2018届高考数学二轮复习第13讲函数的零点个数问题的求解方法学案含答案(全国通用)

2018届高考数学二轮复习第13讲函数的零点个数问题的求解方法学案含答案(全国通用)
2018届高考数学二轮复习第13讲函数的零点个数问题的求解方法学案含答案(全国通用)

【知识要点】

一、方程的根与函数的零点

(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数

()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图

像与x 轴有交点?函数()y f x =有零点.

(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

使得()0f c =,这个c 也就是方程的根. 函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法

(1)二分法及步骤

对于在区间[,]a b 上连续不断,且满足0)()(

(2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(

第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x < ,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b < ,则令1a x =(此时零点

01(,)x x b ∈)

第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.

三、一元二次方程2

()0(0)f x ax bx c a =++=≠的根的分布

讨论一元二次方程2

()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组:

(1)a 的符号; (2)对称轴2b

x a

=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.

四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结

函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】

【例1 】已知函数2()32(1)(2)f x x a x a a =+--+区间(1,1)-内有零点,求实数a 的取值范围.

【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出 .(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.

【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7

【例2】(2017全国高考新课标I 理 数学)已知函数2()(2)x

x f x ae a e x =+--.

(1)讨论()f x 的单调性;

(2)若()f x 有两个零点,求a 的取值范围.

(2) ①若0,a ≤由(1)知()f x 至多有一个零点.

②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1

(ln )1ln f a a a

-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于1

1ln a a

-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()

时,1

1ln 0a a

-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点. 00000000003

ln(1),()(2)20

3

ln(1)ln ,()n n n n n n f n e ae a n e n n a

a f x a

>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.

综上所述,a 的取值范围为(0,1).

【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1

问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()

时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是

422(2)(2)2220,f ae a e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢

掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03

ln(1)n a

>-,再放缩证明

0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.

【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;

(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.

(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =

所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-?>-=

()()213211213f e f --<-+=-<

所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有

一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--

【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.

【反馈检测2】已知函数2

()1x

e f x ax

=+,其中a 为实数,常数 2.718e = . (1) 若1

3

x =

是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;

(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.

【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个

【点评】

接研究函数的单调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出

lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意

理解掌握和灵活应用.

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题 导数压轴题之隐零点问题(共13题) 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增,

而==1, 故a≤1, 综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤() 2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,

高考复习专题:函数零点的求法及零点的个数()

函数零点的求法及零点的个数 题型1:求函数的零点。 [例1] 求函数 222 3+--=x x x y 的零点. [解题思路]求函数 222 3+--=x x x y 的零点就是求方程 0222 3=+--x x x 的根 [解析]令 32 220x x x --+=,∴ 2(2) (2) x x x --- = ∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或 即函数222 3 +--=x x x y 的零点为-1,1,2。 [反思归纳] 函数的零点不是点,而是函数函数 ()y f x =的图像与x 轴交点的横坐标,即零点是 一个实数。 题型2:确定函数零点的个数。 [例2] 求函数f(x)=lnx +2x -6的零点个数. [解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数 [解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增, 又有(1)(4)0f f ?<,所以函数f(x)= lnx +2x -6只有一个零点。 方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数 即求ln 62y x y x =?? =-?的交点的个数。画图可知只有一个。 [反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法: ①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。 题型3:由函数的零点特征确定参数的取值范围 [例3] (2007·广东)已知a 是实数,函数 ()a x ax x f --+=3222,如果函数()x f y =在区 间[]1,1-上有零点,求a 的取值范围。 [解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数 a 的不等式(组),但由于涉及到a 作为2 x 的系 数,故要对a 进行讨论 [解析] 若0a = , ()23f x x =- ,显然在 []1,1-上没有零点, 所以 0a ≠. 令 ()248382440 a a a a ?=++=++=, 解得 37 2a -±= ①当 37 2a --= 时, ()y f x =恰有一个零 点在[ ] 1,1-上; ②当()()()()05111<--=?-a a f f ,即15a <<时, () y f x =在[ ] 1,1-上也恰有一个零点。 ③当()y f x =在[ ] 1,1-上有两个零点时, 则 ()()20824401 1121010a a a a f f >? ??=++>??-<-??-<-

函数的零点及判断零点个数提高题

函数的零点及判断零点个数提高题 1.已知函数()22,52,x x a f x x x x a +>?=?++≤?,函数()()2g x f x x =-恰有三个不同的零点,则实数a 的取值范围是( ) A .[)1,1- B .[]0,2 C .[)2,2- D .[)1,2- 【答案】D . 【解析】 22()()232x x a g x f x x x x x a -+>?=-=?++≤?,而方程20x -+=的解为2,方程 2320x x ++=的解为1-或2-,所以?? ???≤-≤-->,当1x ≤-?1x -≥,又f (x )为奇函数, ∴0x <时, ()(] 12log (1),1,0()()13,,1x x f x f x x x ?--+∈-?=--=??-+--∈-∞-?,(也可以不求解析式,依 据奇函数的图象关于原点对称,画出y 轴左侧的图象),画出y =f (x ),y =a (01a <<)的图象,如图 共有5个交点,设其横坐标从左到右分别为x 1,x 2,x 3,x 4,x 5,则45123,322 x x x x ++=-=

高中数学专题---隐零点及卡根思想

高中数学专题--- 隐零点及卡根思想 基本方法: 导数解决函数综合性问题最终都回归于函数单调性的判断,而函数的单调性与其导数的零点有着紧密的联系,可以说导函数零点的判断、数值上的精确求解或估计成为导数综合应用中最为核心的问题. 导函数的零点,根据其数值上的差异,我们可以分为两类:一类是数值上能精确求解的,我们不妨称为“显零点”;另一类是能判断其存在但数值上无法精确求解的,我们不妨称为“隐零点”. (1)函数“隐零点”的存在性判断 对于函数“隐零点”的存在性判断,常采用下列两种方法求解:①若连续函数()f x 在(,)a b 上单调,且()()0f a f b ?,则()f x 在(,)a b 上存在唯一零点;②借助图像分析,即将函数()f x 的零点问题转化为方程()0f x =的解的判断,并通过合理的变形将方程转化为合适的形式在处理. (2)函数“隐零点”的虚设和代换 对于函数“隐零点”,由于无法求出其显性表达式,这给我们求解问题带来一定困难. 处理这类问题的基本方法为“虚设及代换”:在确定零点存在的条件下虚设零点0x ,再借助零点的表达式 进行合理的代换进而求解. (3)函数“隐零点”的数值估计-卡根思想 函数“隐零点”尽管无法求解,但是我们可以进行数值估计,最简单的方法即为判断其存在性的前提下利用二分法进行估计,估值范围越精确越容易解决问题. 对于“隐零点”的代数估计,可以通过单调函数构造函数不等式进行估计. 一、典型例题 1. 已知函数()22e x f x x x =+-,记0x 为函数()f x 极大值点,求证:()0124f x <<. 2. 已知函数()4ln (1)x f x x x += >. 若*k N ∈,且()1k f x x <+恒成立. 求k 的最大值. 二、课堂练习 1. 已知函数()2ln f x x x x x =--,证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<. 2. 已知函数ln 1()x f x ax x -= -. 若12a <<,求证:()1f x <-. 三、课后作业 1. 已知函数()ln f x x =,若关于x 的方程()()1f x m x =+,()m Z ∈有实数解,求整数m 的最大值. 2. 已知函数()22ln f x x =+,令()() 2xf x g x x =-在()2,+∞上的最小值为m ,求证:()67f m <<.

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

函数的零点问题

函数零点问题的求解 【教学目标】 知识与技能: 1.理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数 零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 过程与方法: 1.函数零点反映了函数和方程的联系,函数零点与方程的根能相互转化,能把方程问题合理 转化为函数问题进行解决. 2.函数的零点问题的解决涉及到分类讨论,数形结合,化归转化等数学思想方法,有效提升了 学生的数学思想方法的应用. 情感、态度与价值观: 1.培养学生认真、耐心、严谨的数学品质; 2.让学生在自我解决问题的过程中,体验成功的喜悦. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理问题的意识. 【教学难点】 根据函数零点所在的区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 【教学过程】 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2. 零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有

高考数学专题复习函数隐性零点的处理技巧

高考数学专题复习函数隐性零点的处理技巧 近些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间; (2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增; 若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k < 1 1 -+x e x +x (x >0)(*), 令g (x )=1 1 -+x e x +x ,则g′(x )=2)1()2(---x x x e x e e , 而函数f (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,①f (1)<0,f (2)>0, 所以f (x )在(0,+∞)存在唯一的零点.故g ′(x )在(0,+∞)存在唯一的零点. 设此零点为a ,则a ∈(1,2).当x ∈(0,a )时,g ′(x )<0;当x ∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a ).

函数零点个数问题赏析

函数零点个数问题赏析

————————————————————————————————作者:————————————————————————————————日期:

近年高考试卷中的N 型函数零点个数问题赏析 近些年来,有不少的N 型函数零点个数问题出现在不同年份、不同省区与全国的高考试卷中,这不能不成为高考的热门话题和需要我们研究并指导高三学生进行科学备考的一个重点内容。什么是N 型函数零点个数问题呢,就是含参函数()y f x =在其定义域内连续可导,有两个极值点1x 、2x 并将其定义域分成三个单调区间,通常是“增减增”或“减增减”,在此条件的基础上,方程()0f x =或()f x m =的根的个数与参数取值范围相关的问题。这里注意:函数()y f x =在其靠近定义域两端点时,函数值会很大或很小(即一端足够大,大于极大值;一端足够小,小于极小值)。 N 型函数有哪些呢?一可能是三次函数3 2 ()f x ax bx cx d =+++(0)a ≠,二可能是函数 2()ln()f x ax bx x t =+++(0)a ≠,它们在定义域内都必须有两个极值点。 例1、(2006年福建高考卷)已知函数2 ()8f x x x =-+,()6ln g x x m =+。 (Ⅰ)求f (x )在区间[,1]t t +上的最大值()h t ; (Ⅱ)是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。 解析:(Ⅰ)略;(Ⅱ)构作函数2 ()()()86ln x f x g x x x x m ?=-=-++,0x >; 求导得:22862(1)(3) '()x x x x x x x ?-+--==,0x >,函数单调性与极值列表如下: x (0,1) 1 (1,3) 3 (3,)+∞ '()x ? + - + ()x ? 7m ?=- 极大 6ln 315m ?=+-极小 依题意,转化为函数()x ?图象与x 轴的交点为3时情形,当x 充分接近0时,()0x ?<,当x 充分大时,()0x ?>,为此有:707156ln 36ln 3150m m m ??=->? ?<<-? =+-

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法 【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有 0)()(

导数与函数隐性零点问题学生版

函数隐性零点问题 近年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。 函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 1.不含参函数的隐性零点问题 已知不含参函数)(x f ,导函数方程0)('=x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则:①有关系式0)('0=x f 成立,②注意确定0x 的合适范围. 2.含参函数的隐性零点问题 已知含参函数),(a x f ,其中a 为参数,导函数方程0),('=a x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则:①有关系式0)('0=x f 成立,该关系式给出了a x ,0的关系,②注意确定0x 的合适范围,往往和a 的范围有关. 题型一 求参数的最值或取值范围 例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间; (2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

高中数学题型解法归纳《函数的零点个数问题》

【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌 握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和 所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理 问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2

解法一:代数解法 解:(1).因为()00e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 问题2:函数2 ()68f x x x =-+在区间[][][]1,3, 0,1, 1,5有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 解法二:几何解法 (1). ()e 2 x f x x =+- 可化为2x e x =-+.

高考数学隐零点问题解题技巧

专题三 . 隐零点专题 知识点 一、不含参函数的隐零点问题 已知不含参函数)(x f ,导函数方程0)('=x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则①有关系式0)('0=x f 成立,②注意确定0x 的合适范围. 二、含参函数的隐零点问题 已知含参函数),(a x f ,其中a 为参数,导函数方程0),('=a x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则①有关系式0)('0=x f 成立,该关系式给出了a x ,0的关系,②注意确定0x 的合适范围,往往和a 的范围有关. 例1.已知函数)2ln()(+-=x e x g x ,证明)(x g >0. 例2.(2017052001)已知函数x a e x f x ln )(-=. (I )讨论)(x f 的导函数)('x f 的零点的个数; (II )证明:当0>a 时,)ln 2()(a a x f -≥. 例3.(2017.全国II.21)已知函数x x ax ax x f ln )(2 --=,且()0f x ≥. (I )求a ; (II )证明:)(x f 存在唯一的极大值点0x ,且2022)(--<时,(2)e 20;x x x -++> (II )证明:当[0,1)a ∈ 时,函数()2 e =(0)x ax a g x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域. 例 5.(2013.湖北.10)已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则 A.21)(,0)(21->>x f x f B.2 1)(,0)(21-<

复合函数的零点个数问题

复合函数、分段函数零点个数问题 1.已知函数???<≥=) 0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判 断不正确... 的是【 】 A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 2、已知函数(0)()lg()(0) x e x f x x x ?≥=?-0 B b>-2且c<0 C b<-2且c=0 D b 2c=0≥-且 5.已知f (x )=log 3x +2(x ∈[1,9]),则函数y =[f (x )]2+f (x 2)的最大值是【 】 A .13 B .16 C .18 D .22 6 已知函数31+,>0()3,0x x f x x x x ??=??+≤? , 则函数)2(-)2()(F 2>+=a a x x f x 的零点个数不可能...为【 】 A 3 B 4 C 5 D 6 7. 已知函数f(x)=????? ax +1,x ≤0,log 2x , x >0。则下列关于函数y =f(f(x))+1的零点个数的判断正确的是【 】 (A )当a >0时,有4个零点;当a <0时,有1个零点 (B )当a >0时,有3个零点;当a <0时,有2个零点 (C )无论a 为何值,均有2个零点 (D )无论a 为何值,均有4个零点 8、设R 上的函数2lg (>0) ()-2(0)x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2 +=x f x f 的零点的个数为【 】. A 2 B 3 C 5 D 7

函数零点经典习题

函数零点经典习题 一.选择题 1.函数f(x)=-x2+4x-4在区间[1,3]上的零点情况是: A 没有零点 B 有一个零点 C 有两个零点 D 有无数个零点 2函数f(x)=(x2-4)/(x-2)的零点是 A -2,2 B 2 C -2 D 不存在 3.函数f(x)=x2+27/x的零点是 A -3 B -1/3 C 3 D 1/3 4.如果方程2ax2+x-3=0在区间(0,1)内有一个解,则a的取值范围是 A a<-1 B a>1 C -1-1/4 C a≥-1/4 D a≤-1/4 6.二次函数y=ax2+bx+c,若ac>0则函数的零点的个数是 A 0 B 1 C 2 D 无法确定 7.已知二次函数y=ax2+bx+c,x∈R的部分对应值如下表: x-3-2-101234 y104d-2-2e410 不求a、b、c的值,可以判断方程的两根所在的区间分别是 A(-3,-2)(2,4)B(-2,0)(1,3)C(-3,-1)(-1,1)D(-∞,-3),(4,∞) 8.函数y=lnx+2x-6的零点一定在下列哪个区间 A (1,2) B (2,3) C (3,4) D (5,6)

9.函数f(x)=x 2-ax-b 的两个零点是3,5 则函数g(x)=bx 2-ax-1的零点是 A -3,-5 B 3,5 C -1/3,-1/5 D 1/3,1/5 1.函数12log )(2-+=x x x f 的零点必落在区间( ) A.?? ? ??41,81 B.?? ? ??21,41 C.?? ? ??1,2 1 D.(1,2) 2.若0x 是方程31 )2 1 (x x =的解,则0x 属于区间( ) A . ?? ? ??1,3 2 . B .?? ? ??32,21 . C .?? ? ??21,31 D .?? ? ? ?31,0 3.函数x x x f 2ln )(-=的零点所在的大致区间是( ) A .)2,1( B .)3,2( C .)1 ,1(e 和)4,3( D .),(+∞e 二.填空题 10.已知函数f9x)=x 2-1则函数f(x+2)的零点是------------ 11.方程x 2-2x-5=0在区间(2,3)内有实数根,取区间的中点x 0=2.5,下一个有根区间是------------- 12.若函数f(x)=ax+b 的零点是-3则函数g(x)=bx 2-ax 的零点是-------- 10.若函数 a x a x f x --=)( (0>a 且1≠a )有两个零点,则实数a 的取值范围 是

求函数零点的几种方法

函数零点 一、知识点回顾 1、函数零点的定义:对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点。 注意:(1)零点不是点; (2)方程根与函数零点的关系:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点. 2、零点存在性定理:如果函数)(x f y =在闭区间[a, b]上的图象是连续曲线,并且有0)()(++c bx ax 的解集是 例2 若函数2()2f x x x a =-+有两个零点,且一个在(-2,0)内,另一个在(1,3)内,求a 的取值范围. 变式 1、已知关于x 的方程2350x x a -+=的两根12x x ,满足1(20)x ∈-,,2(13)x ∈,,求实数a 的取值范围. 2、已知函数()()()2()f x x a x b a b =--+<,若()αβαβ<,是方程()0f x =的两个根,则实数a b αβ,,,之间的大小关系是( ) A .a b αβ<<< B .a b αβ<<< C .a b αβ<<< D .a b αβ<<<

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

零点个数问题

微专题函数零点个数的判定 活动一:预习◆反馈◆导学 1.函数f (x )=x e x -a 有两个零点,则实数a 的取值范围是________. 2.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是 ________. 3.【2017山东,理10】已知当[]0,1x ∈时,函数()21y mx =-的图象与y m 的图 象有且只有一个交点,则正实数m 的取值范围是 4. 【2017课标3,理11】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = 活动二. 合作◆提炼◆探究 例1.设f(x)=e x ·sin x +ax(a 为常数),x ∈[0,2π]. (1))若f(x)在区间(0,2π)的极大值、极小值各有一个,求实数a 的取值范围. 例2. 已知函数()1x x f x ax e =-+. (2)试求()f x 的零点个数,并证明你的结论.

例3.设函数21()()ln 2 f x x a b x ab x = -++(其中e 为自然对数的底数,,a e b R ≠∈),曲线()y f x =在点(,())e f e 处的切线方程为212y e =-. (1)求b ; (2)若对任意1[,)x e ∈+∞,()f x 有且只有两个零点,求a 的取值范围. 例4.已知()21ln 2 f x x a x =-, a R ∈. (1)求函数()f x 的增区间; (2)若函数()f x 有两个零点,求实数a 的取值范围,并说明理由; 例5.已知函数2()(2)x x f x ae a e x =+--. (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.

高考数学专题函数零点的个数问题

第 10 炼函数零点的个数问题 一、知识点讲解与分析: 1、零点的定义:一般地,对于函数y f x x D ,我们把方程f x 0的实数根x 称 为函数y f x x D 的零点 2、函数零点存在性定理:设函数f x 在闭区间a,b 上连续,且f a f b 0 , 那么在开区间a,b 内至少有函数f x 的一个零点,即至少有一点x0a,b ,使得 f x 0 。 (1)f x 在a,b 上连续是使用零点存在性定理判定零点的前提 ( 2)零点存在性定理中的几个“不一定” (假设f x 连续) ① 若f a f b 0 ,则f x 的零点不一定只有一个,可以有多个 ② 若f a f b 0 ,那么f x 在a,b 不一定有零点 ③ 若f x 在a,b 有零点,则 f a f b 不一定必须异号 3、若f x 在a,b 上是单调函数且连续,则f a f b 0 f x 在a,b 的零点唯一 4、函数的零点,方程的根,两图像交点之间的联系 设函数为y f x ,则f x 的零点即为满足方程f x 0的根,若f x g x h x , 则方程可转变为g x h x ,即方程的根在坐标系中为g x ,h x 交点的横坐标,其范围和个数可从图像中得到。 由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵 活转化。(详见方法技巧) 二、方法与技巧: 1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构 造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。例如:对

高考数学复习 《导数中的隐零点问题》

衢州三中微专题系列之《导数中的隐零点问题》 衢州三中 李娜 知识要点 求解导数题时,经常会碰到导函数存在零点但求解比较繁杂甚至无法求解的情形,我们将这类问题称为“隐零点”问题。这类问题我们一般采用设而不求,通过整体代换和过渡,再结合其他条件,从而使问题得到解决。 解隐零点问题的一般策略: 第一步:用零点存在性定理(或用二分法进一步缩小零点的范围)判断导函数零点的存在性。列出零点方f ′(x 0)=0,并结合f(x)的单调性得到零点的范围。 第二步:将零点方程f ′(x 0)=0适当变形,整体代入最值式子中进行化简证明、求最值、解不等式等。 典例分析 【类型一】不含参函数的隐零点问题(构造关于隐零点的单一函数进行求解) 已知不含参函数,导函数方程的根存在,却无法求出,设方程的根为,则①有关系式成立,②注意确定的合适范围. 例1 已知函数f (x )=(ae x ﹣a ﹣x )e x (a ≥0,e=2.718…,e 为自然对数的底数),若f (x )≥0对于x ∈R 恒成立. (1)求实数a 的值; (2)证明:f (x )存在唯一极大值点x 0,且. 【解答】 (1)a=1,证明略; (2)证明:由(1)f (x )=e x (e x ﹣x ﹣1), 故f'(x )=e x (2e x ﹣x ﹣2),令h (x )=2e x ﹣x ﹣2,h'(x )=2e x ﹣1, 所以h (x )在(﹣∞,ln )单调递减,在(ln ,+∞)单调递增, h (0)=0,h (ln )=2eln ﹣ln ﹣2=ln2﹣1<0,h (﹣2)=2e ﹣2﹣(﹣2)﹣2= >0, ∵h (﹣2)h (ln )<0由零点存在定理及h (x )的单调性知, 方程h (x )=0在(﹣2,ln )有唯一根, )(x f 0)('=x f 0)('=x f 0x 0)('0=x f 0x

相关文档
最新文档