯酸聚合物的行业。 通常说的丙烯酸类的东西,绝大部分是指丙烯酸酯类的化合物,这是大家在表达上的不专业,准确地说是丙烯酸类最为恰当,而结构是丙烯酸酯类。丙烯酸是CH2=CH-COOH ,是最基本的化工原料,一般不能用在精细化工的终端产品上,具有很强的酸性,腐蚀性接近盐酸,一般用来合成丙烯酸酯类化合物。丙烯酸酯是丙烯酸与醇反应后得到的, CH2=CH-COOR (R是烃基)。二者是不同的,丙烯酸酯可以合成很多低聚物和共聚物,这些低聚物或共聚物简称为树脂,就可以做涂料、油墨、粘合剂等。 所以就可以说是丙烯酸类粘合剂,或丙烯酸酯粘合剂。注意是指丙烯酸类而不是丙烯酸。。。 你可以认为是一样的,但科学一点说,丙烯酸酯胶粘剂更准确,我有做过这方面的合成,丙烯酸均聚物的Tg值是106度,不大可能单独用在胶粘剂里,这类胶粘剂多是丙烯酸酯单体来合成,如丙烯酸丁酯,丙烯酸异辛酯等等,根据性能不同选用不同的单体合成,当然也会用丙烯酸。 丙烯酸单体在涂料树脂体系很常用,因为其带有羧基,聚合之后还可参与反应,对丙烯酸树脂进行改性。另外,UV涂料体系常用的稀释剂或单体,很多都是丙烯酸和带羟基的单体反应而制得。

丙烯酸(酯)单体市场分析..知识交流

附件2 情报调研成果申报表(2013年度)

《燕山石化公司2013年度情报调研第号》 丙烯酸(酯)单体市场分析 郑承旺

北京东方石油化工有限公司2013年12月

丙烯酸(酯)单体市场分析 郑承旺 (北京东方石油化工有限公司) 摘要:详细分析了国内外丙烯酸及酯类产品的生产和消费状况。至2012年年底,全球粗丙烯酸(CAA,即酯化级丙烯酸)的装置产能达到了586万吨/年。中国大陆的丙烯酸以及丙烯酸酯装置产能首次同时超过美国和欧洲,成为全球丙烯酸和丙烯酸酯装置产能最大的国家,丙烯酸的装置产能为168万吨/年,丙烯酸酯的装置产能为172万吨/年。中国常规丙烯酸下游产品(如胶粘剂、涂料等)已经得到了比较充分的发展,市场已经达到了一定规模;高档丙烯酸下游产品(如SAP、混凝土减水剂等)的发展则刚刚起步,未来还有长足的发展空间,因为中国的房地产、铁路、卫生用品等领域的发展还有很大的空间,丙烯酸及酯下游产品在这些领域有大量应用。 关键词:丙烯酸丙烯酸酯应用产能产量 一、全球丙烯酸及酯产能概况 1. 产能概况 至2012年12月,全球粗丙烯酸(CAA,即酯化级丙烯酸)的装置产能达到了586万吨/年,较2011年年底的537.9万吨/年增长了8.9%。表1所示为近5年全球CAA产能的增长情况。 表1 全球酯化级丙烯酸装置产能(截止至每年年底,万吨/年) 至2012年年底,全球通用丙烯酸酯(AE)的装置产能为508.7万吨/年,同比增长6.1%。AE的产能显著小于CAA产能,增幅也小于CAA,这是因为越来越多的CAA用于生产高纯丙烯酸(GAA),GAA主要用于超吸水性树脂(SAP)的生产。表2为2012年12月全球CAA和AE的装置产能情况。 表2 2012年12月全球酯化级丙烯酸(CAA)和通用丙烯酸酯(AE)装置产能(万吨/年)

相关文档
最新文档