氮化硅陶瓷

氮化硅陶瓷
氮化硅陶瓷

氮化硅陶瓷的研究

作者:王雪董茁卉张磊杨柳范雪孙亚静、陈雅倩、吕海涛、徐志华、张国庆、于希晶。

(吉林化工学院132022)

摘要:氮化硅陶瓷是一种有广阔发展前景的耐高温高强度结构陶瓷。氮化硅陶瓷在高技术陶瓷中占有重要地位,其具有高性能(如强度高、硬度高、抗热震稳定性好、疲劳韧性高、室温抗弯强度高、耐磨、耐化学腐蚀和很好的高温稳定性、抗氧化性能等),与其他陶瓷相比,氮化硅陶瓷比重小,热膨胀系数低,抗热冲击性好,断裂韧性高,是一种理想的高温结构材料和高速切削工具陶瓷材料。因此氮化硅陶瓷在航天航空、汽车发动、机械、化工、石油等领域有着广泛的用途,也为新型高温结构材料的发展开创了新局面。目前氮化硅陶瓷制品主要存在的问题是产品韧性低、成本高。今后应改善制粉、成型、和烧结工艺及氮化硅与碳化硅的复合化,研制出性能更佳的氮化硅陶瓷。本文介绍了氮化硅陶瓷的基本性能,综述了氮化硅陶瓷的制备工艺和应用领域,并展望了氮化硅陶瓷的发展前景。

关键词:氮化硅;陶瓷;性能;应用;

Abstract: Silicon nitride ceramics is high temperature and high strength structuralceramics has a broad development prospect. Silicon nitride

ceramics occupies an important position in the high technology ceramics, it

has high performance(such as high strength, high hardness, good thermal

shock stability, hightemperature fatigue toughness, high bending strength, wear resistance,chemical corrosion resistance and high temperature

stability, good oxidation resistance properties), compared with

other ceramics, silicon nitride ceramics the proportion of small, low thermal expansion coefficient, good heat shock resistance, high fracture toughness, is a kind of ideal candidates for high temperature structural materials and high speed cutting tool ceramics.Therefore, silicon nitride ceramics

in aerospace, automobile engine, mechanical,chemical, oil and other fields have a wide range of uses, has created a new situation for the development of new high temperature structural materials. Thesilicon nitride ceramic products the main problems is the product of low toughness, high cost. We

should improve milling, molding compound, and the sintering process and silicon nitride and silicon carbide, silicon nitride ceramicsdeveloped better performance. This paper introduces the basic properties of silicon nitride ceramics, reviews the preparation technology and application of silicon nitride ceramics, and prospects the future development of silicon nitride ceramics. Keywords:silicon nitride ceramic;performance;application;

引言

自20世纪60年代开始,氮化硅陶瓷作为最优异的非氧化物陶瓷材料之一,被期望能用于燃气轮机上,而逐渐蓬勃地发展了40多年,成为了一个以氮化硅为基的氮陶瓷领域。伴随着氮陶瓷材料的研制和发展,氮化硅陶瓷系统的结晶化学和物理化学,也在这期间开展大力研究,如氮化硅极其固溶体结构的揭示和测定,大量含氮硅酸盐新物相的合成极其与传统硅酸盐物相对应的关系,高温反映进程,高温物相平衡,相图等,并形成一个颇为完整的

含氮硅酸盐领域。这些研究不仅有重要的学术意义,对材料的组成设计和工艺最佳化等,也

有实用参考价值。作为人工合成材料之一的氮化硅结构陶瓷,其在新型材料中有着重要的位

置,而且受到越来越多的关注。本文着重对氮化硅陶瓷的高温物理化学在这40多年中的制

备方法、研究成果、应用领域进行系统的介绍。

1、氮化硅简介 正八面体的两个顶是Si

,然后连着Si 的是四个

N ,也就是八面体的中间,然后以这四个N

产生的平面的中心,就是最后那个Si 了。最后检查,一定要MAKE SURE

每个Si 都连着四个

N ,而N-N 之间没有连起来!氮化硅晶体属于原子晶体.氮化硅的晶体结构中,原子间都以单

键相连,且N 原子和N 原子、Si 原子和Si 原子不直接相连,同时每个原子都满足8电子稳

定结构。

图1氮化硅结构的立体图

1.2氮化硅陶瓷的晶体结构

Si3N4是共价键化合物,它有两种晶型,即针状结晶的α- Si3N4和颗粒状结晶的β- Si3N4,它们均属于六方晶系。Si3N4的晶体结构为Si原子和周围的四个N原子形成共价键,构成【Si3N4】四面体结构单元,所有四面体共享顶角构成三维空间网络。正是由于【Si3N4】四面体结构单元的存在,Si3N4具有较高的硬度。

B- Si3N4的一个晶胞内,有六个Si原子和八个N原子。其中三个Si原子和四个N原子在一个平面上,另外三个Si原子和四个N原子在高一层平面上。第三层与第一层相对应。α- Si3N4中第三层、第四层的Si原子,在平面位置上都分别与第一层、第二层的硅原子错了一个位置,形成四层重复排列,即ABCDABCD……的层叠排列,并且每个晶胞形成两个封闭孔洞。相对β- Si3N4而言α- Si3N4晶胞参数变化不大,但c轴扩大了约一倍,其结构内部的应变较大,故自由能比B型高,即体系的稳定性比较差,当加热至1500℃时,α- Si3N4将转变为β- Si3N4,且这种转变是不可逆的。

1.3氮化硅陶瓷的性能

Silicon Nitride(Si3N4)Ceramic Characteristics

密度Density g/cm3

相对密度

Relative density

弹性模量

Elastic modulus

GPa

抗弯强度

Bending strength

MPa

硬度(HV)

Hardness

GPa

3.26 0.02 >99.5 300~320 900~1000 18 - 20

1.4.氮化硅陶瓷的制备

1.反应烧结法( RS)

是采用一般成型法,先将硅粉压制成所需形状的生坯,放入氮化炉经预氮化(部分氮

化)烧结处理,预氮化后的生坯已具有一定的强度,可以进行各种机械加工(如车、刨、铣、

钻). 最后,在硅熔点的温度以上;将生坯再一次进行完全氮化烧结,得到尺寸变化很小的

产品(即生坯烧结后,收缩率很小,线收缩率< 011% ). 该产品一般不需研磨加工即可使用.

反应烧结法适于制造形状复杂,尺寸精确的零件,成本也低,但氮化时间很长.

3Si + 2N 2 = Si 3N 4反应烧结法工艺流程:

反应烧结合氮化硅的优点:

? 制造形状很复杂的产品,不需要昂贵的机械加工,尺寸精度容易控制;

? 不需要添加烧结助剂

断裂韧性

Fracture toughness

/MPa ?m 1/2

比电阻率 Specific resistance ratio 泊松比 Poisson's ratio 线膨胀系数 Linear expansion coefficient 10-6K -1 韦泊模数 Webuller modulus 7.0~9.0

1018 0.25 3.1~3.3 12~15 热导率

Thermal

conductivity

W ?(m ?K )-1

热震性 Thermal shock resistance 耐酸碱腐蚀性 Corrosion resistance 尺寸稳定性 Size stability 磁性 Magnetic 15~20 优 Excellent

Excellent 优 Excellent 无 NO

2、热压烧结法( HPS)

将Si 3N 4粉末和少量添加剂(如MgO 、Al 2O 3、MgF 2、Fe 2O 3 等),在1916 MPa 以上的压强

和1600 ℃以上的温度进行热压成型烧结. 英国和美国的一些公司采用的热压烧结Si 3N 4 陶

瓷,其强度高达981MPa 以上. 烧结时添加物和物相组成对产品性能有很大的影响. 由于严格

控制晶界相的组成,以及在Si 3N 4陶瓷烧结后进行适当的热处理,所以可以获得即使温度高

达1300 ℃时强度(可达490MPa 以上)也不会明显下降的Si 3N 4系陶瓷材料,而且抗蠕变性可

提高三个数量级. 若对Si 3N 4陶瓷材料进行1400———1500 ℃高温预氧化处理,则在陶瓷材

料表面上形成Si 2N 2O 相,它能显著提高Si 3N 4陶瓷的耐氧化性和高温强度. 热压烧结法生产的

Si 3N 4陶瓷的机械性能比反应烧结的Si 3N 4 要优异,强度高、密度大. 但制造成本高、烧结设

备复杂,由于烧结体收缩大,使产品的尺寸精度受到一定的限制,难以制造复杂零件,只能

制造形状简单的零件制品,工件的机械加工也较困难.

热压烧结氮化硅的优缺点:

? 优点:可获得密度和强度高的制品

? 缺点:生成效率低,成本高,产品形状简单,后续机加工困难

3、常压烧结法( PLS)

在提高烧结氮气氛压力方面,利用Si 3N 4 分解温度升高(通常在N 2 = 1atm 气压下,从

1800℃开始分解)的性质,在1700———1800℃温度范围内进行常压烧结后,再在

1800———2000℃温度范围内进行气压烧结. 该法目的在于采用气压能促进Si 3N 4 陶瓷组

织致密化,从而提高陶瓷的强度.所得产品的性能比热压烧结略低. 这种方法的缺点与热压

烧结相似.

4、气压烧结法( GPS)

近几年来,人们对气压烧结进行了大量的研究,获得了很大的进展. 气压烧结氮化硅在

1 ~10MPa 气压下,2000℃左右温度下进行. 高的氮气压抑制了氮化硅的高温分解. 由于采

用高温烧结,在添加较少烧结助剂情况下,也足以促进Si 3N 4晶粒生长,而获得密度> 99%的

含有原位生长的长柱状晶粒高韧性陶瓷. 因此气压烧结无论在实验室还是在生产上都得到

越来越大的重视. 气压烧结氮化硅陶瓷具有高韧性、高强度和好的耐磨性,可直接制取接近

最终形状的各种复杂形状制品,从而可大幅度降低生产成本和加工费用. 而且其生产工艺接

近于硬质合金生产工艺,适用于大规模生产.

5、重烧结(PS )

将反应烧结的Si 3N 4烧结坯在助烧剂存在的情况下,置于氮化硅粉末中,在高温下重烧

结,得到致密的Si 3N 4制品。助烧剂可在硅粉球磨时引入,也可用浸渍的方法在反应烧结后浸

渗加入。由于反应烧结过程中可预加工,在重烧结过程中的收缩仅有6 %~10 %,所以可制备

形状复杂,性能优良的部件。

重烧结的优点:

? 最高密度可达99%,与热压Si 3N 4相媲美

重烧结过程中收缩小

6、热等静压法( HIP)

将氮化硅及助烧剂的混合物粉末封装到金属或玻璃包套中 ,抽真空后通过高压气体在高温下烧结。常用的压力为200MPa ,温度为 2000℃热等静压氮化硅可达理论密度,但它工艺复杂,成本较高。

7、微波烧法

利用陶瓷素坯内部的介电损耗发热来进行陶瓷烧结的一门新型技术,坯体内外整体性加热、升温速度比常规加热快50倍左右、热效率高、节能效果显著等优点。Si3N4陶瓷因为其低介电常数和低损耗特性使其较难以实现微波加热,对预烧结样品进行微波烧结,可获得较高密度、结构均匀的Si3N4烧结体。微波烧结可大幅度降低Si3N4的致密化温度,提高相转变速度,缩短烧结时间,其力学性能也得到明显提高。

8、等离子体烧结法

等离子体烧结是将陶瓷素坯放在等离子体发生器中,利用等离子体特有的高温、高焓,快速烧成陶瓷的一种新工艺。目前有三种主要的产生高温等离子体的方法:直流阴极空腔放电法、高频感应等离子体和微波激发等离子体。工作时,先抽真空使气体压力降低至几托(1 Torr=133.322Pa),以便激发等离子体。等离子体产生后,再依据不同陶瓷材料的不同烧结温度而逐步升高压力,从数十托至几百托。获得稳定的高温等离子体后,素坯从垂直方向以每分钟几至几十毫米的速度通过等离子区,烧结成高密度、细晶粒的陶瓷材料。这一方法虽未成熟,但必将成为一项具有实用意义的陶瓷烧结新工艺。

9、电火花烧结法

也称为电活化压力烧结。它是利用粉末间火花放电产生高温和同时施加压力的烧结方法。电火花烧结经历放电活化和热塑性变致密化两个阶段。在放电活化阶段,通过一对电极板和上下模冲向模腔内的粉料直接通入高频(或中频)交流和直流叠加电流,使粉料产生火花放电而加热(也有电流通过模具和粉末产生的热),同时跟踪施加轻压。再叠加电流和跟踪轻压的相互作用下,提高粉末的内能,增加晶体缺陷,活化了过程,使粉料进入热塑性状态。在热塑性变阶段,提高压制压力,过程同普通热压大致相同。电火花烧结的烧结时间短,可在几秒至几分钟内完成,所用压力比普通热压低。

1.5氮化硅陶瓷的应用

氮化硅陶瓷的应用初期主要用在机械、冶金、化工、航空、半导体、医学等工业上,作某些设备或产品的零部件,取得了很好的预期效果。近年来,随着制造工艺和测试分析技术的发展,氮化硅陶瓷制品的可靠性不断提高,因此应用面在不断扩大。特别值得赞赏的是,正在研制氮化硅陶瓷发动机,并且已经取得了很大的进展,这在科学技术上成为举世瞩目的大事。有关应用的主要内容有:

1、氮化硅在冶金工业中的应用

(1)烧结氮化硅,其线膨胀系数较低,因此它有良好的抗热震性能,仅次于石英和微晶玻璃;

(2)氮化硅的摩擦系数小并且具有自润滑性,它具有优良的耐磨饰性,成为出色的耐磨材料;

(3)氮化硅具有较高的机械强度,它的高温蠕变小;

(4)具有优良的电绝缘性;

(5)氮化硅具有优良的化学性能,能耐除氢氟酸以外的所有无机酸和某些碱的腐蚀。2、氮化硅在化工工业中的应用

(1)在炼铝、铜、锌等行业中的应用

在铸铝连轧生产线和炼铝、熔铝作业中,氮化硅陶瓷可作为测温热电偶套管,还可以作炼铝熔炼炉炉衬、盛铝液的“包子”内衬、坩埚等,甚至输送铝液的泵、管道、阀门、铸铝的模具,全都可用氮化硅做成。

(2)在炼钢及轧钢行业

氮化硅作为耐火材料在炼钢行业中最重要的用途是作为水平连铸的分离环。在水平连铸中,分离环把钢液流分成熔融钢液区和钢液开始凝固区,起着分离钢的液固界面的作用,对保持稳定的钢液凝固起点和铸坯质量起着极大的作用。

(3)在炼铁行业中的应用

近年来,高炉用氮化硅及塞隆结合碳化硅制品有很快的发展。国内已有约61%的高炉采用它,特别是炉缸直径为12~15m的大型高炉采用它的已有68%。实验表明,氮化硅抗渣蚀性和抗氧化性良好。

(4)在金属热处理行业的应用

用氮化硅陶瓷做成心轴套住要处理的齿轮,在感应炉内于45s从室温加热至900℃

,然后带齿轮清油淬火,周而复始,每周操作5000次,连续使用一年多,氮化硅陶瓷心轴仅有轻微的磨损。氮化硅陶瓷在真空热处理中作为工件的夹具和发热体的钩等都是很合适的,因为它具有耐高温和高温下尺寸稳定。

(5)用于多孔陶瓷的制备

多孔氮化硅陶瓷兼具氮化硅陶瓷与多孔材料的性质,既具有氮化硅陶瓷的强度高、韧性好、抗蠕变性好、结构稳定性好、抗雨蚀、抗热冲击性能优良等优点,也具有多孔材料密度小,介电常数和介电损耗小等特性。因此,多孔氮化硅可以应用于航空、航天领域,作为在恶劣环境下使用的天线罩材料。用氮化硅陶瓷制造的雷达天线罩可以在6~7Ma的高速飞行器使用,其强度高、抗热震性和抗雨蚀性好。

3、在机械领域中的应用

(1)用于汽车发动机节能减排

汽车的陶瓷材料是采用高纯超细的氧化物、氮化物、硼化物等原料,经过预处理、破碎、磨粉、混合、成形、干燥、烧结等特殊工艺而得到的结构精细的无机非金属材料。它具有高强度、高耐热性、抗蚀性、高硬度、高耐磨性、密度小、变形小、抗热冲击等一系列优点,特别是抗拉强度和弯曲强度可与金属相比。氮化硅属于结构陶瓷,结构陶瓷的质量是铁的一半,节能效果非常显著,同时还能减少环境污染,节约钢材等金属材料。氮化硅陶瓷的原料丰富、加工性好,可以用低成本生产出各种尺寸精确的部件,特别是形状复杂的部件,成品率比其他陶瓷材料高。氮化硅陶瓷抗温度急变性好,硬度高,其硬度仅次于金刚石和氮化硼等物质,用氮化硅陶瓷材料制造发动机,由于温度提高,可使燃料充分燃烧,排出的废气中污染成分大幅度的降低,不仅降低能耗,并且减少了环境污染。

(2)正在研制的氮化硅质的全陶瓷发动机代替同类型金属发动机。

4、在航空航天领域中的应用。

美国通用电气公司在2005年大量生产的新一代空中客车发动机引擎中,主要采用了氮化硅原料。打飞机发动机运转时产生的很高的温度。专家指出,航空发动机平均使用时间超过上千个小时,其中存在发动机抗高温的问题,必须由隔热陶瓷解决。同时,国内航空

飞机每天飞行上万驾次,要减少油耗,就必须减轻飞机重量,陶瓷发动机有助于实现这个目标。

5、在医学领域中的应用

在医学工程上可以制成人工关节。介绍陶瓷对陶瓷髋关节置换的手术方法,分析2种陶瓷髋假体的特点。人工全髋置换术使用陶瓷对陶瓷型假体,需要掌握特殊的手术技巧,超半径设计假体安放要求适当增加髋臼假体前倾角。

1.6研究现状

对于Si3N4以及Sialon陶瓷烧结体,现已提供了一种不用形成复合材料而保持单一状态的、利用超塑性进行成型的工艺,并提供了一种根据该工艺成型出的烧结体。把相对密度在95%以上、线密度对于烧结体的二维横截面上的50μm的长度在120~250范围内的氮化硅及Sialon烧结体;在1300~1700℃的温度下通过拉伸或压缩作用使其在小于10-1/秒的应变速率下发生塑性形变从而进行成型。成型后的烧结体特别在常温下具有优异的机械性能。Si3N4陶瓷是一种重要的结构材料,它是一种超硬物质,本身具有润滑性,并且耐磨损;除氢氟酸外,它不与其他无机酸反应,抗腐蚀能力强,高温时抗氧化. 而且它还能抵抗冷热冲击,在空气中加热到1,000℃以上,急剧冷却再急剧加热,也不会碎裂. 正是由于Si3N4陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件. 如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率. 中国及美国、日本等国家都已研制出了这种柴油机。

1.6.1氮化硅陶瓷国内市场综述

氮化硅陶瓷主要是作为高温结构及工程材料被研究、开发、应用。氮化硅制品已经形成商品,投放市场,主要用在机械、化工、冶金、航空、能源、建材、半导体等工业上,作某些设备及产品的零部件。氮化硅年需求量(国内)在27万吨以上,而国内生产量仅10万吨左右;氮化硅作为结构钢的增氮剂,能提高钢的综合性能,年市场需求量在6万吨以上。在钢铁生产中作为耐火材料需求量超过10万吨;作为深加工原料如氮化硅轴承、发动机外壳、刀具等产品,年需求量约6万吨。市场前景广阔。

目前市场上的氮化硅粉价格在300-480元/公斤;氮化硅刀片价格20元/每片;氮化硅研磨球价格211.00/公斤;氮化硅陶瓷热电偶保护管240/根等。

1.7展望

Si3N4陶瓷材料作为一种优异的高温工程材料,最能发挥优势的是其在高温领域中的应用。Si3N4今后的发展方向是:⑴充分发挥和利用Si3N4本身所具有的优异特性;⑵在Si3N4粉末烧结时,开发一些新的助熔剂,研究和控制现有助熔剂的最佳成分;⑶改善制粉、成型和烧结工艺;⑷研制Si3N4与SiC等材料的复合化,以便制取更多的高性能复合材料Si3N4陶瓷等在汽车发动机上的应用,为新型高温结构材料的发展开创了新局面。汽车工业本身就是一项集各种科技之大成的多学科性工业,中国是具有悠久历史的文明古国,曾在陶瓷发展史上

做出过辉煌的业绩,随着改革开放的进程,有朝一日,中国也必然挤身于世界汽车工业大国之列,为陶瓷事业的发展再创辉煌。

1.8致谢

我代表全体队友向老师和同学表示感谢,谢谢老师能给我们这样宝贵的机会,让我们学到更多的专业知识,同时也感谢其他同学的支持。

参考文献

[1] 刘阳,曾令可,刘明泉等.非氧化物陶瓷及其应用,化学工业出版社.北京. 309,

332~338

[2] 肖汉宁,高朋召等.高性能结构陶瓷及其应用,化学工业出版社.北京.193~199

[3] 王正军,氮化硅陶瓷的研究进展,

[4] 李楠,顾华志,赵惠忠等.耐火材料学,冶金工业出版社.北京.

[5] 尹衍生,陈守刚,李嘉等.先进结构陶瓷及其复合材料,北京化学工业出版社.193~199

[6] 江东亮,李龙土,欧阳世翕,施剑林等.无机非金属材料手册,北京化学工业出版社

氮化硅陶瓷制品

题目名称:氮化硅陶瓷的制备 学院名称:材料科学与工程学院 班级: 学号: 学生姓名: 指导教师: 2014 年 4 月

氮化硅陶瓷的制备 1.简介 1.1 应用背景 作为结构陶瓷,氮化硅陶瓷材料具有优良的耐磨、耐腐蚀、耐高温性能以及良好的抗热震性能,广泛应用于航空航天、机械、电子电力、化工等领域。采用适当的烧结助剂可有效提高氮化硅陶瓷材料的热导率,增加材料断裂韧性,促进材料性能完善。 研究结果表明,以CeO2为烧结助剂,氮化硅的相变转换率为100%;当CeO2含量不超过8mol%时,氮化硅晶界相的构成主要为Ce4.67(SiO4)3O、Si2ON2以及Ce2Si2O7,其结晶析出状况随烧结助剂含量增加呈规律性变化;晶粒尺寸随烧结助剂含量增加变化微弱,长柱状晶数目增多。烧结助剂CeO2通过对晶界相及微观结构的影响作用于氮化硅陶瓷材料相对密度、强度、硬度及断裂韧性,CeO2含量变化对氮化硅陶瓷材料力学性能影响显著。当CeO2含量不超过7mol%时,氮化硅陶瓷材料的热扩散系数及热导率随CeO2含量增加而升高,CeO2含量由1mol%增加至7mol%时,氮化硅陶瓷材料热扩散系数增加50%,热导率增加38.7%。且氮化硅热传导导机制为声子导热,其热导率的大小依赖于氮化硅晶粒的净化程度。 1.2 研究意义 作为信息、交通、航空航天等科技领域发展基础之一的电力电子技术,应其对电力的有效控制与转换的要求,电子器件一直向小尺寸、高密度、大电流、大功率的趋势发展。伴随大功率、超大规模集成电路的发展,其所面临的热障问题愈加突出,器件设计中的热耗散问题亟待解决(在温度高于100℃时,电路失效率会随着温度的升高成倍增长)。较玻璃、树脂等材料,电子陶瓷材料凭借其优异的绝缘性能、化学稳定性以及与芯片最为相似的热膨胀系数使其在基板材料中占据重要地位。降低基板材料热阻的主要途径有两种:减小基板厚度、提高材料热导率,为此对基板材料强度要求升高。高热导率陶瓷材料主要应用于集成电路(IC)衬底,多芯片组装(MCM)基板、封装以及大功率器件散热支撑件等部位,其中研究较多的有Al2O3、BeO、AlN、BN、Si3N4、SiC 等陶瓷材料。其中多晶氧化铝的热导为25~35Wm-1K-1,其单晶结构热导为40Wm-1K-1。而以高热导率著称的氧化铍,热导率在240 Wm-1K-1左右,但因为使用安全问题而被氮化铝替代。SiC的介电性能远低于其它基板材料,易被击穿,故其使用受到限制。而现今性能较为优异的两种封装材料:氮化铝与氧化铍,前者造价昂贵后者具有毒性。氮化铝的热导率范围为175~200 Wm-1K-1,但其弯曲强度在300~350MPa之间,远低于氮化硅陶瓷材料(600~1500MPa),且氮化硅的热膨胀系数低于以上高热导率陶瓷材料。 高热导率氮化硅陶瓷材料具有其他陶瓷材料无法比拟的高强度、高断裂韧性以及抗热震性能,其作为一种理想的结构材料可以为电子器件的热耗散设计提供一种新的材料选择。具有较高热导率的高性能氮化硅陶瓷的制备需求随着氮化硅陶瓷材料的潜

层状氮化硅陶瓷的性能与结构

第25卷第5期硅 酸 盐 学 报V ol.25,N o.5 1997年10月JO U RN A L O F T HE CHIN ESE CERA M IC SO CIET Y O ct ober,1997  层状氮化硅陶瓷的性能与结构 郭 海 黄 勇 李建保 (清华大学材料科学与工程系) 摘 要 从结构设计的角度出发研究了层状复合Si3N4陶瓷材料。利用轧膜工艺使层内的晶粒、晶须产生定向增韧,通过调整外部层状复合结构得到材料的两级增韧效果,并实验制备了高韧性层状复合Si3N4基陶瓷材料。主层内加入一定量的SiC晶须,层状氮化硅陶瓷的断裂韧性可达到20.11M Pa?m1/2。 关键词 氮化硅,层状复合,晶须,定向 1 前 言 制备高韧性的陶瓷材料,克服陶瓷灾难性的破坏,常用增韧方法的增韧效果非常有限。为了提高增韧效果,降低增韧成本,新的增韧方法的探索是十分必要的。 近年来,国内外学者从生物界得到了启示。贝壳具有的层状结构可以产生较大的韧性这一特点给了我们一些启发,除了从组分设计上选择不同的材料体系以外,更重要的一点就是可以从材料的宏观结构角度来设计新型材料。目前国内外已有人从结构设计的角度出发,开始了层状复合陶瓷材料的探索性研究[1,2]。对于层状复合陶瓷材料来讲,如果把每层看成块体材料的结构单元,则关键的技术问题在于:(1)材料各结构单元的强度、韧性优化;(2)界面结合层的选择及与结构单元的匹配。层状结构单元基本上都是高强硬质的陶瓷材料如氮化硅、氧化铝等,通常是通过流延、干压等工艺方法制备的陶瓷薄片[3,4]。而界面结合层的选择则种类繁多,如石墨、延性金属等,它们对陶瓷薄片起到一定的分隔作用[5]。但总的来说,目前的研究结果并不令人满意,尚未达到单纯块体材料的性能水平。 针对层状复合陶瓷材料的两个关键问题,可以分别进行研究。首先是改善材料结构单元的性能,由于层状复合材料具有明显的各向异性,因此可以设计结构单元具有同样的各向异性性能,如引入可能导致各向性能差异的晶须、纤维、晶种等,并使之按指定方向分布,就有可能在特定方向上得到较高的性能[6],对晶须定向陶瓷材料的各方向的性能差异的研究证实了这一假设。其次是结构单元之间界面的选择,对层状复合陶瓷材料,界面的选择要同时考虑界面的高温性能、与陶瓷薄片的结合性能以及热匹配等多种因素,对不同的基片进行综合考虑,选择合适的界面组分及所占的比例。 1996年7月15日收到。 通讯联系人:郭 海,清华大学材料科学与工程系,北京 100084。 532

氮化硅陶瓷增韧调研报告

氮化硅陶瓷增韧调研报告 1、前言 氮化硅陶瓷是典型的高温高强结构陶瓷,具有良好的室温及高温机械性能,强度高,耐磨蚀,抗热震能力强,抗化学腐蚀,低导热系数,密度相对较小,是结构陶瓷中研究最为广泛深入的材料,亦是陶瓷发动机及其它高温结构件、切削工具、耐磨件等的主要候选材料,近几年来仍是人们争相研究的热点材料之一。 但是,已有的研究对氮化硅陶瓷的脆性缺陷仍未获得彻底改善,从而大大限制了它的实际应用。如何提高氮化硅韧性仍是人们研究的焦点。目前从事氮化硅陶瓷研究的学者为了提高其韧性,主要从两大方面着手进行韧性改善。一是通过进行“显微结构设计”来提高氮化硅陶瓷的韧性。即降低气孔的含量,控制杂质的含量,提高氮化硅陶瓷的密度、纯度;对氮硅陶瓷的晶型、晶粒尺寸、发育完整程度进行控制;对晶界的大小、材质进行调控;对玻璃相的数量、性质、分布状态等进行控制,以求在烧结后获得最佳韧性的显微组织,从而提高氮化硅陶瓷的韧性【1】。二是在上述基础上开展的“晶界工程”研究。氮化硅陶瓷常以多晶陶瓷的形式出现,而对多晶材料而言,当晶体较小为微米或纳米级时,晶界状态是决定其电性能、热性能和力学性能等的一个极其重要的因素。对于氮化硅陶瓷来说,晶界强度,尤其是晶界高温强度是决定其能否作为高温工程材料运用的关键。氮化硅是强共价键化合物,其自扩散系数很小,致密化所必须的体积扩散及晶界扩散速度很小,同时它的晶界能V gb与粉末表面能V sv的比值(V gb/ V sv) 比离子化合物和金属要大得多,使得烧结驱动力Δv 较小,决定了纯氮化硅无法靠常规的固相烧结达到致密化,必须加入少量氧化物烧结助剂,在高温烧结过程中它们与氮化硅表面SiO2反应形成液相,通过液相烧结成致密体,冷却后该液相呈玻璃态存在于晶界。而此玻璃相的性能在很大程度上决定了氮化硅陶瓷材料的性能。为了提高氮化硅陶瓷的高温性能,人们对玻璃晶界结晶化进行了大量的研究工作,称之为“晶界工程”【2】。 2、氮化硅陶瓷增韧研究现状

氮化硅陶瓷材料的制备及应用

氮化硅陶瓷材料的制备及应用 氮化硅,子式为Si3N4,是一种重要的结构陶瓷材料。它是一种超硬物质,本身具有润滑性,并且耐磨损,为原子晶体;高温时抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1 000 ℃以上,急剧冷却再急剧加热,也不会碎裂。正是由于氮化硅陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件。如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率。我国及美国、日本等国家都已研制出了这种柴油机 一、材料的制备 Si3N4 陶瓷的制备技术在过去几年发展很快,制备工艺主要集中在反应烧结法、热压烧结法和常压烧结法、气压烧结法等类型. 由于制备工艺不同,各类型氮化硅陶瓷具有不同的微观结构(如孔隙度和孔隙形貌、晶粒形貌、晶间形貌以及晶间第二相含量等). 因而各项性能差别很大 . 要得到性能优良的Si3N4 陶瓷材料,首先应制备高质量的Si3N4 粉末. 用不同方法制备的Si3N4 粉质量不完全相同,这就导致了其在用途上的差异,许多陶瓷材料应用的失败,往往归咎于开发者不了解各种陶瓷粉末之间的差别,对其性质认识不足. 一般来说,高质量的Si3N4 粉应具有α相含量高,组成均匀,杂质少且在陶瓷中分布均匀,粒径小且粒度分布窄及分散性好等特性. 好的Si3N4 粉中α相至少应占90%,这是由于Si3N4 在烧结过程中,部分α相会转变成β相,而没有足够的α相含量,就会降低陶瓷材料的强度. 1、反应烧结法( RS) 是采用一般成型法,先将硅粉压制成所需形状的生坯,放入氮化炉经预氮化(部分氮化)烧结处理,预氮化后的生坯已具有一定的强度,可以进行各种机械加工(如车、刨、铣、钻). 最后,在硅熔点的温度以上;将生坯再一次进行完全氮化烧结,得到尺寸变化很小的产品(即生坯烧结后,收缩率很小,线收缩率< 011% ). 该产品一般不需研磨加工即可使用. 反应烧结法适于制造形状复杂,尺寸精确的零件,成本也低,但氮化时间很长. 2、热压烧结法( HPS) 是将Si3N4 粉末和少量添加剂(如MgO、Al2O3、MgF2、Fe2O3 等) ,在1916 MPa以上的压强和1600 ℃以上的温度进行热压成型烧结. 英国和美国的一些公司采用的热压烧结Si3N4 陶瓷,其强度高达981MPa以上. 烧结时添加物和物相组成对产品性能有很大的影响. 由于严格控制晶界相的组成,以及在Si3N4 陶瓷烧结后进行适当的热处理,所以可以获得即使温度高达1300 ℃时强度(可达490MPa以上)也不会明显下降的Si3N4系陶瓷材料,而且抗蠕变性可提高三个数量级. 若对Si3N4 陶瓷材料进行1400———1500 ℃高温预氧化处理,则在陶瓷材料表面上形成Si2N2O相,它能显著提高Si3N4 陶瓷的耐氧化性和高温强度. 热压烧结法生产的Si3N4 陶瓷的机械性能比反应烧结的Si3N4 要优异,强度高、密度大. 但制造成本高、烧结设备复杂,由于烧结体收缩大,使产品的尺寸精度受到一定的限制,难以制造复杂零件,只能制造形状简单的零件制品,工件的机械加工也较困难. 3、常压烧结法( PLS) 在提高烧结氮气氛压力方面,利用Si3N4 分解温度升高(通常在N2 = 1atm气压下,从

氮化硅材料的性能、合成方法及进展

氮化硅材料的性能、合成方法及进展 摘要:氮化硅作为一种新型无机材料,以其有良好的润滑性,耐磨性,抗氧化等特性受到广泛的关注和深入的研究。以下对氮化硅的材料的性能、合成方法、意义和进展作简单介绍。 关键词:无机材料;氮化硅;合成方法;性能;进展 1前言 由于科学技术的不断发展需要,科学家们一直在不停顿地寻找适用于苛刻条件下使用的理想的新材料。在层出不穷的大量新材料队伍中,氮化硅陶瓷可算是脱颖而出,十分引人注目,日益受到世界各国科学家们的重视。 2氮化硅的材料的性能\合成方法、意义和进展 2.1氮化硅的性能和应用 氮化硅(Si3N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的元素。氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物。 氮化硅是在人工条件下合成的化合物。虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料。经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品。开发过程为何如此艰难,这是因为氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的。没有氮化硅陶瓷就没有氮化硅如今的重要地位。 2.1.1优异的性能 氮化硅陶瓷的优异的性能对于现代技术经常遇到的高温、高速、强腐蚀介质的工作环境,具有特殊的使用价值。比较突出的性能有: (1)机械强度高,硬度接近于刚玉,有自润滑性,耐磨。室温抗弯强度可以高达980MPa以上,能与合金钢相比,而且强度可以一直维持到1200℃不下降。 (2)热稳定性好,热膨胀系数小,有良好的导热性能,所以抗热震性很好,从室温到1000℃的热冲击不会开裂。 (3)化学性能稳定,几乎可耐一切无机酸(HF除外)和浓度在30%以下烧碱(NaOH)溶液的腐蚀,也能耐很多有机物质的侵蚀,对多种有色金属熔融体(特别是铝液)不润湿,能经受强烈的放射辐照。 (4)密度低,比重小,仅是钢的2/5,电绝缘性好。

氮化硅陶瓷的制作流程

一种氮化硅陶瓷,各组分及组分的重量份数如下:氮化硅80100份、氧化镁2030份、氧化铝1518份、氟化镁2025份、三氧化二铁1518份、高岭土58份、聚乙二醇58份、硅烷偶联剂25份、水3040份。本技术提出的氮化硅陶瓷耐磨性好、韧性好、润滑性好,使用寿命长,其抗蠕变性提高三个数量级。 权利要求书 1.一种氮化硅陶瓷,其特征在于各组分及组分的重量份数如下:氮化硅80-100份、氧化镁20-30份、氧化铝15-18份、氟化镁20-25份、三氧化二铁15-18份、高岭土5-8份、聚乙二醇5-8份、硅烷偶联剂2-5份、水30-40份。 2.根据权利要求1所述的氮化硅陶瓷,其特征在于各组分及组分的重量份数如下:氮化硅84份、氧化镁23份、氧化铝16份、氟化镁22份、三氧化二铁16份、高岭土6份、聚乙二醇6份、硅烷偶联剂3份、水33份。 3.根据权利要求1所述的氮化硅陶瓷,其特征在于各组分及组分的重量份数如下:氮化硅87份、氧化镁28份、氧化铝17份、氟化镁24份、三氧化二铁17份、高岭7份、聚乙二醇7份、硅烷偶联剂4份、水36份。 技术说明书 一种氮化硅陶瓷 技术领域

本技术属于氮化硅陶瓷材料领域,特别是涉及一种氮化硅陶瓷。 背景技术 目前通道、管道用的材料有铝合金材料、陶瓷等,铝合金材料耐磨性差,槽道容易消失,影响色选精度,要经常更换,成本高;目前所用的陶瓷材料脆性大,耐磨性不太高,不耐冷热刺激,耐酸碱性差,因此需要研究耐磨性好,硬度高,韧性好,耐震动,耐热,耐腐蚀等性能优异的陶瓷材料,以降低成本。 技术内容 针对现有陶瓷材料的缺陷,本技术的目的在于提出一种耐磨性好、润滑性好、使用寿命长的氮化硅陶瓷。 本技术的目的是采用以下技术方案来实现。依据本技术提出的一种氮化硅陶瓷,各组分及组分的重量份数如下:氮化硅80-100份、氧化镁20-30 份、氧化铝15-18份、氟化镁20-25份、三氧化二铁15-18份、高岭土5-8 份、聚乙二醇5-8份、硅烷偶联剂2-5份、水30-40份。 本技术的目的还采用以下技术措施来进一步实现。 所述氮化硅陶瓷,各组分及组分的重量份数如下:氮化硅84份、氧化镁23份、氧化铝16份、氟化镁22份、三氧化二铁16份、高岭土6份、聚乙二醇6份、硅烷偶联剂3份、水33份。 所述氮化硅陶瓷,各组分及组分的重量份数如下:氮化硅87份、氧化镁28份、氧化铝17份、氟化镁24份、三氧化二铁17份、高岭7份、聚乙二醇7份、硅烷偶联剂4份、水36份。 本技术提出的氮化硅陶瓷耐磨性好、韧性好、润滑性好,使用寿命长,其抗蠕变性提高三个数量级。 上述说明仅是本技术技术方案的概述,为了能够更清楚了解本技术的技术手段,而可依照说明书的内容予以实施,并且为了让本技术的上述和其他目的、特征和优点能够更明显易懂,

氮化硅陶瓷讲解

氮化硅陶瓷讲解

氮化硅陶瓷及其制备成型工艺 氮化硅(Si 3N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的元素。氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物。 氮化硅是在人工条件下合成的化合物。虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料。经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品。开发过程为何如此艰难,这是因为氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的。没有氮化硅陶瓷就没有氮化硅如今的重要地位。 Si3N4是以共价键为主的化合物,键强大,键的方向性强,结构中缺陷的形成和迁移需要的能量大,即缺陷扩散系数低(缺点),难以烧结,其中共价键Si-N 成分为70 %,离子键为30 %,同时由于Si3N4本身结构不够致密,从而为提高性能需要添加少量氧化物烧结助剂,通过液相烧结使其致密化。 Si3N4含有两种晶型,一种为α-Si3N4,针状结晶体,呈白色或灰白色,另一种为β-Si3N4,颜色较深,呈致密的颗粒状多面体或短棱柱体。两者均为六方晶系,都是以[SiN4]4-四面体共用顶角构成的三维空间网络。 在高温状态下,β相在热力学上更稳定,因此α相会发生相变,转为β相。从而高α相含量Si3N4粉烧结时可得到细晶、长柱状β-Si3N4晶粒,提高材料的断裂韧性。但陶瓷烧结时必须控制颗粒的异常生长,使得气孔、裂纹、位错缺陷出现,成为材料的断裂源。 在工业性能上,Si3N4陶瓷材料表现出了较好的工艺性能。(1)机械强度高,硬度接近于刚玉,有自润滑性耐磨;(2)热稳定性高,热膨胀系数小,有良好的导热性能;(3)化学性能稳定,能经受强烈的辐射照射等等。 晶体的常见参数如下图所示:

氮化硅陶瓷材料最终版

摘要氮化硅瓷是一种具有广阔发展前景的高温、高强度结构瓷,它具有强度高、抗 热震稳定性好、疲劳韧性高、室温抗弯强度高、耐磨、抗氧化、耐腐蚀性能好等高性能,已被广泛应用于各行各业。本文介绍了氮化硅瓷的基本性质,综述了氮化硅瓷的制备工艺和国外现代制造业中的应用,并展望了氮化硅瓷的发展前景。

Abtract:Silicon nitride ceramic is a broad development prospects of high temperature, high strength structural ceramics, it has high strength, thermal shock stability, high temperature fatigue toughness, high bending strength, wear resistance, oxidation resistance, corrosion resistance and good performance of high performance, has been widely used in all walks of life. This paper introduces the basic properties of silicon nitride ceramics, reviews the fabricating technique of silicon nitride ceramics at home and abroad and modern manufacturing industry in the application, and looks forward to the development prospect of silicon nitride ceramics.

氮化硅

氮化硅 氮化硅,分子式为Si3N4,是一种重要的结构陶瓷材料。它是一种超硬物质,本身具有润滑性,并且耐磨损;除氢氟酸外,它不与其他无机酸反应(反应方程式:Si3N4+4HF+9H2O=====3H2SiO3(沉淀)+4NH4F),抗腐蚀能力强,高温时抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1 000 ℃以上,急剧冷却再急剧加热,也不会碎裂。正是由于氮化硅陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件。如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率。我国及美国、日本等国家都已研制出了这种柴油机。 【氮化硅的应用】 氮化硅用做高级耐火材料,如与sic结合作SI3N4-SIC耐火材料用于高炉炉身等部位; 如与BN结合作SI3N4-BN材料,用于水平连铸分离环。SI3N4-BN系水平连铸分离环是一种细结构陶瓷材料,结构均匀,具有高的机械强度。耐热冲击性好,又不会被钢液湿润,符合连珠的工艺要求。见下表 性能AL2O 3 ZrO 2 熔融石英 (SiO2) ZrO2 -MO金 属陶瓷 反应结合 Si3N4 热压 Si3N4 热压 BN 反应结合 SiN4-BN 抗热震性差差好好中好好好 抗热应力差差好好中好好好 尺寸加工精度与易 加工性能 差差好差好差好好 耐磨性好好中好好好好好 耐侵蚀性好好差好好好好 相对分子质量140.28。灰色、白色或灰白色。六方晶系。晶体呈六面体。密度3.44。 硬度9~9.5,努氏硬度约为2200,显微硬度为32630MPa。熔点1900℃(加压下)。通常在常压下1900℃分解。比热容为0.71J/(g·K)。生成热为-751.57kJ/mol。热导率为 16.7W/(m·K)。线膨胀系数为2.75×10-6/℃(20~1000℃)。不溶于水。溶于氢氟酸。在空 气中开始氧化的温度1300~1400℃。比体积电阻,20℃时为1.4×105 ·m,500℃时为4×108 ·m。弹性模量为28420~46060MPa。耐压强度为490MPa(反应烧结的)。1285摄式度时与二氮化二钙反应生成二氮硅化钙,600度时使过渡金属还原,放出氮氧化物。 抗弯强度为147MPa。可由硅粉在氮气中加热或卤化硅与氨反应而制得。可用作高温陶瓷原料。 氮化硅陶瓷材料具有热稳定性高、抗氧化能力强以及产品尺寸精确度高等优良性

北京科技大学科技成果——燃烧合成氮化硅基陶瓷

北京科技大学科技成果——燃烧合成氮化硅基陶瓷成果简介 在高技术陶瓷领域,先进陶瓷占有极其重要的地位,在诸多的先进陶瓷中,氮化硅基先进陶瓷以其高强度、高韧性、高的抗热震性、高的化学稳定性在先进陶瓷中占有独特的地位,是公认的未来陶瓷发动机中最重要的侯选材料。并且在国际上氮化硅陶瓷刀具和氮化硅基陶瓷轴承已经形成相当规模的产业。任何一个跨国刀具公司都有氮化硅基陶瓷刀具的系列产品,足见其在机加工行业中具有不可替代的地位。 但是影响氮化硅陶瓷推广的一个主要因素,是氮化硅粉末价格昂贵,这是由于传统的制取氮化硅粉末的方法耗能高,生产周期长,生产成本高。本项目采用具有自主知识产权的创新的燃烧合成技术,制取氮化硅陶瓷粉末和氮化硅复合粉末,具有耗能低,生产周期短,杂质含量低,生产成本低等特点,具有广泛的应用前景。 燃烧合成(Combustion Synthesis,CS),又名自蔓延高温合成(Self-Propagating High-Temperature Synthesis,SHS),是利用化学反应自身放热合成材料的新技术,基本上(或部分)不需要外部热源,通过设计和控制燃烧波自维持反应的诸多因素获得所需成分和结构的产物。 自1990年以来,本项目负责人等针对燃烧合成氮化硅陶瓷产业化的一系列关键问题,在气-固体系氮化硅基陶瓷的燃烧合成热力学、动力学和形成机制等方面进行了深入研究后得到的创新成果。

本项目来源于国家自然科学基金项目(1992年1月-1994年12月),国家863课题《高品质氮化硅和碳氮化钛超细粉体的低成本制备技术》(2001AA333080)(2002年3月-2005年3月),及其前期工作。 采用本项目的技术,可以生产符合制作先进陶瓷要求的从全α-Si3N4相到高β-Si3N4相,及不同配比的氮化硅粉末,还可根据用户要求,用此技术生产α-Sialon,β-Sialon和其它各种氮化硅基的复合粉末。粉末的质量优良而稳定。 应用于航天、航空及机械行业等,用于制作氮化硅陶瓷刀具、氮化硅基陶瓷轴承、耐磨耐腐陶瓷涂料等。 经济效益及市场分析 本项目总投资为200万元。年销售量30吨,以20万元/吨计,年销售收入600万元,利润200-300万元。 合作方式 技术转让、技术入股或者其它合作方式。

对于氮化硅这种无机非金属材料的介绍

对于氮化硅这种无机非金属材料的介绍 氮化硅是一种重要的结构陶瓷材料。它是一种超硬物质,本身具有润滑性,并且耐磨损,为原子晶体;高温时抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1000℃以上,急剧冷却再急剧加热,也不会碎裂。正是由于氮化硅陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件。如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率。我国及美国、日本等国家都已研制出了这种柴油机。 亨利·爱丁·圣克莱尔·德维尔和弗里德里希·维勒在1857年首次报道了氮化硅的合成方法。在他们报道的合成方法中,为减少氧气的渗入而把另一个盛有硅的坩埚埋于一个装满碳的坩埚中加热。他们报道了一种他们称之为硅的氮化物的产物,但他们未能弄清它的化学成分。1879年Paul Schuetzenberger通过将硅与衬料(一种可作为坩埚衬里的糊状物,由木炭、煤块或焦炭与粘土混合得到)混合后在高炉中加热得到的产物,并把它报道为成分是Si3N4的化合物。1910年路德维希·魏斯和特奥多尔·恩格尔哈特在纯的氮气下加热硅单质得到了Si3N4。1925年Friederich和Sittig利用碳热还原法在氮气气氛下将二氧化硅和碳加热至1250-1300°C合成氮化硅 在后来的数十年中直到应用氮化硅的商业用途出现前,氮化硅未受到重视和研究。从1948年至1952年期间,艾奇逊开办在纽约州尼亚加拉大瀑布附近的金刚砂公司为氮化硅的制造和使用注册了几项专利。1958年联合碳化物公司生产的氮化硅被用于制造热电偶管、火箭喷嘴和熔化金属所使用的坩埚。英国对氮化硅的研究工作始于1953年,目的是为了制造燃气涡轮机的高温零件。由此使得键合氮化硅和热压氮化硅得到发展。1971年美国国防部下属的国防高等研究计划署与福特和西屋公司签订一千七百万美元的合同研制两种陶瓷燃气轮机。 虽然氮化硅的特性已经早已广为人知,但在地球自然界中存在的氮化硅(大小约为2×5μm)还是在二十世纪90年代才在陨石中被发现。为纪念质谱研究的先驱阿尔弗雷德·奥托·卡尔·尼尔将自然界中发现的此类氮化硅矿石冠名为“nierite”。不过有证据显示可能在更早之前就在前苏联境内的阿塞拜疆发现过这种存在于陨石中的氮化硅矿石。。含有氮化硅矿物的陨石也曾在中国贵州省境内发现过。除存在于地球上的陨石中以外,氮化硅也分布于外层空间的宇宙尘埃中。 氮化硅陶瓷制品的生产方法有两种,即反应烧结法和热压烧结法。反应烧结法是将硅粉或硅粉与氮化硅粉的混合料按一般陶瓷制品生产方法成型。然后在氮化炉内,在1150~1200℃预氮化,获得一定强度后,可在机床上进行机械加工,接着在1350~1450℃进一步氮化18~36h,直到全部变为氮化硅为止。这样制得的产品尺寸精确,体积稳定。热压烧结法则是将氮化硅粉与少量添加剂(如MgO、Al2O3、MgF2、AlF3或Fe2O3等),在19.6MPa以上的压力和1600~1700℃条件下压热成型烧结。通常热压烧结法制得的产品比反应烧结制得的产品密度高,性能好。 氮化硅陶瓷材料具有热稳定性高、抗氧化能力强以及产品尺寸精确度高等优良性能。由于氮化硅是键强高的共价化合物,并在空气中能形成氧化物保护膜,所以还具有良好的化学稳定性,1200℃以下不被氧化,1200~1600℃生成保护膜可防止进一步氧化,并且不被铝、铅、锡、银、黄铜、镍等很多种熔融金属或合金所浸润或腐蚀,但能被镁、镍铬合金、不锈钢等熔液所腐蚀。 氮化硅陶瓷材料可用于高温工程的部件,冶金工业等方面的高级耐火材料,化工工业中抗腐蚀部件和密封部件,机械加工工业的刀具和刃具等。 由于氮化硅与碳化硅、氧化铝、二氧化钍、氮化硼等能形成很强的结合,所以可用作结合材料,以不同配比进行改性。

氮化硅陶瓷材料

氮化硅陶瓷材料 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

摘要氮化硅陶瓷是一种具有广阔发展前景的高温、高强度结构陶瓷,它具有强度高、抗热震稳定性好、疲劳韧性高、室温抗弯强度高、耐磨、抗氧化、耐腐蚀性能好等高性能,已被广泛应用于各行各业。本文介绍了氮化硅陶瓷的基本性质,综述了氮化硅陶瓷的制备工艺和国内外现代制造业中的应用,并展望了氮化硅陶瓷的发展前 景。

Abtract:Silicon nitride ceramic is a broad development prospects of high temperature, high strength structural ceramics, it has high strength, thermal shock stability, high temperature fatigue toughness, high bending strength, wear resistance, oxidation resistance, corrosion resistance and good performance of high performance, has been widely used in all walks of life. This paper introduces the basic properties of silicon nitride ceramics, reviews the fabricating technique of silicon nitride ceramics at home and abroad and modern manufacturing industry in the application, and looks forward to the development prospect of silicon nitride ceramics.

氮化硅陶瓷讲解

氮化硅陶瓷及其制备成型工艺 氮化硅(Si3N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的元素。氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物。 氮化硅是在人工条件下合成的化合物。虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料。经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品。开发过程为何如此艰难,这是因为氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的。没有氮化硅陶瓷就没有氮化硅如今的重要地位。 Si3N4是以共价键为主的化合物,键强大,键的方向性强,结构中缺陷的形成和迁移需要的能量大,即缺陷扩散系数低(缺点),难以烧结,其中共价键Si-N成分为70 %,离子键为30 %,同时由于Si3N4本身结构不够致密,从而为提高性能需要添加少量氧化物烧结助剂,通过液相烧结使其致密化。 Si3N4含有两种晶型,一种为α-Si3N4,针状结晶体,呈白色或灰白色,另一种为β-Si3N4,颜色较深,呈致密的颗粒状多面体或短棱柱体。两者均为六方晶系,都是以[SiN4]4-四面体共用顶角构成的三维空间网络。 在高温状态下,β相在热力学上更稳定,因此α相会发生相变,转为β相。从而高α相含量Si3N4粉烧结时可得到细晶、长柱状β-Si3N4晶粒,提高材料的断裂韧性。但陶瓷烧结时必须控制颗粒的异常生长,使得气孔、裂纹、位错缺陷出现,成为材料的断裂源。 在工业性能上,Si3N4陶瓷材料表现出了较好的工艺性能。(1)机械强度高,硬度接近于刚玉,有自润滑性耐磨;(2)热稳定性高,热膨胀系数小,有良好的导热性能;(3)化学性能稳定,能经受强烈的辐射照射等等。 晶体的常见参数如下图所示:

氮化硅陶瓷的制备及性能研究进展

收稿日期:2011-08-20 非晶Si 3N 4 0前言 随着现代科学技术的发展,各种零部件的使用条件愈加苛刻(如高温、强腐蚀等),对新材料的研究和应用提出了更高的要求,传统的金属材料由于自身耐高温、抗腐蚀性能差等弱点已难以满足科技日益发展对材料性能的要求,现亟待开发新材料。由于陶瓷材料的出现可以克服传统材料的不足而越来越被研究人员关注,经过努力研究,在陶瓷的制备工艺和性能方面的研究已取得很大的进步,尤其是Si 3N 4陶瓷的优越性能得到了人们的广泛认可,就其结构、性能、烧结及应用已经开始系统的研究,本文就Si 3N 4陶瓷的制备工艺、增韧途径、高温性能的改善及应用作一简要的评述。 1Si 3N 4陶瓷概述 氮化硅(Si 3N 4)陶瓷是无机非金属强共价键化合物,其基本结构单元为[SiN 4]四面体,硅原子位于四面体的中心,四个氮原子分别位于四面体的四个顶点,然后以每三个四面体共用一个硅原子的形式在三维空间形成连续而又坚固的网络结构,氮化硅的许多性能都是因为其具有这种特殊的结构,因此 Si 3N 4结构中氮原子与硅原子间结合力很强,其作为一种高温 结构陶瓷,素有陶瓷材料中的“全能冠军”之称,氮化硅陶瓷具有硬度大、强度高、热膨胀系数小、高温蠕变小、抗氧化性能好,可耐氧化到1400℃、热腐蚀性能好,能耐大多数酸侵蚀,摩擦系数小,与用油润滑的金属表面相似等优异性能,已在许多工业领域获得广泛应用,并有很多潜在用途[1]。 氮化硅有晶体和非晶体之分,所说的非晶氮化硅就是无定形氮化硅[2],而晶体氮化硅主要有早期的四方氮化硅(晶格常数为a=9.245魡,c=8.48魡)、常见的六方晶系氮化硅(有两种晶形,即针状结晶体α-Si 3N 4和颗粒状结晶体β-Si 3N 4)、立方氮化硅[3]。根据目前的认识,氮化硅结构有以下几种: 2Si 3N 4陶瓷的制备方法 氮化硅陶瓷的制备技术发展很快,由于Si 3N 4是强共价化合物,其扩散系数、致密化所必须的体积扩散及晶界扩散速度、烧结驱动力很小,这决定了纯氮化硅不能靠常规固相烧结达到致密化。目前氮化硅陶瓷烧结工艺方法主要有:常压烧结、反应烧结、热压烧结、气压烧结等[4-7]。 2.1常压烧结 常压烧结是以高纯、超细、高α相含量的氮化硅粉末与少 量助烧剂混合,通过成形、烧结等工序制备而成。由于常压烧结法很难制备高密度的纯氮化硅材料,为了获得高性能的氮化硅材料,需要加入助烧剂与Si 3N 4粉体表面的SiO 2反应,在高温下形成液相,活化烧结过程,通过溶解析出机制使其致密。因此,常压烧结Si 3N 4研究的关键在于选择合适的助烧剂。目前常用的助烧剂主要有:MgO 、Y 2O 3、稀土元素氧化物、复合助烧剂等,这些助烧剂能控制液相粘度,提高相转变,防止固溶体形成,降低晶格氧含量并控制玻璃相组成和含量[8]。 2.2反应烧结 反应烧结是把硅粉或硅粉与氮化硅粉的混合物成形后, 在1200℃左右通氮气进行预氮化处理,之后机械加工成所需零件,最后在1400℃左右进行最终氮化烧结。其主要反应有: 3Si+2N 2圮Si 3N 4(1) 在反应炉中,随着炉温的不断升高,氮气的活性增强,当达到一定温度1100~1200℃时,氮气和硅粉发生(1)式反应,反应放出能量并传给周围硅原子,使之活化并继续反应,随着反应不断深入坯体内部,硅粉也不断氮化生成氮化硅。 其工艺流程如图1所示[7]: 2.3热压烧结 热压烧结是将Si 3N 4粉末和少量添加剂(如MgO 、Al 2O 3、 MgF 2、Fe 2O 3等)在19.6MPa 以上的压强和1600℃以上的温 度进行热压成型烧结。英国和美国的一些公司采用热压烧结 Si 3N 4陶瓷,其强度达到981MPa 以上。热压烧结时添加物和 氮化硅陶瓷的制备及性能研究进展 王会阳1,李承宇1,刘德志 2 (1.中国矿业大学材料科学与工程学院,徐州221116;2.江苏省陶瓷研究所有限公司,宜兴214221) 摘 要 氮化硅陶瓷是一种具有广阔发展前景的高温、高强度结构陶瓷,它具有强度高、抗热震稳 定性好、疲劳韧性高、室温抗弯强度高、耐磨、抗氧化、耐腐蚀性能好等高性能,已被广泛应用于各行业。本文介绍了氮化硅陶瓷的基本性质,综述了氮化硅陶瓷的制备工艺和提高其高温性能的方法以及增韧的途径,并展望了氮化硅陶瓷的发展前景。关键词 氮化硅;陶瓷;制备;增韧;研究进展 江苏陶瓷 Jiangsu Ceramics 第44卷第6期2011年12月 Vol.44,No.6December ,2011 图1氮化硅反应烧结流程 Si 3N 4 立方Si 3N 4 四方Si 3N 4六方Si 3N 4晶体Si 3N 4 α-Si 3N 4β-Si 3N 4 粉体处理 气体处理成型 生坯处理 烧结 陶瓷体处理 4

自增韧氮化硅陶瓷的制备与性能研究

自增韧氮化硅陶瓷的制备与性能研究 摘要 氮化硅陶瓷具有优异的物理机械性能和化学性能,被广泛利用于高温、化工、冶金、航空航天等领域。在结构陶瓷中氮化硅陶瓷虽具有相对较高的断裂韧性,但为了进一步拓宽氮化硅陶瓷的运用领域和提高其使用可靠性,改善其断裂韧性一直是该材料研究的重要课题。 本文通过利用氮化硅陶瓷的自增韧技术,使用复合烧结助剂和在氮化硅基体中添加长柱状β-Si3N4晶种,制备高断裂韧性的氮化硅陶瓷。采用X射线衍射、扫描电镜、阿基米德法、三点抗弯曲强度、单边切口梁法等测试方法对陶瓷的组成、显微结构、显气孔率以及抗弯强度和断裂韧性等进行了分析与表征。 首先研究了无压烧结制备氮化硅陶瓷过程中,烧结助剂(Y2O3和Al2O3)对其烧结性能和力学性能的影响,当Y2O3含量8wt%,Al2O3含量4wt%时,氮化硅陶瓷的相对密度达95%以上,抗弯强度为674MPa,断裂韧性为6.34MPa2m1/2。再通过引入La2O3提高氮化硅晶粒的长径比,使氮化硅陶瓷的抗弯强度和断裂韧性达到686MPa和7.42MPa2m1/2。 本文通过无压烧结工艺,在1750℃制备了长柱状的β-Si3N4晶种,晶种的平均长度为2.82um,平均粒径为0.6um,平均长径比为4.7。着重研究了晶种对氮化硅陶瓷烧结性能和力学性能的影响。氮化硅陶瓷中加入晶种后,其烧结性能和抗弯强度略有降低,但断裂韧得到了很大的提高;且随着晶种添加量的增加,断裂韧性先升高再降低,掺量2wt%时断裂韧性达到最大(7.68MPa2m1/2),提高了20%以上。 关键词:Si3N4陶瓷烧结助剂β-Si3N4晶种长径比断裂韧性

Abstract Silicon nitride ceramics, which possess excellent physical mechanical properties and chemical properties, were widely used in high-temperature industrial, chemicals, metallurgy, aerospace application and other field. Silicon nitride ceramics have the relatively high fracture toughness in the structural ceramics, but in order to further broadening application fields and improving the using reliability of ceramics, the increasing of fracture toughness was always the important problems in the study of the material. This work prepared high fracture toughness Si3N4 ceramics by addition of composite sintering additives and elongated β-Si3N4 seeds,which was called “self-reinforced”of Silicon nitride ceramics. Phase composition, microstructures, open-porosity, fracture toughness and flexural strength were tested by using XRD, SEM, Archinmedes, SENB and three-point bending test. At first, the effect of sintering additives (Y2O3and Al2O3) on the sintering properties and mechanical properties was investigated by pressureless sintering. The experimental results showed that silicon nitride ceramics can achieve good mechanical properties, the relative density of Si3N4ceramics was more than 95%, flexural strength of 674MPa and fracture toughness of 6.34MPa2m1/2. When the sintering additives of Y2O3 and Al2O3 were 8 wt% and 4 wt%. Then the introducing of La2O3 to increase the aspect ratio of Si3N4 grains, make the flexural strength and fracture toughness of Si3N4 ceramics to 686MPa and 7.42MPa2m1/2. The elongated β-Si3N4 seeds were prepared by pressureless sintering at 1750℃,the average length, diameter and aspect ratio were 2.82um, 0.6um, and 4.7, respectively. The influence of seeds on Si3N4ceramics sintering properties and mechanical properties were studied by this article. The results demonstrated that the fracture toughness of silicon nitride was improved significantly with the addition of the seeds, while the relative density and bending strength are decreased slightly. In addition, the fracture toughness initially increased and then decreased with increasing seeds amount. When the content of β-Si3N4 seeds was 2wt%,the highest

相关文档
最新文档