开关电源设计参考大全几十种拓扑图

开关电源设计参考大全几十种拓扑图
开关电源设计参考大全几十种拓扑图

https://www.360docs.net/doc/d418362208.html,/powertopologies

Power Topologies Quick Reference Guide

https://www.360docs.net/doc/d418362208.html,/powertopologies

Power Topologies Quick Reference Guide 3

p

Ns Secondary

Power Topologies Quick Reference Guide https://www.360docs.net/doc/d418362208.html,/powertopologies

https://www.360docs.net/doc/d418362208.html,/powertopologies

Inductor L1

Power Topologies Quick Reference Guide

https://www.360docs.net/doc/d418362208.html,/powertopologies

PWM

FET Q1

Voltage

FET Q1

Current

Np1 Primary

Current

Ns2

Secondary

Current

Inductor L1

Current

Power Topologies Quick Reference Guide

D =

V out + V f N s N p

V in ?

V Q1 = V in

N s

N p

V D1 = V in ?

- V f p s

p

y Ns Secondary (Transformer)(Transformer)

https://www.360docs.net/doc/d418362208.html,/powertopologies

Power Topologies Quick Reference Guide

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,enhancements,improvements and other changes to its semiconductor products and services per JESD46,latest issue,and to discontinue any product or service per JESD48,latest issue.Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All semiconductor products(also referred to herein as“components”)are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale,in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by applicable law,testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’products.Buyers are responsible for their products and applications using TI components.To minimize the risks associated with Buyers’products and applications,Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license,either express or implied,is granted under any patent right,copyright,mask work right,or other intellectual property right relating to any combination,machine,or process in which TI components or services are https://www.360docs.net/doc/d418362208.html,rmation published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement https://www.360docs.net/doc/d418362208.html,e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.TI is not responsible or liable for such altered https://www.360docs.net/doc/d418362208.html,rmation of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal,regulatory and safety-related requirements concerning its products,and any use of TI components in its applications,notwithstanding any applications-related information or support that may be provided by TI.Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures,monitor failures and their consequences,lessen the likelihood of failures that might cause harm and take appropriate remedial actions.Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases,TI components may be promoted specifically to facilitate safety-related applications.With such components,TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.Nonetheless,such components are subject to these terms.

No TI components are authorized for use in FDA Class III(or similar life-critical medical equipment)unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or“enhanced plastic”are designed and intended for use in military/aerospace applications or environments.Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk,and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949requirements,mainly for automotive use.In any case of use of non-designated products,TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio https://www.360docs.net/doc/d418362208.html,/audio Automotive and Transportation https://www.360docs.net/doc/d418362208.html,/automotive

Amplifiers https://www.360docs.net/doc/d418362208.html, Communications and Telecom https://www.360docs.net/doc/d418362208.html,/communications

Data Converters https://www.360docs.net/doc/d418362208.html, Computers and Peripherals https://www.360docs.net/doc/d418362208.html,/computers

DLP?Products https://www.360docs.net/doc/d418362208.html, Consumer Electronics https://www.360docs.net/doc/d418362208.html,/consumer-apps

DSP https://www.360docs.net/doc/d418362208.html, Energy and Lighting https://www.360docs.net/doc/d418362208.html,/energy

Clocks and Timers https://www.360docs.net/doc/d418362208.html,/clocks Industrial https://www.360docs.net/doc/d418362208.html,/industrial

Interface https://www.360docs.net/doc/d418362208.html, Medical https://www.360docs.net/doc/d418362208.html,/medical

Logic https://www.360docs.net/doc/d418362208.html, Security https://www.360docs.net/doc/d418362208.html,/security

Power Mgmt https://www.360docs.net/doc/d418362208.html, Space,Avionics and Defense https://www.360docs.net/doc/d418362208.html,/space-avionics-defense Microcontrollers https://www.360docs.net/doc/d418362208.html, Video and Imaging https://www.360docs.net/doc/d418362208.html,/video

RFID https://www.360docs.net/doc/d418362208.html,

OMAP Applications Processors https://www.360docs.net/doc/d418362208.html,/omap TI E2E Community https://www.360docs.net/doc/d418362208.html,

Wireless Connectivity https://www.360docs.net/doc/d418362208.html,/wirelessconnectivity

Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265

Copyright?2016,Texas Instruments Incorporated

? 2016 Texas Instruments Incorporated Printed in Belgium by Harte Hanks

SLYU032

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

各种开关电源介绍-开关电源设计知识大全

开关电源介绍 一、基础知识: 新型变压器:磁性元件,新型磁材料和新型变压器的开发。如集成磁路,平面型磁心,超薄型变压器;以及新型变压器如压电式,无磁芯印制电路变压器等,使开关电源的尺寸重量都可减少许多。 硬开关的条件下MOSFET和IGBT开关损耗分析: 1).开通损耗方面:由于MOSFET的输出电容大,器件处于断态时,输入电压加在输出电容上,输出电容储存较大能量。在相继开通时这些能量全部消耗在器件内,开通损耗大。器件的开通损耗和输出电容成正比,和频率成正比和输入电压的平方成正比[12]。而IGBT的输出电容比MOSFET小得多,断态时电容上储存的能量较小,故开通损耗较小。 2).关断损耗方面:MOSFET属单极型器件,可以通过在施加栅极反偏电压的方法,迅速抽走输入电容上的电荷,加速关断,使MOSFET关断时电流会迅速下降至零,不存在拖尾电流,故关断损耗小[10];而IGBT由于拖尾电流不可避免,且持续时间长(可达数微秒),故关断损耗大。 综合以上分析,硬开关条件下MOSFET的开关损耗主要是由开通损耗引起,而IGBT则主要是由关断损耗引起。因此使用MOSFET作为主开关器件的电路,应该工作于ZVS条件下,这样在器件开通前,漏极和源极之间的电压先降为零,输出电容上储存能量很小,可以大大降低MOSFET的开通损耗;而使用IGBT作为主开关器件的电路,应该工作于ZCS条件下,这样在器件关断前,流过器件的电流先降为零,可以大大降低因拖尾电流造成的关断损耗。 软开关:当电流过零时,使器件关断;当电压过零时,使器件开通-实现开关损耗为零。 变流器:把输入的电源,进行电压、电流变换,达到规定的要求后输出给用电设备。 DC-DC:直流变压器。斩波器。 为什么反激开关电源只能适合小功率?200W以下。正激开关电源适合大功率开关电源? 高效率小体积(高功率密度)一直是DC-DC变换器用户的追求,也是设计的要点。提高功率密度最有效的方式就是提高开关频率,线圈和变压器对高速变化的磁力线感应灵敏度高、特别高效率,衰减特别小,传递效率特别高,而对低频变化的磁力线灵敏度低、衰减大,传递效率差,因此高频下的磁芯体积会大幅度减小,但频率的提高会使开关管的开关损耗加大,对变换器的效率造成影响。如何在高频下减小开关管的开关损耗,是DC-DC变换器是否能实现高效率高功率密度的关键,在这种背景下,高频软开关技术逐渐成为研究的热点,LLC谐振变换器是在串联谐振变换器的基础上增加了一个与负载并联的电感,是目前效率最高的开关电源。

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电又如何使直流电压(电流)稳定这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A;

③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=±; 发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

开关电源类PCB电路板设计规范大全(一)

开关电源类PCB电路板设计规范大全(一)来源:华强PCB 在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析: 一、从原理图到PCB的设计流程建立元件参数->输入原理网表->设计参数设置->手工布局->手工布线->验证设计->复查->CAM输出. 二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些.最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil. 焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损.当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开. 三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响.例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法.每一个开关电源都有四个电流回路: (1). 电源开关交流回路

(2).输出整流交流回路 (3). 输入信号源电流回路 (4). 输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量.所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去.电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns.这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短.建立开关电源布局的最好方法与其电气设计相似,最佳设计流程如下: ·放置变压器 ·设计电源开关电流回路 ·设计输出整流器电流回路

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

开关电源设计设计

开关电源设计设计

开关电源设计 摘要 随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨重的线性电源。电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。开关电源技术的主要用途之一是为信息产业服务。信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文是基于芯片UC3842的小功率高频开关电源系统设计。 关键词开关电源;半桥全桥;高频变压器 - II -

目录 摘要...................................................................................................................... I 第1章绪论 (1) 1.1 课题背景 (1) 1.2 研究的目的及意义 (2) 1.2.1 课题研究的目的 (2) 1.2.2课题研究的意义 (2) 第2章开关电源输入电路设计 (3) 2.1 电压倍压整流技术 (3) 2.1.1 交流输入整流滤波电路原理 (3) 2.1.2 倍压整流技术 (3) 2.2 输入保护器件保护 (4) 2.2.1 浪涌电流的抑制 (4) 2.2.2 热敏电阻技术分析 (5) 2.3 本章小结 (6) 第3章开关电源主电路设计 (7) 3.1 单端反激式变换器电路的工作原理 (7) 3.2 开关晶体管的设计 (8) 3.3 变压器绕组的设计 (10) 3.4 输入整流器的选择 (11) 3.5 输出滤波电容器的选择 (12) 3.6 本章小结 (12) 第4章开关电源控制电路设计 (13) 4.1 芯片简介 (13) 4.1.1 芯片原理 (13) 4.1.2 UC3842内部工作原理简介 (13) 4.2 工作描述 (14) 4.3 UC3842常用的电压反馈电路 (18) 4.4 本章小结 (20) 结论 (21) 致谢 (22) 参考文献 (23) - II -

网络拓扑图中常用的图标1

网络拓扑图中常用的图标 1.交换机类图标 2.路由器类图标 固化汇聚交换机 模块化汇聚交换机 核心交换机 二层堆叠交换机 三层堆叠交换机 接入交换机 SOHO 多业务路由器 IPv6多业务路由器 高端路由器 中低端路由器 VOICE 多业务路由器

附录A 网络拓扑图中常用的图标 ·425· 3.无线网络设备类图标 4.网络安全设备类图标 5.服务器类图标 IPS 入侵检测系统 VPN 网关 视频服务器 IDS 入侵检测系统 防火墙-02 数据库服务器 通用服务器 -02 Web 服务器 单路AP 双路AP 室外天线 天线网桥-01 天线网桥-02 天线交换机 天线网卡-01 天线网卡 -02 笔记本+天线网卡 加密隧道 -02 加密隧道 -01 防火墙-01 加密锁 USB Key VPN 客户端软件 SAM 服务器 通用服务器-01 文件服务器 SAS 服务器 CA 服务器 打印服务器

计算机网络工程实用教程 ·426· 6.PC 机与笔记本类图标 7.用户/办公设备类图标 台式机 笔记本-01 笔记本-02 液晶显示器 电视机 用户-男 用户-女 用户群 办公 会议 黑客-01 黑客-02 黑客-03 打印机 多功能一体机 电话 可视电话 IP 电话 PDA 手机 通用服务器 -03 SMP 服务器 TMS 服务器 LIMP 服务器 Strar View 服务器 认证客户端 服务器群-01 服务器群-02

附录A 网络拓扑图中常用的图标·427·8.建筑环境类图标 9.网络/线路类图标制造业 商业中心 小区企业住宅办公楼 酒店-01 酒店-02 教育-01 教育-02 金融 政府医疗公检法邮政

基于TPSwitch的开关电源设计

基于TOPSwitch Ⅱ的开关电源设计 1 引言 功率开关管、PWM控制器和高频变压器是开关电源必不可少的组成部分。传统的开关电源一般均采用分立的高频功率开关管和多引脚的PWM集成控制器,例如采用UC3842+MOSFET是国内小功率开关电源中较为普及的设计方法。 90年代以来,出现了PWM/MOSFET二合一集成芯片,他大大降低了开关电源设计的复杂性,减少了开关电源设计所需的时间,从而加快了产品进入市场的速度。 二合一集成控制芯片多采用3脚,4脚,5脚,7脚和8脚封装,其中美国功率集成公司于97年推出的三端脱线式TOPSwitch Ⅱ系列二合一集成控制器件,是该类器件的代表性产品。 2 TOPSwitch Ⅱ器件简介 TOPSwitch系列器件是三端脱线式PWM开关(Three-terminal Off-line PWM Swtich)的英文缩写。TOPSwitch 系列器件仅用了3个管脚就将脱线式开关电源所必需的具有通态可控栅极驱动电路的高压N沟道功率的MOS场效应管,电压型PWM控制器,100kHz高频振荡器,高压启动偏置电路,带隙基准,用于环路补偿的并联偏置调整器以及误差放大器和故障保护等功能全部组合在一起了。

TOPSwitch Ⅱ系列器件是TOPSwitch的升级产品,同后者相比,内部电路做了许多改进,器件对于电路板布局以及输入总线瞬变的敏感性大大减少,故设计更为方便,性能有所增强。其型号包括TOP221-TOP227,内部结构如图1所示[1]。 TOPSwitch Ⅱ是一个自偏置、自保护的电流-占空比线性控制转换器。由于采用CMOS工艺,转换效率与采用双集成电路和分立元件相比,偏置电流大大减少,并省去了用于电流传导和提供启动偏置电流的外接电阻。 漏极连接内部MOSFET的漏极,在启动时,通过内部高压开关电流源提供内部偏置电流。 源极连接内部MOSFET的源极,是初级电路的公共点和基准点。 控制极误差放大电路和反馈电流的输入端。在正常工作时,由内部并联调整器提供内部偏流。系统关闭时,可激发输入电流,同时也是提供旁路、自动重启和补偿功能的电容连接点。 控制电压控制极的电压V c给控制器和驱动器供电或提供偏压。接在控制极和源极之间的外部旁路电容C T,为栅极提

开关电源设计

1 绪论 开关电源(Switching Mode Power Supply,英文缩写为SMPS)又称为开关稳压电源,问世后在很多领域逐步取代了线性稳压电源和晶闸管相控电源。随着全球对能源问题的越来越重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。传统的线性稳压电源虽然电力结构简单、工作可靠,但它存在着效率低(只有40%~50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。为了提高效率,人们研究出了开关式稳压电源,它的效率可达85%以上,稳压范围宽;除此之外,还具有稳压精度高的特点,是一种较理想的稳压电源。开关电源具有效率高、体积小、重量轻、应用广泛等优点,现已成为稳压电源的主流产品。正因为如此,开关电源被誉为高效、节能型电源,代表着稳压电源的发展方向,并已广泛应用于各种电子设备中[1]。 1.1 开关电源的特点 1.1.1 开关电源的优点 (1) 功耗小,效率高。晶体管V在激励信号的激励下,它交替地工作在导通—截止和截止—导通的开关状态,转换速度很快,频率一般为50kHz左右,在一些技术先进的国家,可以做到几百或者近1000kHz。这使得开关晶体管V的功耗很小,电源的效率可以大幅度地提高,其效率可达到80%。 (2) 体积小,重量轻。采用高频技术,省掉了体积笨重的工频变压器。由于调整管V上的耗散功率大幅度降低后,又省去了较大的散热片。由于这两方面原因,所以开关稳压电源的体积小,重量轻。 (3) 稳压范围宽。从开关稳压电源的输出电压是由激励信号的占空比来调节的,输入信号电压的变化可以通过调频或调宽来进行补偿。这样,在工频电网电压变化较大时,它仍能够保证有较稳定的输出电压。所以开关电源的稳压范围很宽,稳压效果很好。此外,改变占空比的方法有脉宽调制型和频率调制型两种。开关稳压电源不仅具有稳压范围宽的优点,而且实现稳压的方法也较多,设计人员可以根据实际应用的要求,灵活地选用各种类型的开关稳压电源。 (4) 滤波的效率大为提高,使滤波电容的容量和体积大为减少。开关稳压电源的工作频率目前基本上是工作在50kHz,是线性稳压电源的1000倍,这使整流后的滤波效率几乎也提高了1000倍;即使采用半波整流后加电容滤波,效率也提高了500

开关电源设计地各项指标概念和定义

第一部分:电源指标的概念、定义 一.描述输入电压影响输出电压的几个指标形式。 1.绝对稳压系数。 A.绝对稳压系数:表示负载不变时,稳压电源输出直流变化量U0△与输入电网变化量Ui△之比。既: K=U0/Ui△△。 B.相对稳压系数:表示负载不变时,稳压器输出直流电压Uo的相对变化量Uo△与输出电网Ui的相对变化量Ui△之比。急: S=Uo/△Uo / Ui/△Ui 2. 电网调整率。 它表示输入电网电压由额定值变化+-10%时,稳压电源输出电压的相对变化量,有时也以绝对值表示。 3. 电压稳定度。 负载电流保持为额定围的任何值,输入电压在规定的围变化所引起的输出电压相对变化Uo/Uo△(百分值),称为稳压器的电压稳定度。 二.负载对输出电压影响的几种指标形式。 1.负载调整率(也称电流调整率)。在额定电网电压下,负载电流从零变化到最大时,输出电压的最大相对变化量,常用百分数表示,有时也用绝对变化量表示。 2.输出电阻(也称等效阻或阻)。在额定电网电压下,由于负载电流变化IL△引起输出电压变化Uo△,则输出电阻为Ro=|Uo/IL|△△欧。 三.纹波电压的几个指标形式。 1.最大纹波电压。在额定输出电压和负载电流下,输出电压的纹波(包括噪声)的绝对值的大小,通常以峰峰值或有效值表示。 2.纹波系数Y(%)。在额定负载电流下,输出纹波电压的有效值Urms与输出直流电压Uo之比,既y=Umrs/Uo x100% 3.纹波电压抑制比。在规定的纹波频率(例如50HZ)下,输出电压中的纹波电压Ui~与输出电压中的纹波电压Uo~之比,即:纹波电压抑制比=Ui~/Uo~ 。 这里声明一下:噪声不同于纹波。纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak)值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下。

常用网络拓扑图图标

常用网络拓扑图图标 1.交换机类图标 2.路由器类图标 3.无线网络设备类图标 4.网络安全设备类图标 接入交换机 核心交换机 模块化汇聚交换机 固化汇聚交换机 三层堆叠交换机 二层堆叠交换机 高端路由器 中低端路由器 VOICE 多业务路由器 SOHO 多业务路由器 IPv6多业务路由器 单路AP 双路AP 室外天线 天线网桥-01 天线网桥-02 天线交换机 天线网卡-01 天线网卡-02 笔记本+天线网卡 防火墙-01 防火墙-02 IDS 入侵检测系统 IPS 入侵检测系统 VPN 网关 VPN 客户端软件 USB Key 加密锁 加密隧道-01 加密隧道 -02

5.服务器类图标 6.PC 机与笔记本类图标 7.用户/办公设备类图标 通用服务器-03 SMP 服务器 TMS 服务器 LIMP 服务器 Strar View 服务器 认证客户端 服务器群-01 服务器群-02 通用服务器-01 通用服务器-02 Web 服务器 数据库服务器 视频服务器 文件服务器 打印服务器 CA 服务器 SAM 服务器 SAS 服务器 台式机 笔记本-01 笔记本-02 液晶显示器 电视机 PDA 手机 用户-男 用户-女 用户群 办公 会议 黑客-01 黑客-02 黑客-03 打印机 多功能一体机 电话 可视电话 IP 电话

计算机网络工程实用教程 ·442· 8.建筑环境类图标 9.网络/线路类图标 制造业 商业中心 小区 企业 住宅 办公楼 酒店-01 酒店-02 教育-01 教育-02 金融 政府 医疗 公检法 邮政

总结:开关电源设计心得

总结:开关电源设计心得 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外。 下面谈一谈印制板布线的一些原则 线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。 最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。

网络拓扑图中常用的图标

附录A 网络拓扑图中常用的图标 1.交换机类图标 2.路由器类图标 固化汇聚交换机 模块化汇聚交换机 核心交换机 二层堆叠交换机 三层堆叠交换机 接入交换机 SOHO 多业务路由器 IPv6多业务路由器 高端路由器 中低端路由器 VOICE 多业务路由器

. 3.无线网络设备类图标 4.网络安全设备类图标 5.服务器类图标 IPS 入侵检测系统 VPN 网关 视频服务器 IDS 入侵检测系统 防火墙-02 数据库服务器 通用服务器 -02 Web 服务器 单路AP 双路AP 室外天线 天线网桥-01 天线网桥-02 天线交换机 天线网卡-01 天线网卡 -02 笔记本+天线网卡 加密隧道 -02 加密隧道 -01 防火墙-01 加密锁 USB Key VPN 客户端软件 SAM 服务器 通用服务器-01 文件服务器 SAS 服务器 CA 服务器 打印服务器

. 6.PC 机与笔记本类图标 7.用户/办公设备类图标 台式机 笔记本-01 笔记本-02 液晶显示器 电视机 用户-男 用户-女 用户群 办公 会议 黑客-01 黑客-02 黑客-03 打印机 多功能一体机 电话 可视电话 IP 电话 PDA 手机 通用服务器 -03 SMP 服务器 TMS 服务器 LIMP 服务器 Strar View 服务器 认证客户端 服务器群-01 服务器群-02

. 8.建筑环境类图标 9.网络/线路类图标制造业 商业中心 小区企业住宅办公楼 酒店-01 酒店-02 教育-01 教育-02 金融 政府医疗公检法邮政

(完整版)开关电源设计毕业设计

毕业论文(设计) 题目开关电源设计 英文题目switch source design 院系 专业 姓名 年级 指导教师

2015年4月 摘要 摘要内容: 本论文题目是学校根据学生的实际情况和所学的专业而设计的,它体现了学校对学生的理论知识和实践动手能力的考察,并且让学生充分的发挥自己所学的知识。 随着大规模和超大规模集成电路的快速发展,特别是微处理器和半导体存储器的开发利用,孕育了电子系统的新一代产品。显然,那种体积大而笨重的使用工频变压器的线性调节稳压电源已经过时。取而代之的是小型化、重量轻、效率高的隔离式开关电源。隔离式开关电源的核心是一种高频电源变换电路。它使交流电源高效率地产生一路或多路经调整的稳定直流电压。 本论文共分七章,内容包括:开关电源概述,输入电路,隔离单端反激式变换器电路,UC3842的原理及技术参数,UC3842常用的电压反馈电路的选用,UC3842在开关电源电路的应用,电源市场的概况。 【关键词】: 变压器 滤波 过载 Switch Source Design Abstract

Abstract content: The topic of this thesis is designed according to the actual situation of the school and professional school students which reflects the effects of school students theoretical knowledge and practical ability, and let the students give fulllay to their own knowledge. With the rapid development of large-scale and ultra large scale integrated circuit, especially the microprocessor and a semconductor memory utilization, gave birth to the electronic system of a new generation of products. Obviously, the volume is big and , light weight, circuit. It makes the AC power efficient generates one or more adjusted stable DC voltage. T his paper is divided into seven chapters, including: input switching power supply circuit, an overview, isolation of single end flyback converter circuit, principle and technical parameters of UC3842, UC3842 common voltage feedback circuit selection, application of UC3842 in switching power supply circuit, power market overview. Key Words:Transformer ;Wave filtering ;Overload 目录 第1章开关电源概述 1.1 开关电源的产生与发展 (5)

开关电源的设计方案步骤

【开篇】 针对开关电源很多人觉得难,主要是理论与实践相结合;万事开头难,我在这里只能算抛砖引玉,慢慢讲解如何设计,有任何技术问题可以随时打断,我将尽力来进行解答。设计一款开关电源并不难,难就难在做精;我也不是一个很精熟的工程师,只能算一个领路人。希望大家喜欢大家一起努力!! 【第一步】 开关电源设计的第一步就是看规格,具体的很多人都有接触过;也可以提出来供大家参考,我帮忙分析。 我只带大家设计一款宽范围输入的,12V2A 的常规隔离开关电源 1. 首先确定功率,根据具体要求来选择相应的拓扑结构;这样的一个开关电源多选择反激式(flyback) 基本上可以满足要求 备注一个,在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论【第二步】 2.当我们确定用flyback 拓扑进行设计以后,我们需要选择相应的PWM IC 和MOS 来进行初步的电路原理图设计(sch) 无论是选择采用分立式的还是集成的都可以自己考虑。对里面的计算我还会进行分解 分立式:PWM IC 与MOS 是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长(仅从设计角度来说) 集成式:就是将PWM IC 与MOS 集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境 集成式,多是指PWM controller 和power switch 集成在一起的芯片 不限定于是PSR 还是SSR 【第三步】 3. 确定所选择的芯片以后,开始做原理图(sch),在这里我选用ST VIPer53DIP(集成了MOS) 进行设计,原因为何(因为我们是销售这一颗芯片的)? 设计之前最好都先看一下相应的datasheet,自己确认一下简单的参数 无论是选用PI 的集成,或384x 或OB LD 等分立的都需要参考一下datasheet 一般datasheet 里都会附有简单的电路原理图,这些原理图是我们的设计依据 【第四步】 4. 当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCB Layout 当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算 一般有芯片厂家提供相关资料 【第五步】 5. 确定开关频率,选择磁芯确定变压器 芯片的频率可以通过外部的RC 来设定,工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源,也可以采取外同步功能。 一般AC2DC 的变换器,工作频率不宜设超过100kHz,主要是开关电源的频率过高以后,不利于系统的稳定性,更不利于EMC 的通过性 频率太高,相应的di/dt dv/dt 都会增加,除PI 132kHz 的工作频率之外,大家可以多参

开关电源设计技巧(精心整理)

技巧一:为电源选择正确的工作频率 为电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。 我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低。其次,较高的频率运行通常意味着可以使用较小的组件值。因此,更高频率运行能够带来极大的成本节约。 图1.1显示的是降压电源频率与体积的关系。频率为100 kHz时,电感占据了电源体积的大部分(深蓝色区域)。如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。该额定值不会随频率而明显变化,因此其体积(黄色区域)往往可以保持恒定。另外,电源的半导体部分不会随频率而变化。这样,由于低频开关,无源器件会占据电源体积的大部分。当我们转到高工作频率时,半导体(即半导体体积,淡蓝 1

色区域)开始占据较大的空间比例。 图1.1 电源组件体积主要由半导体占据 该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。与半导体相关的损耗主要有两类:传导损耗和开关损耗。同步降压转换器中的传导损耗与MOSFET 的裸片面积成反比关系。MOSFET 面积越大,其电阻和传导损耗就越低。 开关损耗与MOSFET 开关的速度以及MOSFET 具有多少输入和输出电容有关。这些都与器件尺寸的大小相关。大体积器件具有较慢的开关速度以及更多的电容。图1.2 显示了两种不同工作频率(F) 的关系。传导损耗(Pcon) 与工作频率无关,而开关损耗(Psw F1 和Psw F2) 与工作频率成正比例关系。因此更高的工作频率(Psw F2) 会产生更高的开关损耗。当开关损耗和传导损耗相等时,每种工作频率的总损耗最低。另外,随着工作频率提高,总损耗将更高。 1

开关电源设计案例

技术要求:输入电压Vin:90-253Vac 输出电压Vo:27.6V 输出电流Io:6A 输出功率Po:166W 效率η:0.85 输入功率Pin:195W 一、输入滤波电容计算过程: 上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到的电压Vdc为115V,则从上图可以得到: Vpk=90*1.414=127V Vmin=Vdc-(Vpk-Vdc)=103V 将电源模块等效为一个电阻负载的话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(Vpk-Vmin)V。 Idc*T3=C*△V 其中: △V=Vpk-Vmin=127-103=24V 关键部分在T3的计算,T3=t1+t2,t1为半个波头,时间比较好算,对于50Hz的交流来说,t1=5mS,然后就是计算t2,其实t2也很好计算,我们知道交流输入电压的公式为 Vx=Vpksinθx,根据已知条件,Vx=103V,Vpk=127V,可以得到θx=54度,所以t2=54*10ms/180=3mS,T3=t1+t2=8mS。 C=1.7*8/24=0.57mF=570uF 二、变压器的设计过程 变压器的设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也是DCM的一种,不同的地方在于QR的工作频率是随着输入电压输出功率的变化而变化的。 对于变压器磁芯的选择,比较常用的方法就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级的反激,选择PQ3535的磁芯即可。磁芯的参数如下:AE=190mm2,AL=4300nH,Bmax≥0.32T 1)DCM变压器设计过程: 开关频率选择80K,最大占空比选择0.48,全范围DCM,则在最低输入电压Vdc下,占

开关电源设计详解

开关电源设计详解 开关电源设计详解 开关电源设计详解,从公式到实际应用,附加设计图纸,绝对好资料。 目的 希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教. 设计步骤: 绘线路图、PCB Layout. 变压器计算. 零件选用. 设计验证. 设计流程介绍(以DA-14B33为例): 线路图、PCB Layout请参考资识库中说明. 变压器计算: 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就 DA-14B33变压器做介绍. 决定变压器的材质及尺寸: 依据变压器计算公式 B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np

= 一次侧(主线圈)圈数 Ae = 铁心截面积(cm2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss,设计时应考虑零件误差,所以一般取3000~3500 Gauss之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss左右,以避免铁心因高温而饱合,一般而言铁心的尺寸 越大,Ae越高,所以可以做较大瓦数的Power。 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦 数的Power,但相对价格亦较高。 决定变压器线径及线数: 当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言, 只能当做参考值,最终应以温升记录为准。 决定Duty cycle (工作周期): 由以下公式可决定Duty cycle ,Duty cycle的设计一般以50%为基准,Duty cycle若超过50%易 导致振荡的发生。 NS = 二次侧圈数 NP = 一次侧圈数 Vo = 输出电压 VD= 二极管顺向电压 Vin(min) = 滤波电容上的谷点电压 下载地址: 或是百度一下“开关电源设计详解(申请加精)”。 更精彩内容请点击下载: 附件 EEWORLD提示:为减少服务器的压力,请尽量不要使用迅雷等下载软件。 开关电源设计流程.pdf (367.69 KB) 2011-8-19 18:12, 下载次数: 355

相关文档
最新文档