清洁场项目地下水污染迁移研究

清洁场项目地下水污染迁移研究
清洁场项目地下水污染迁移研究

环境水力学在地下水污染物迁移中的应用

环境水力学在地下水污染物迁移中的应用

环境水力学在地下水污染物迁移中的应用 摘要:地下水污染问题日益严重,研究污染物在地下水中的迁移过程是解决地下水污染的最主要途径之一。本文通过查阅大量文献,综合国内外研究现状,从地下水污染物特性及地下水运移介质特性两方面出发,分析环境水力学在地下水污染物迁移理论中的应用,并从国内工程应用角度提出环境水力学尤其是数值模拟法在地下水污染物迁移研究中存在的问题及其未来发展趋势。 关键词:环境水力学地下水污染物迁移理论分析实验模拟数值模拟 1 环境水力学的发展现状 1.1 环境水力学学科定义 环境水力学是一门新兴学科,其研究内容尚在探索与发展中。从广义上讲,环境水力学是研究与环境有关的水力学问题,即研究污染物在水体中混合输移的规律及其应用的学科,是水力学的一个新分支。其研究内容除水污染、水生态问题外还有许多其它方面的问题,比如水土保持、河道冲淤、洪水破坏作用、冰凌水力学等等。[1]如果说传统水力学主要是研究水流自身运动规律的话,环境水力学则主要是研究水体中所含物质的运动规律,是传统水力学的一种发展,其内容涉及水文学、水力学、水化学、水生物学、生态学、湖沼学、海洋学和沉积学等,是一门综合性很强的交叉学科。[2]美国环境与水资源研究所环境水力学技术委员会提出“环境水力学特别着重于将物理因素(水动力学、泥沙输移和地形条件)、化学因素(保守与非保守物质的传输、反应动力学和水质)和生物因素(生态学)作为一个系统来进行研究。” [3]从与水污染有关的水力学问题来说,环境水力学主要研究地面及地下水域中物质的扩散、输移和转化规律,建立其分析计算方法,确定物质浓度的时空分布及其应用。工农业生产及生活中的污水、废热,未经足够处理,就排入河流、湖泊、海洋及地下水等水域中,污染水体,恶化水质,日益严重地影响生态、环境。污染物在水体中会因与水体混合,随水流输移而稀释,也会因化学、生物作用而降解。因此,水体本身有一定的自净能力。环境水力学的主要目标是,探求因混合、输移而形成的污染物浓度随空间和时间的变化关系,为水质评价与预报、水质规划与管理、排污工程的规划设计以及水资源保护的合理措施提供基本依据。[4] 地下水作为水体的一部分,其运动规律适用于环境水力学的大多数方法,但由于其运移介质的特殊性,亦呈现出一定特殊性。因此,地下水中污染物质的输移、转化和积累成为重要的研究课题。污染物在地下水中的输移速率较小,一旦地下水被污染就很难恢复原来的水质。地下水的过度开采会严重破坏生态系统的平衡,在临近滨海地区还会引起海水入侵,造成地下水盐化。 1

浅析地下水污染物的迁移与转化

浅析地下水污染物的迁移与转化 摘要:随着淡水资源日益紧缺,合理利用和保护地下水资源逐渐得到社会的广泛关注。有机污染物对地下水资源的污染已成为当前地下水污染防治与保护的焦点问题。随着工农业的发展,越来越多的有机化学污染物进入自然环境,这些有机污染物随着地表径流流入渗到地下水环境中,对地下水系统造成污染。地下水是人类的主要饮用水来源之一,水中的有机污染直接或间接对人类健康造成严重危害。研究有机污染物在地下水环境中迁移转化具有重要的理论和现实意义。 关键词:地下水有机污染物迁移与转化 一、我国地下水污染源和污染物状况 1. 地下水污染的主要表现 1.1有机化合物(如合成染料,油类及有机农药)出现于地下水。 1.2极其微量的毒性金属元素(如汞、铬、铅、砷及其他放射性元素)出现于地下水中。 1.3各种细菌,病毒大量繁殖于地下水。 地下水硬度,矿化度,酸度和某些单项离子超过使用标准。[1] 2、我国地下水有机污染物的特点及危害 目前,我国大部分地区的地下水物污染日趋严重,且具有种类多、含量低、危害大、治理难等特点。在浅层地下水中有机污染物主要有三氯甲烷、PCE、TCE 等[2]。许多有机污染物具有致癌、致畸、致突变效应,严重影响人体健康,且有机污染物在地下水环境中难以通过自然降解过程去除,可能长期存在并累积,有机污染物对我国地下水污染日趋严重。 3、地下水污染物的研究现状 近年,国内外学者在地下水溶质迁移理论和试验研究方面取得了新的进展:对污染物迁移的弥散系数提出了与时空相关的表达式;大量的试验研究使得迁移方程中的衰减、离子交换、生物、化学反应的系数考虑更全,取值更合理,并考虑了污染物的固相和液相浓度的相互转化关系,吸附条件则由平衡等温模式发展到考虑非平衡吸附模式【3】。 二、地下水污染物的迁移转化研究

石油类污染物在土壤和地下水中的污染模拟

2、土壤污染模拟 土壤是一个多相的疏松的多孔介质,固相中有大量的有机和无机胶体。石油是一种天然的粘油状液体,主要成分为烃类化合物(占80%一90%)。烃类化合物是非极性有机物,其偶极矩<1,介电常数<3,在土壤中有一定的吸附作用。地表的石油可以在重力作用下入渗,也可能随地面水或雨水沿着土壤毛细管孔隙向下渗透污染土壤,甚至进一步向下淋滤污染地下水。石油类污染物质在土壤入渗过程中,由于土壤中存在着大量的有机和无机的胶体,使得进入土壤中的污染物不断地被吸附。吸附能力与土壤的质地、石油的性质有密切联系。通常,石油烃类在土壤介质吸附程度以分配系数Kd来表示。 式中:Cs为平衡时固相中的浓度(mg/kg);Ce为平衡时液相中的浓度(mg/l)根据土壤中溶质运移模型和石油类污染物质在土壤中的迁移转化过程,考虑吸附作用而忽略石油的挥发,建立石油类污染物质在土壤中迁移转化二维综合模型。它包括水运动方程和石油运动方程。 土壤中水运动方程: 土壤中石油类运动方程: 式中:C(h)为比水容量(cm-1);K x、K z分别为横向纵向水力传导系数(cm/d);Dxx、Dzz分别为横向纵向弥散系数(cm2/d);Rd为滞留因子;c为液相中石油的浓度(mg/l);qx、qz分别为x和z方向的达西流速(cm/d);θ为含水量(%);λ为降解系数(d-1);h为土壤中压力水头(cm)。 初始条件和边界条件 根据监测的结果和落地油的分布特征,预测石油类在土壤中迁移过程及石油是否会对地下水造成污染,选择预测范围为:长80m,深6m剖面区域。并对部分问题可进行简化处理,作一些基本假设。假设土壤水最初不含石油,即未受到污染,但土壤中存在一定的本底值,经取样测定取平均值为40.3mg/kg。在土壤的预测范围内,土壤被认为是均质的。 对水运动方程上边界确定为Cauchy边界,下边界为Neumann边界。

土壤及地下水污染研究进展.

土壤及地下水污染研究进展一、土壤及地下水污染研究进展目前人们对污染物在土壤及地下水中迁移转化规律的研究,一是通过室内土柱试验和野外大田试验进行实测模拟分析,二是通过建立数学模型来进行数值模拟分析,通过模型模拟来预测污染物浓度的时空变化规律,以便采取控制措施,使土壤和地下水环境受影响的程度降为最低。根据污染物在土壤及地下水系统中的迁移途径,研究者分别从表层土、含水层及非饱和带 3个方面进行了研究,并取得了一系列成果。(一)污染物在表土层中迁移转化的研究表土层污染物主要有无机废物污染及有机废物污染,国内外许多学者对上述各种污染物开展了大量的研究工作,尤其是重金属、化肥和有机农药方面的研究受到农学家们的高度重视。学者们对于污染物在土壤作物系统的吸附、迁移、转化、归宿和分布规律方面的研究,都取得了较大的成果。但由于土壤环境的复杂多样性,而且污染物的种类、污染途径、污染物与环境各要素作用机理不同,因此对各种类型的污染必须分别研究。 1.污染物在表层土中迁移转化研究由于表层土壤中含有大量的有机质和微生物,使得各种污染物在其中发生了复杂的物理、化学和生物反应。考虑到表土层比较薄,国内外大多都采用黑箱模型来描述污染物的迁移转化规律,对于内部机理的研究成果较少。如美国的Jury(1971在砂土中拌盐用灌水入渗淋溶试验观测溶质在均匀土壤中的迁移规律;Jaynes(1991在野外进行了漫灌条件下Br - 离子的示踪试验;Ellsworth(1996在露天试验场进行了微区试验,研究了Br - 、Cl - 、NO 3 - 随水流在非饱和土壤中的运移规律。近年来,土壤学家借助于室内外模型试验,正在确定土壤的环境容量,美国等发达国家正在进行表土层的灰箱模型研究,如Geng等人将氮循环过程看作“灰箱”,进行土壤地下水系统的氮循环迁移模拟,并在不同区域范围和不同环境条件下进行了应用,得到了满意的结果。该模型由3个子模型构成,分别模拟硝酸盐迁移过程中各个环节,即土壤中氮循环和硝酸盐渗出量模型、硝酸盐从土壤到含水层的迁移量模型、以及二者的耦合模型。 2.污水灌溉引起的土壤污染问题污水灌溉是解决水资源缺乏和污水资源化的重要工程措施,污水中大多含有比较丰富的有机物质,它们在一定条件下分解,能为农作物提供可利用的氮、磷等多种养分,作物增产效果明显,但是由于污水中含有不同种类的污染物质,长期利用这种污水进行灌溉已经在一定程度上造成了土壤环境的恶化。尤其是重金属污染,可在土

相关文档
最新文档