初 高 中 数 学 衔 接 教 材

初 高 中 数 学 衔 接 教 材
初 高 中 数 学 衔 接 教 材

初高中数学衔接教材

现有初高中数学知识存在以下“脱节”

1.立方和与差的公式初中已删去不讲,而高中的运算还在用。

2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。

3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。

4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。

5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。

6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。

7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。

8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。

另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。

目录

第一章:数与式的运算和因式分解

1.1 数与式的运算

1.1.1绝对值 1.1.

2. 乘法公式 1.1.3.二次根式 1.1.4.分式

1.2 分解因式

第二章:方程、函数、方程组、不等式组

2.1 一元二次方程

2.1.1根的判别式 2.1.2 根与系数的关系(韦达定理)

2.2 二次函数

2.2.1 二次函数y=ax2+bx+c的图像和性质 2.2.2 二次函数的三种表示方式

2.2.3 二次函数的简单应用

2.3 方程组不等式

2.3.1 二元二次方程组解法 2.3.2 一元二次不等式解法

第三章:相似形、圆

3.1相似形

3.1.1.平行线分线段成比例定理 3.1.2相似形

3.2 三角形

3.2.1 三角形的“四心” 3.2.2 几种特殊的三角形

3.3 圆

3.3.1 直线与圆,圆与圆的位置关系 3.3.2 点的轨迹

1.1 数与式的运算 1.1.1.绝对值

绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对

值仍是零。即,0,

||0,0,,0.a a a a a a >??==??-

??≤-≥=)

()(0a a 0a a a

绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离。

两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离。 例1 解不等式:13x x -+->4。

解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1, 即24x -+>4,解得x <0, 又x <1,∴x <0;

②若2x 1<≤,不等式可变为(1)(3)4x x --->,即1>4,

∴不存在满足条件的x ;

③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4。 又x ≥3,∴x >4。

综上所述,原不等式的解为x <0,或x >4。 解法二:

如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA |,即|PA |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|。

所以,不等式13x x -+->4的几何意义即为|PA |+|PB |>4。 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧。 x <0,或x >4。 练 习 1.填空:(1)若4-=x ,则x =_________;

(2)如果5=+b a ,且1-=a ,则b =________; (3)若21=-c ,则c =________。

2.选择题:下列叙述正确的是( )

A 、若a b =,则a b =

B 、若a b >,则a b >

C 、若a b <,则a b <

D 、若a b =,则a b =±

3.化简:|x -5|-|2x -13|(6x 5<<)。

4、解答题:已知0)5(4232=++-+-c b a ,求 c b a ++的值。

1 0 C |x -1| |x -3|

图1.1-1

1.1.

2. 乘法公式

我们在初中已经学习过了下列一些乘法公式:

(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+。

【揭示乘法公式的几何意义】

从边长为a 的正方形内去掉一个边长为b 的小正方形,然后将剩余部分剪拼成一个矩形, 上述操作所能验证的等式是 ( ) A 、22))((b a b a b a -=-+

B、2222)(b ab a b a +-=- C、2222)(b ab a b a ++=+ D、)(2b a a ab a +=+

完全平方公式: 1.将字母看作非负数;

2.平方式构造正方形,底数即为边长;

3.两个字母相乘则构造长方形,两个字母即为长与宽。

【设计与创造】

请在下面正方形内设计一个方案,使之能解释公式:

ab b a b a 4)()(22+-=+

【利用图形探索】

2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个一模一样的直角三角形与中间的小正方形拼成的一个大正方形。若?直角三角形的较长直角边为a ,较短直角边为b ,斜边为c ,那么你能得到关于a 、b 、c 的什么等式?

我们还可以通过证明得到下列一些乘法公式:

(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;

222()2;a b a ab b +=++

(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-。 对上面列出的五个公式,有兴趣的同学可以自己去证明。 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++。

解法一:原式=2222(1)(1)x x x ??-+-??

=242

(1)(1)x x x -++=61x -。

解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -。

例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值。

解: 2222()2()8a b c a b c ab bc ac ++=++-++=。 例3、试探索,)(3b a +,)(4b a +,)(5b a +,)(6b a +… … 练习:

1.填空:(1)221111

()9423

a b b a -=+( );

(2)(4m + 22)164(m m =++ ); (3)2222(2)4(a b c a b c +-=+++ )。

2.选择题:(1)若21

2

x mx k ++是一个完全平方式,则k 等于( )

A 、2m

B 、214m

C 、21

3

m D 、2116m

(2)不论a ,b 为何实数,22248a b a b +--+的值( )

A 、总是正数

B 、总是负数

C 、可以是零

D 、可以是正数也可以是负数

3、计算:

(1)103×97 (2)1999199719982

?- (3)(1-2x )(1+2x ) (2

41x +)(4

161x +) 4、找规律与为什么

观察下列等式:1012

2

=-,3122

2

=-,5232

2

=-,7342

2

=-,… … 用含自然数n 的等式表示这种规律:_______________________________ 并证明这一规律。

5、观察下列等式:,......122535,62525,225152

2

2

=== 个位数字是5的两位数平方后,末尾两个数有什么规律? 你能证明这一规律吗? 6、一个特殊的式子

7、公式的拓展

11已知:=2,求:的值。x x

+

22x x

+

11变式:=2,求:的值。x x

-

2

2x x

+

再变:=2,求:的值。1x x +221x x +

(1)完全平方公式的拓展一

推导2)(c b a ++=___________________________________ 练习:2)32(c b a --=___________________________________ (2)完全平方公式的拓展二

观察下面的式子(Ⅰ)

432234432233222464)(,33)(,2)(b ab b a b a a b a b ab b a a b a b ab a b a ++++=++++=+++=+ 根据前面的规律,=+5)(b a ___________________________________

(3)平方差公式的拓展

推导(a +b +c )(a -b -c ) =___________________________________ 练习:化简(2a -b -3c )(2a -b -3c )

1.1.3.二次根式

0)a ≥的代数式叫做二次根式。根号下含有字母、且不能够开得尽方的式子称为无理式。 例如

32a b

等是无理式,而212

x +

+

,22x y +

1.分母(子)有理化:把分母(子)中的根号化去,叫做分母(子)有理化。

为了进行分母(子)有理化,需要引入有理化因式的概念。两个含有二次根式的代数式

相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如

等等。一般地,

b

与b 互为有理化因式。

分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程。

在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运

用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式。

1

1

1 1

2 1 1

3 3 1 1

4 6 4 1 ………………

2a ==,0,

,0.a a a a ≥??

-

例1 将下列式子化为最简二次根式:(1 (20)a ≥; (30)x <。

解:(1= (20)a ==≥;

(3220)x x x ==-<。

例2 (3。

(3

=393-=1)6=12。

(3

例3 试比较下列各组数的大小:

(1 (2

解:(1

1===

1=

==

>

(2)∵

1=

==

又 4>22, ∴6+4>6+22,

例4 化简:20042005?-。

解:20042005+?=20042004+??

=2004

??+??-??

=20041?

例 5 化简:(1; (21)x <<。

解:(1)原式===2=-2=。

(2)原式1

x x =-,∵01x <<,∴11x x >>,所以,原式=1x x -。

例 6 已知x y ==22353x xy y -+的值 。

解:∵2210x y +==+=,

1xy =

=,22223533()1131011289x xy y x y xy -+=+-=?-=。

练习 1.填空:(1

=__ ___;(2

)=__ ___;

(3

(x =-x 的取值范围是_ _ ___; (4

)若x =

=______ __。 2

=

成立的条件是( ) (A )2x ≠ (B )0x > (C )2x > (D )02x << 3

.若1

b a =+,求a b +的值。

4.比较大小:2-4(填“>”,或“<”)。

5、化简y

y x x y

xy x y xy y x x y -++--+2

。 6、解答:设2

31

,231

+=-=y x ,求代数式y x y xy x +++2

2的值

1.1.4.分式

1.分式的意义:形如A B 的式子,若B 中含有字母,且0B ≠,则称A

B 为分式。

当M ≠0时,分式A B 具有下列基本性质:A A M B B M ?=?;A A M

B B M ÷=÷。

2.繁分式:像a

b c d

+,2m n p

m n p

+++这样,分子或分母中又含有分式的分式叫做繁分式。

例1 若54(2)2

x A B

x x x x +=+++,求常数,A B 的值。

解:∵(2)()254

2(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=??=? 解得???==3

2B A 。

例2(1)试证:111

(1)1

n n n n =-++(其中n 是正整数);(2)计算:1111223910+++??? ; (3)证明:对任意大于1的正整数n , 有

11112334(1)2

n n +++

(1)1

n n n n =-++(其中n 是正整数)成立。

(2)解:由(1)可知

1111223910+++??? 11111(1)()()223910=-+-++- 1110=-=9

10。 (3)证明:∵111

2334(1)

n n +++??+ =111111()()()23341n n -+-++-+ =1121n -+,

又n ≥2,且n 是正整数,∴1n +1 一定为正数,∴111

2334(1)n n +++??+ <12

例3.设a

c

=

ρ,且1>ρ,025222=+-a ac c ,求ρ的值。 解:在025222=+-a ac c 两边同除以22a ,得02522=+-ρρ,

∴(2ρ-1)( ρ-2)=0,∴ρ=1

2

<1(舍去),或ρ=2。∴ρ=2。

练 习1.填空题:对任意的正整数n ,1

(2)

n n =+ (112n n -+);

2.选择题:若

223x y x y -=+,则x

y

=( ) (A )1 (B )54 (C )45 (D )65 3.正数,x y 满足222x y xy -=,求x y

x y

-+的值。

4、若22442--+=-x b

x a x x ,则22b a +的值是 5、计算1111 (12233499100)

++++????。

习题1.1A 组

1.解不等式:(1) 13x ->;

(2) 327x x ++-< ;

(3) 116x x -++>。

2.已知1x y +=,求333x y xy ++的值。

3.填空:(1)1819(2(2=________;

(22=,则a 的取值范围是________;

(3

=________。 B 组 1.填空:(1)12a =,13b =,则22

2

3352a ab

a a

b b -=+-____ ____; (2)若22

20x xy y +-=,则2222

3x xy y x y ++=+__ __;

2.已知:11

,23x y ==的值。

C 组1.选择题:(1 )

(A )a b < (B )a b > (C )0b a ≤≤ (D )0a b ≤≤

(2)计算 ) (A (B (C )(D )2.解方程2211

2()3()10x x x x

+-+-=。

3.计算:

1111132435911

++++???? 。 4.试证:对任意的正整数n ,有111

123234(1)(2)n n n +++

????++ <14

1.2 分解因式

因式分解的主要方法有:提取公因式法、公式法、分组分解法、十字相乘法,另外还应了解求根法及待定系数法。

1、提取公因式法 例2分解因式:(1)()()b a b a -+-552 (2)32933x x x +++

解:(1)()()b a b a -+-552=()()5b 52---a b a =)1)(5(--a b a

(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++ =2(3)(3)x x ++。 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++

=22[(1)2][(1)(1)22]x x x +++-+?+=2(3)(3)x x ++ 课堂练习:

一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________。 2、()()()?-=-+-y x x y n y x m __________________。

3、()()()?-=-+-222y x x y n y x m ____________________。

4、()()()?--=-++--z y x x z y n z y x m _____________________。

5、()()?--=++---z y x z y x z y x m ______________________。

6、523623913x b a x ab --分解因式得_____________________。 7.计算99992+= 二、判断题:(正确的打上“√”,错误的打上“×” )

1、()b a ab ab b a -=-24222( )

2、()b a m m bm am +=++( )

3、()

5231563223-+-=-+-x x x x x x ( ) 4、()111+=+--x x x x n n n ( ) 2、公式法

例3 分解因式: (1)164+-a (2)()()2223y x y x --+ 解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-

(2) ()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++ 课堂练习

一、222b ab a +-,22b a -,33b a -的公因式是_____________。 二、判断题:(正确的打上“√”,错误的打上“×” )

1、()??

? ??-??? ??+=-??? ??=-1.032 1.0321.03201.0942

2

2x x x x ( )

2、()()()()b a b a b a b a 43 4343892

222-+=-=-( ) 3、()()b a b a b a 45 4516252-+=-( ) 4、()

()()y x y x y x y x -+-=--=-- 2222( )

5、()()()c b a c b a c b a +-++=+- 2

2( ) 五、把下列各式分解

1、()()229n m n m ++--

2、3

1

32-x

3、()

2

2244+--x x 4、1224+-x x

3、分组分解法

例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-。

解:(1))()()()()()(3-x y -x y -x 3y -x x 333322?=-=-+-=-+-x y xy x x y xy x 或)()()()()()(y -x 3x 3x y 3x x 3xy 33322?-=---=+-+-=-+-y x x x y xy x (2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-。

或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-。

课堂练习:用分组分解法分解多项式

(1)by ax b a y x 222222++-+- (2)91264422++-+-b a b ab a 4、十字相乘法

例1分解因式:(1)2x -3x +2; (2)2x +4x -12; (3)22()x a b xy aby -++; (4)

1xy x y -+-。

解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有2x -3x +2=(x -1)( x -2)。

说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示)。

(2)由图1.1-3,得2

x +4x -12=(x -2)( x +6)。

-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay -by x x 图1.1-4 -1 1

x y

(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by --

(4)1xy x y -+-=x y +(x -y )-1=(x -1) (y+1) (如图1.1-5所示)。 课堂练习

一、填空题:1、把下列各式分解因式: (1)=-+652x x ________________。(2)=+-652x x ____________________。 (3)=++652x x ________________。(4)=--652x x ____________________。 (5)()=++-a x a x 12____________。(6)=+-18112x x __________________。 (7)=++2762x x _______________。(8)=+-91242m m _________________。 (9)=-+2675x x _______________。(10)=-+22612y xy x _______________。 2、()() 3 42++=+-x x x x 3、若()()422-+=++x x b ax x 则 =a , =b 。

二、选择题:(每小题四个答案中只有一个是正确的) 1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x ,(5)44152++x x 中,有相同因式的是( ) A 、只有(1)(2) B 、只有(3)(4) C 、只有(3)(5) D 、(1)和(2);(3)和(4);(3)和(5) 2、分解因式22338b ab a -+得( ) A 、()()3 11-+a a B 、()()b a b a 3 11-+ C 、()()b a b a 3 11-- D 、()()b a b a 3 11+- 3、()()2082-+++b a b a 分解因式得( ) A 、()()2 10-+++b a b a B 、()()4 5-+++b a b a C 、()()10 2-+++b a b a D 、()()5 4-+++b a b a

4、若多项式a x x +-32可分解为()()b x x --5,则a 、b 的值是( )

A 、10=a ,2=b

B 、10=a ,2-=b

C 、10-=a ,2-=b

D 、10-=a ,2=b 5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( ) A 、3或9 B 、3± C 、9± D 、3±或9±

三、把下列各式分解因式

1、()()3211262+---p q q p

2、22365ab b a a +-

3、6422--y y

4、8224--b b

5、关于x 的二次三项式2ax +b x +c (a ≠0)的因式分解。

若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,

则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --。

例5 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-。

解:(1)令221x x +-=0,则解得11x =-21x =-,

∴221x x +-=(1(1x x ????--+--????=(11x x ++。

(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,

∴2244x xy y +-=[2(1][2(1]x y x y ++。

练习1.选择题:多项式22215x xy y --的一个因式为( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分解因式:

(1)x 2+6x +8= (2)8a 3-b 3=

(3)x 2-2x -1 (4)4(1)(2)x y y y x -++-。

习题1.2 1.分解因式: (1)31a +=

(2)424139x x -+; (3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-。

2.在实数范围内因式分解:

(1)253x x -+ ; (2)23x --;

(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+。

3.ABC ?三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ?的形状。

4.分解因式:2x +x -(a 2-a )。

1.2分解因式

1. B 2.(1)(x +2)(x +4) (2)22(2)(42)a b a ab b -++ (3)(11x x -- (4)(2)(22)y x y --+。

习题1.2 1.(1)()()211a a a +-+ (2)()()()()232311x x x x +-+-

(3)()()2b c b c a +++ (4))()(1-2y x 4y -x 3+?+

2.(1)x x ?-- ????; (2)(x x --;

(3)3x y x y ????++ ??? ???????

; (4)()3(1)(11x x x x -+--。 3.等边三角形 4.(1)()x a x a -++

2.1 一元二次方程

2.1.1根的判别式

{情境设置:可先让学生通过具体实例探索二次方程的根的求法,如求方程的根: (1)0322=-+x x ;(2)0122=++x x ;(3)0322=++x x 。}

用配方法可把一元二次方程2

ax +b x +c =0(a ≠0)变为222

4()24b b ac x a a

-+=① a ≠0,∴4a 2

>0。于是

(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数

根2,1x (2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等

的实数根1x =2x =-2b

a

;(3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左

边2()2b

x a

+一定大于或等于零,因此,原方程没有实数根。

由此可知,一元二次方程2ax +b x +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程2ax +b x +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示。

综上所述,对于一元二次方程2ax +b x +c =0(a ≠0),有

(1)当Δ>0时,方程有两个不相2

ax +b x +c =0等的实数根2,1x

(2)当Δ=0时,方程有两个相等的实数根,1x =2x =-2b

a

(3)当Δ<0时,方程没有实数根。

例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根。

(1)2x -3x +3=0; (2)2x -ax -1=0; (3)2x -ax +(a -1)=0; (4)2x -2x +a =0。 解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根。

(2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等

的实数根1x =,2x =

(3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2, 所以,①当a =2时,Δ=0,所以方程有两个相等的实数根x 1=x 2=1; ②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根x 1=1,x 2=a -1。 (4)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ),所以

①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根11x =

21x =

②当Δ=0,即a =1时,方程有两个相等的实数根x 1=x 2=1; ③当Δ<0,即a >1时,方程没有实数根。

说明:

在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论。

分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题。

2.1.2 根与系数的关系(韦达定理)

若一元二次方程2

ax +b x +c =0(a ≠0)有两个实数根a

2ac

4b b x 22

1-±-=

则有1222b b

x x a a

-+===-;

221222(4)42244b b b b ac ac c x x a a a a a

-+---====。

所以,一元二次方程的根与系数之间存在下列关系:

如果2ax +b x +c =0(a ≠0)的两根分别是1x ,2x ,那么1x +2x =b

a

-

, 21x x ?=c a 。这

一关系也被称为韦达定理。

特别地,对于二次项系数为1的一元二次方程x 2

+p x +q =0,若1x ,2x 是其两根,由韦达定理可知,1x +2x =-p ,21x x ?=q ,即p =-(1x +2x ),q =21x x ?,

所以,方程2x +p x +q =0可化为2x -(1x +2x )x +21x x ?=0,由于1x ,2x 是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程2x -(1x +2x )x +21x x ?=0。因此有以两个数1x ,2x 为根的一元二次方程(二次项系数为1)是2x -(1x +2x )x +21x x ?=0。

所以,方程的另一个根为-3

5,k 的值为-7。

例2已知方程2

560x kx +-=的一个根是2,求它的另一个根及k 的值。

分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根。但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值。

解法一:∵2是方程的一个根,∴5×22+k ×2-6=0,∴k =-7。

所以,方程就为5x 2-7x -6=0,解得1x =2,2x =-3

5。

解法二:设方程的另一个根为2x ,则 22x =-65,∴2x =-3

5

由(-35)+2=-5k ,得 k =-7。所以,方程的另一个根为-3

5

,k 的值为-7。

例3 已知关于x 的方程2x +2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值。

分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值。但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零。

解:设1x ,2x 是方程的两根,由韦达定理,得1x +2x =-2(m -2),21x x ?=m 2+4。

∵2

1x +2

2x -21x x ?=21,∴(1x +2x )2-3 21x x ?=21,

即[-2(m -2)]2-3(m 2+4)=21,化简,得 m 2-16m -17=0,解得m =-1,或m =17。 当m =-1时,方程为2x +6x +5=0,Δ>0,满足题意;

当m =17时,方程为2x +30x +293=0,Δ=302-4×1×293<0,不合题意,舍去。 综上,m =17。 说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范

围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可。

(2)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零。因为,韦达定理成立的前提是一元二次方程有实数根。

例4已知两个数的和为4,积为-12,求这两个数。

分析:我们可以设出这两个数分别为x ,y ,利用二元方程求解出这两个数。也可以利用韦达定理转化出一元二次方程来求解。

解法一:设这两个数分别是x ,y ,则???==+)()(2-12xy 14

y x 解得: ∴11

2,6,x y =-??=? ,

22

6,

2.x y =??

=-?因此,这两个数是-2和6。 解法二:由韦达定理可知,这两个数是方程x 2-4x -12=0的两个根。 解这个方程,得1x =-2,2x =6。 所以,这两个数是-2和6。

说明:从上面两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷。

例5 若1x 和2x 分别是一元二次方程22x +5x -3=0的两根。

(1)求|1x -2x |的值; (2)求2212

11x x +的值; (3)31x +3

2x 。

解:∵1x 和2x 分别是一元二次方程22x +5x -3=0的两根,∴1252x x +=-,123

2

x x =-。

(1)∵| 1x -2x |2=x 12+ x 22-2 21x x ?=(1x +2x )2-421x x ?=253()4()22--?-=25

4

+6=494,

∴|1x -2x |=72。(2)2222

12121222222

21212125325()2()3()2113722439()9()24

x x x x x x x x x x x x --?-+++-+=====?-。 (3)31x +32x =(1x +2x 2)( 21x -21x x ?+2

2x )=(1x +2x )[ (1x +2x ) 2-321x x ?]

=(-52)×[(-52)2-3×(3

2

-)]=-2158。

说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:

设x 1和x 2分别是一元二次方程2ax +b x +c =0(a ≠0),

则1

b x -

=,2b x -=,

∴|1x -2x |

=||

a ==

。 于是有下面的结论:

若1x 和2x 分别是一元二次方程2ax +b x +c =0(a ≠0),则|1x -2x |=

||

a (其中Δ=

b 2-4a

c )。

今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论。

例6 若关于x 的一元二次方程2x -x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围。

解:设1x ,2x 是方程的两根,则21x x ?=a -4<0,且Δ=(-1)2-4(a -4)>0。

由①得a <4,由②得a <

17

4

。∴a 的取值范围是a <4。 练 习1.选择题:(1

)方程2230x k -+=的根的情况是( )

(A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根(D )没有实数根

(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是( )

(A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-1

4

,且m ≠0

2.填空:(1)若方程2x -3x -1=0的两根分别是x 1和x 2,则12

11

x x += 。

(2)方程mx 2+x -2m =0(m ≠0)的根的情况是 。 (3)以-3和1为根的一元二次方程是 。

3.

|1|0b -=,当k 取何值时,方程k 2x +a x +b =0有两个不相等实数根?

4.已知方程2x -3x -1=0的两根为1x 和2x ,求(1x -3)( 2x -3)的值。

习题2.1 A 组1.选择题:(1)已知关于x 的方程2x +k x -2=0的一个根是1,则它的另一个根是( ) (A )-3 (B )3 (C )-2 (D )2

(2)下列四个说法:其中正确说法的个数是( )个 (A )1 (B )2 (C )3 (D )4 ①方程2x +2x -7=0的两根之和为-2,两根之积为-7; ②方程2x -2x +7=0的两根之和为-2,两根之积为7;

③方程32x -7=0的两根之和为0,两根之积为7

3

-;

④方程32x +2x =0的两根之和为-2,两根之积为0。

(3)关于x 的一元二次方程a 2x -5x +a 2+a =0的一个根是0,则a 的值是( ) (A )0 (B )1 (C )-1 (D )0,或-1 2.填空:(1)方程k 2x +4x -1=0的两根之和为-2,则k = 。 (2)方程2x 2-x -4=0的两根为α,β,则α2+β2= 。

(3)已知关于x 的方程2x -ax -3a =0的一个根是-2,则它的另一个根是 。 (4)方程22x +2x -1=0的两根为x 1和x 2,则| x 1-x 2|= 。

3.试判定当m 取何值时,关于x 的一元二次方程2m 2x -(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?

4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数。

B 组 1.选择题:若关于x 的方程2x +(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( ) (A )1,或-1 (B )1 (

C )-1 (

D )0 2.填空:(1)若m ,n 是方程2x +2005x -1=0的两实数根,则m 2n +mn 2-mn 的值等于 。 (2)若a ,b 是方程2x +x -1=0的两个实数根,则代数式a 3+a 2b +ab 2+b 3的值

是 。

3.已知关于x 的方程2x -kx -2=0。(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围。

4.一元二次方程a 2x +bx +c =0(a ≠0)的两根为x 1和x 2。求:(1)| x 1-x 2|和122

x x

+;

(2)x 13+x 23

5.关于x 的方程2x +4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值。

C 组1.选择题: (1)已知一个直角三角形的两条直角边长恰好是方程22x -8x +7=0的两根,则这个直角三角形的斜边长等于( ) (A

(B )3 (C )6 (D )9

(2)若x 1,x 2是方程22x -4x +1=0的两个根,则1221

x x

x x +的值为( )

(A )6 (B )4 (C )3 (D )3

2

(3)如果关于x 的方程2x -2(1+m )x +m 2=0有两实数根α,β,则α+β的取值范围

为( )(A )α+β≥12 (B )α+β≤1

2

(C )α+β≥1 (D )α+β≤1

(4)已知a ,b ,c 是ΔABC 的三边长,那么方程c 2x +(a +b )x +4

c

=0的根的情况是( )

(A )没有实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根 (D )有两个异号实数根

2.填空:若方程2x -8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = 。

3.已知x 1,x 2是关于x 的一元二次方程4k 2x -4kx +k +1=0的两个实数根。(1)是否存

在实数k ,使(2x 1-x 2)( x 1-2x 2)=-3

2

成立?若存在,求出k 的值;若不存在,说明理由;

(2)求使1221x x x x +-2的值为整数的实数k 的整数值;(3)若k =-2,12

x

x λ=,试求λ的值。

4.已知关于x 的方程22

(2)04

m x m x ---=。(1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2。

5.若关于x 的方程2x +x +a =0的根一个大于1、另一根小于1,求实数a 的取值范围。

2.1 一元二次方程 练习

1.(1)C (2)D 2. (1)-3 (2)有两个不相等的实数根 (3)x 2+2x -3=0 3.k <4,且k ≠0 4.-1 提示:(x 1-3)( x 2-3)=x 1 x 2-3(x 1+x 2)+9 习题2.1 A 组

1.(1)C (2)B 提示:②和④是错的,对于②,由于方程的根的判别式Δ<0,所以

方程没有实数根;对于④,其两根之和应为-2

3

。(3)C 提示:当a =0时,方程不是一元

二次方程,不合题意。2.(1)2 (2)17

4

(3)6 (3

.当m >-14,且m ≠0时,

方程有两个不相等的实数根;当m =-14时,方程有两个相等的实数根;当m <-1

4

时,方程

没有实数根。4.设已知方程的两根分别是x 1和x 2,则所求的方程的两根分别是-x 1和-x 2,∵x 1+x 2=7,x 1x 2=-1,∴(-x 1)+(-x 2)=-7,(-x 1)×(-x 2)=x 1x 2=-1,∴所求的方程为y 2+7y -1=0。

B 组 1.

C 提示:由于k =1时,方程为x 2+2=0,没有实数根,所以k =-1。 2.(1)2006 提示:∵m +n =-2005,mn =-1,∴m 2n +mn 2-mn =mn (m +n -1)=2006。 (2)-3 提示;∵a +b =-1,ab =-1,∴a 3+a 2b +ab 2+b 3=a 2(a +b )+b 2(a +b )=(a +b )( a 2+b 2)=(a +b )[( a +b ) 2-2ab ]=(-1)×[(-1)2-2×(-1)]=-3。

3.(1)∵Δ=(-k )2-4×1×(-2)=k 2

+8>0,∴方程一定有两个不相等的实数根。 (2)∵x 1+x 2=k ,x 1x 2=-2,∴2k >-2,即k >-1。

4.(1)| x 1-x 2|

=||

a ,122x x +=2

b a -;(2)x 13+x 23

=33

3abc b a -。 5.∵| x 1-x 2|

2==,∴m =3。把m =3代入方程,Δ>0,满足题意,

∴m =3。

C 组 1.(1)B (2)A (3)C 提示:由Δ≥0,得m ≤1

2

,∴α+β=2(1-m )≥1。(4)

B 提示:∵a ,b ,c 是ΔAB

C 的三边长,∴a +b >c ,∴Δ=(a +b )2-c 2>0。2.(1)12 提示:∵x 1+x 2=8,∴3x 1+2x 2=2(x 1+x 2)+x 1=2×8+x 1=18,∴x 1=2,∴x 2=6,∴m =x 1x 2

=12。3.(1)假设存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-3

2

成立。∵一元二次方程4kx 2-

4kx +k +1=0有两个实数根,∴k ≠0,且Δ=16k 2

-16k (k +1)=-16k ≥0,∴k <0。∵x 1+x 2

=1,x 1x 2=14k k +,∴ (2x 1-x 2)( x 1-2 x 2)=2 x 12-51x 2+2 x 22=2(x 1+x 2)2-9 x 1x 2=2-

9(1)

4k k

+=-32,即9(1)4k k +=72,解得k =95

,与k <0相矛盾,所以,不存在实数k ,使(2x 1-x 2)( x 1

-2 x 2)=-3

2

成立。

(2)∵1221x x x x +-2=2222

12121212121212

()2()224x x x x x x x x x x x x x x ++-+-=-=-

=444(1)44111k k k k k k -+-==-+++,∴要使1221

x x

x x +-2的值为整数,只须k +1能整除4。而k 为整数,∴k +1只能取±1,±2,±4。又∵k <0,∴k +1<1,∴k +1只能取-1,-2,-4,

∴k =-2,-3,-5。∴使1221

x x

x x +-2的值为整数的实数k 的整数值为-2,-3和-5。

(3)当k =-2时,x 1+x 2=1,① x 1x 2=18, ② ①2÷②,得1221

x x

x x ++2=8,即

1

6λλ

+=,∴2610λλ-+=,

∴3λ=±

4.(1)Δ=2

2(1)20m -+>; (2)∵x 1x 2=-2

4

m ≤0,∴x 1≤0,x 2≥0,或x 1≥0,x 2≤0。

①若x 1≤0,x 2≥0,则x 2=-x 1+2,∴x 1+x 2=2,∴m -2=2,∴m =4。此时,方程为x 2-2x -4=0

,∴11x =

21x = ②若x 1≥0,x 2≤0,则-x 2=x 1+2,∴x 1+x 2=-2,∴m -2=-2,∴m =0。此时,方程为x 2+2=0,∴x 1=0,x 2=-2。

5.设方程的两根为x 1,x 2,则x 1+x 2=-1,x 1x 2=a ,由一根大于1、另一根小于1,得

(x 1-1)(x 2-1)<0, 即 x 1x 2-(x 1+x 2)+1<0, ∴ a -(-1)+1<0,∴a <-2。 此时,Δ=12-4×(-2) >0, ∴实数a 的取值范围是a <-2。

2.2 二次函数

2.2.1 二次函数y =ax 2+bx +c 的图象和性质

{情境设置:可先让学生通过具体实例探索二次函数的图象,如作图(1)2x y = (2) 2x y -= (3) 322-+=x x y 教师可采用计算机绘图软件辅助教学}

问题1 函数y =a 2x 与y =2x 的图象之间存在怎样的关系?

为了研究这一问题,我们可以先画出y =22x ,y =1

2

2x ,y =-22x 的图象,通过这些函

数图象与函数y =2x 的图象之间的关系,推导出函数y =a 2x 与y =2x 的图象之间所存在的关系。

先画出函数y =2x ,y =22x 的图象。

再描点、连线,就分别得到了函数y =2x ,y =22x 的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =22x 的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到。

同学们也可以用类似于上面的方法画出函数y =1

2

2x ,y =-22x 的图象,并研究这两个

函数图象与函数y =2x 的图象之间的关系。

图2.2-2

图2.2-1

通过上面的研究,我们可以得到以下结论:

二次函数y =a 2x (a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到。在二次函数y =a 2x (a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小。

问题

2 函数y =a (x +h )2+k 与y =a 2x 的图象之间存在怎样的关系?

同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系。同学们可以作出函数y =2(x +

1)2+1与y =22x 的图象(如图2-2所示),从函数的图象我们不难发现,只要把函数y =22x 的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象。这两个函数图象之间具有“形状相同,位置不同”的特点。

类似地,还可以通过画函数y =-32x ,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系。

通过上面的研究,我们可以得到以下结论:

二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”。

由上面的结论,我们可以得到研究二次函数y =a 2x +bx +c (a ≠0)的图象的方法:

由于y =a 2x +bx +c =a (2x +b x a )+c =a (2

x +b x a +22

4b a

)+c -24b a 224()24b b ac

a x a a

-=++,

所以,y =a 2x +bx +c (a ≠0)的图象可以看作是将函数y =a 2x 的图象作左右平移、上下平移得到的,于是,二次函数y =a 2x +bx +c (a ≠0)具有下列性质:

(1)当a >0时,函数y =a 2

x +bx +c 图象开口向上;顶点坐标为24(,

)24b ac b a a

--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b

a

-时,y 随着x 的

增大而增大;当x =2b a -时,函数取最小值y =2

44ac b a

-。

(2)当a <0时,函数y =a 2

x +bx +c 图象开口向下;顶点坐标为24(,

)24b ac b a a

--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b

a

-时,y 随着x

的增大而减小;当x =2b a -时,函数取最大值y =2

44ac b a

-。

上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来。因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题。

相关文档
最新文档